Math 350 Abstract Linear Algebra Homework Set #6

Eigenvectors & Eigenvalues

- 1. Let $T \in \mathcal{L}(V)$.
 - (a) Prove T is invertible if and only if 0 is *not* an eigenvalue for T.
 - (b) Now assume T is invertible. Prove λ is an eigenvalue for T if and only if λ^{-1} is an eigenvalue for T^{-1} .
- 2. Assume dim(Ran T) = k. Prove that T has at most k + 1 distinct eigenvalues.
- 3. (a) Find all the eigenvalues/vectors for the operator $T : \mathbb{C}^3 \to \mathbb{C}^3$ given by:

$$T(x, y, z) = (2y, 0, 5z).$$

- (b) Given an example of an operator on \mathbb{R}^4 that has no (real) eigenvalues.
- 4. Let S and T be operators on V. Prove that ST and TS have the same eigenvalues.
- 5. Let $T \in \mathcal{L}(V)$ such that every subspace with dimension dim V-1 is T-invariant.
 - (a) Prove that every (nonzero) $v \in V$ must be an eigenvector for T.
 - (b) Prove that T has exactly one (distinct) eigenvalue λ .
 - (c) Conclude that $T = \lambda I_V$.