Math 350 Abstract Linear Algebra Homework Set #4

Rank-Nullity

1. Prove that if $T : \mathbb{R}^4 \to \mathbb{R}^2$ is linear and

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 = 2x_4 \text{ and } x_2 = 7x_3\},\$$

then T is surjective.

- 2. Let $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$ be a nonzero linear map.
 - (a) Prove that $\dim(\operatorname{null} T) = 2$.
 - (b) Prove there exists $a, b, c \in \mathbb{R}$ such that T(x, y, z) = ax + by + cz.
 - (c) Show that null T is a plane in \mathbb{R}^3 . Give the equation for this plane.
 - (d) Let \vec{n} be the normal vector to the plane you found in part c). Show that T: span $(\vec{n}) \to \mathbb{R}$ is bijective.
- 3. For this problem let V and W be finite-dimensional vectors spaces and assume $\{v_1, \ldots, v_n\}$ is a basis for V.
 - (a) Fix vectors $x_1, \ldots, x_n \in W$. Define a function

$$T: \{v_1, \ldots, v_n\} \to \{x_1, \ldots, x_n\}$$

by $Tv_i = x_i$. Show that the "extended" function $T: V \to W$ given by

$$T(a_1v_1 + \dots + a_nv_n) = a_1Tv_1 + \dots + a_nTv_n = a_1x_1 + \dots + a_nx_n$$

is a linear transformation.

- (b) Let V and W be finite-dimensional vector spaces. Prove there exists a surjective linear map from V to W iff dim $V \ge \dim W$. (Hint: Use part (a).)
- 4. Assume V is a finite-dimensional space and $T \in \mathcal{L}(V, V)$ such that

$$\operatorname{null} T \cap \operatorname{ran} T = \{0_V\}.$$

Prove that

$$V = \operatorname{null} T \oplus \operatorname{ran} T.$$