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Abstract
A (mostly) self-contained introduction to the determinant aimed at advanced un-

dergraduates, written for the Math 350H class at Rutgers spring semester of 2017.
Most of the material is taken from [1, 2], but it has been substantially reorganized.
The goal of this article is to present an organized and motivated discussion of the
abstract definition of the determinant and its most basic properties.
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1 Notation

For the duration of the article let F denote an arbitrary field, and we use Mm×n(F ) to denote
the collection of m × n matrices with entries in F . Given a function δ : Mn×n(F ) → F we
will occasionally write

δ


α1
...
αn


where α1, . . . , αn ∈ F n to mean δ applied to the matrix with rows α1, . . . , αn. We use
In ∈Mn×n(F ) to denote the n× n identity matrix, which is all ones on the diagonal and all
zeros off the diagonal. We denote by e1, . . . , en the rows of In, so that ej ∈ F n is a vector of
all zeros except for 1 in the jth position. For A ∈ Mn×n(F ) we write Aij for the element in
the ith row and jth column of A.

For A ∈Mn×n(F ) we denote by Ãij the matrix in M(n−1)×(n−1)(F ) obtained by removing
the ith row and jth column from A (Definition 5.2).

2 Motivation: signed area and its properties

2.1 Signed area of a parallelogram

Let u, v ∈ R2 and consider the set

P (u, v) = {tu+ sv | 0 6 t 6 1, 0 6 s 6 1}.

This is the parallelogram in R2 spanned be the vectors u and v, which degenerates to a line
if u and v are parallel (when there exists λ ∈ R such that u = λv). Let A(u, v) denote the
area of P (u, v), which is zero in the case that u = λv for some λ ∈ R. Next, let O(u, v)
denote the orientation of the pair (u, v), which means that if θ ∈ [0, 2π) is the angle from u
to v then

O(u, v) =


+1 0 < θ < π

−1 π < θ < 2π
0 otherwise.

The cases in which u and v are parallel (so O(u, v) = 0) will turn out to not be important,
but we define O there as well for completeness.

Now we will consider the product of these two functions, the function from R2×R2 to R
given by (u, v) 7→ O(u, v)A(u, v), which we call the signed area of the parallelogram spanned
by u and v. Notice that since the domain of this function is R2 × R2 = R4 we may also
consider it as a function from M2×2(R) to R where the two vectors u and v are the rows of
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the matrix.
Definition 2.1. Define the signed area function, denoted by δarea, by

δarea : M2×2(R)→ R(
u
v

)
7→ O(u, v)A(u, v)

where u, v ∈ R2 are row vectors and
(
u
v

)
is the 2 × 2 matrix with first row u and second

row v.

2.2 Properties of signed area

This function has three important properties:

Alternating: Notice that δarea

(
u
u

)
= 0 for any u ∈ R2 because this is the case in which the

parallelogram degenerates to a line.

Normalized: Notice that δarea(I2) = 1 because the unit square has area 1 and the basis
(1, 0), (0, 1) is positively oriented.

2-linear: First, notice that δarea is not a linear function on M2×2(R). This is because, for
instance

δarea

(
1 0
0 0

)
+ δarea

(
0 0
0 1

)
= 0 + 0 = 0

but
δarea

((
1 0
0 0

)
+
(

0 0
0 1

))
= δarea

(
1 0
0 1

)
= 1.

While it is not linear on M2×2(R), it does satisfy a related property. Thinking of δarea as a
function just on R2, by fixing one of the rows, it is linear. That is, for any u, u′, v, v′ ∈ R2

and c ∈ R it is true that

δarea

(
u+ cu′

v

)
= δarea

(
u
v

)
+ cδarea

(
u′

v

)
and

δarea

(
u

v + cv′

)
= δarea

(
u
v

)
+ cδarea

(
u
v′

)
.

I will not prove this here (since it is tedious), but it can be proven with basic geometry.
See [1, pages 205-207].

Conclustion: We conclude that there exists an alternating, 2-linear function on M2×2(R)
which sends I2 to 1.
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2.3 Implications of these properties

Suppose now that F is an arbitrary field and δ : M2×2(F )→ F is a function which has these
three properties: it is normalized, alternating, and 2-linear. By this I mean that δ(I2) = 1,
δ(A) = 0 if the two rows of A are equal, and that

δ

(
u+ cu′

v

)
= δ

(
u
v

)
+ cδ

(
u′

v

)
and δ

(
u

v + cv′

)
= δ

(
u
v

)
+ cδ

(
u
v′

)

for all u, u′, v, v′ ∈ R2, c ∈ R.
Let u, v ∈ R2. Then by the alternating and 2-linearity properties we see that

