Math 350 Abstract Linear Algebra Homework Set #1

Vector Spaces and Subspaces

- 1. (a) Define $M_{r,c}$ be the set of all matrices with r rows and c columns whose entries are in \mathbb{R} . Show that $M_{r,c}$ is a vector space over \mathbb{R} under the usual operations of matrix addition and scalar multiplication.
 - (b) Let D be the subset of the square matrices $M_{n,n}$ whose only nonzero entries lie on the diagonal. Show that D is a subspace of $M_{n,n}$.
- 2. (a) Recall that $\mathcal{C}(\mathbb{R})$ is the vector space over \mathbb{R} of all continuous functions $f : \mathbb{R} \to \mathbb{R}$. Define U to be the subset of all such function f such that f(1) = 0. Is U a subspace of $\mathcal{C}(\mathbb{R})$?
 - (b) What if we consider the subset U' consisting of all continuous function such that f(1) = 1 instead?
- 3. Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under addition and under taking additive inverses but U is not a subspace of \mathbb{R}^2 .

For the remainder, assume V is a vector space over \mathbb{F} and $v \in V$ and $a \in \mathbb{F}$.

- 4. Assume U and W are subspaces of V.
 - (a) Prove that $U \cap W$ is also a subspace of V.
 - (b) Prove that $U \cup W$ is a subspace of V if and only if either $U \subset W$ or $W \subset U$.
- 5. (a) Prove Lemma 1.4 from class, i.e., show that

$$0 \cdot v = 0_V$$
 for all $v \in V$,

and

$$a \cdot 0_V = 0_V$$
 for all $a \in F$.

- (b) Prove that if $av = 0_V$, then a = 0 or v = 0.
- (c) Assuming V is not the trivial vector space, prove that $1 \in \mathbb{F}$ is the unique scalar such that $1 \cdot v = v$ for all $v \in V$.