0 = δ

(
u+ v
u+ v

)
= δ

(
u
u

)
+ δ

(
u
v

)
+ δ

(
v
u

)
+ δ

(
v
v

)
= 0 + δ

(
u
v

)
+ δ

(
v
u

)

so
δ

(
u
v

)
= δ

(
v
u

)
for any u, v ∈ R2. Thus, we conclude that

δ

(
0 1
1 0

)
= −δ

(
1 0
0 1

)
= −1

using the normalization property. Thus, if we let e1 = (1, 0) and e2 = (0, 1) we have that

δ

(
e1
e1

)
= δ

(
e2
e2

)
= 0, δ

(
e1
e2

)
= 1, and δ

(
e2
e1

)
= −1. (2.1)

Now, let
(
u
v

)
∈M2×2(R) be arbitrary, and let u = (a, b), v = (c, d), so that u = ae1 + be2

and v = ce1 + de2. By using only the properties of normalization, alternating, and 2-linear
(and Equation (2.1) which we derived from these properties) we can deduce that

δ

(
u
v

)
= δ

(
ae1 + be2

v

)
= aδ

(
e1
v

)
+ bδ

(
e2
v

)

= a

(
δ

(
e1

ce1 + de2

))
+ b

(
δ

(
e2

ce1 + de2

))

= a

(
cδ

(
e1
e1

)
+ dδ

(
e1
e2

))
+ b

(
cδ

(
e2
e1

)
+ dδ

(
e2
e2

))

= a(c(0) + d(1)) + b(c(−1) + d(0))

= ad− bc.
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So we have proven the following statement: If there exists a 2-linear, alternating,
normalized function on M2×2(R), then it must be given by(

a b
c d

)
7→ ad− bc.

It is important to notice that in the discussion in this section we have not proved that such
a function does exist, but only what the formula would have to be if it does exist. That is, it
may be that no such function exists and that the formula we derived does not actually satisfy
all of the desired properties. In Section 2.2 we showed that there is at least one function
with all of these properties, namely δarea, so we have the following:

Theorem 2.2. There is precisely one function δ : M2×2(R)→ R which is 2-linear, alternat-
ing, and satisfies δ(I2) = 1. This function is given by

δ

(
a b
c d

)
= ad− bc.

Definition 2.3. Let det : M2×2(R) → R denote the unique 2-linear, alternating function
which sents I2 to 1.

Thus, we have found a formula for the function δarea. Since δarea : M2×2(R) → R is
2-linear, alternating, and satisfies δarea(I2) = 2 by Theorem 2.2 we see that δarea = det so

δarea

(
a b
c d

)
= ad− bc.

Of course, this function is the usual determinant of a 2 × 2 matrix. In Section 5 we will
follow this same method to define the determinant for n× n matrices, where n > 1.

3 An application for 2× 2 matrices

Recall that a matrix A ∈M2×2(F ) is invertible if there exists another matrix B ∈M2×2(F )
such that AB = BA = I2. We call B the inverse of A and use the notation B = A−1.
Remark 3.1. The following theorem holds for any field F , but we state it just for R because
so far we have only shown that the det function exists for real 2× 2 matrices. �

Theorem 3.2. Let A ∈M2×2(R). Then A in invertible if and only if det(A) 6= 0. Moreover,

in the case that A =
(
A11 A12
A21 A22

)
is invertible

A−1 = 1
det(A)

(
A22 −A12
−A21 A11

)
.
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Proof. Supposing that det(A) 6= 0 we may define

B = 1
det(A)

(
A22 −A12
−A21 A11

)
.

and straightforward computation gives AB = BA = I2, which means that A is invertible
with the desired inverse.

Now suppose that A is invertible. This means that A has rank 2 so the columns of A are

linearly independent and thus the vector
(
A11
A21

)
is nonzero. This means either A11 6= 0 or

A21 6= 0.
If A11 6= 0 then A can be transformed into

A′ =
(
A11 A12
0 A22 − A21

A11
A12

)

by subtracting A21
A11

times the first row from the second. Such a transformation does not
change the rank of a matrix, so A′ also has rank 2. This means the rows of A′ are linearly
independent so A22 − A21

A11
A12 6= 0 which implies A11A22 − A21A12 6= 0 so det(A) 6= 0. The

case in which A21 6= 0 is similar.

4 Background

4.1 Definitions

Definition 4.1. Let δ : Mn×n(F )→ F . Then:

1. δ is n-linear if it is linear in each row while the others are held fixed. That is, for all
i = 1, . . . , n, for all α1, . . . , αn, β ∈ F n, and for all c ∈ F ,

δ



α1
...

αi−1
αi + cβ
αi+1

...
αn


= δ



α1
...

αi−1
αi
αi+1

...
αn


+ cδ



α1
...

αi−1
β
αi+1

...
αn


;

2. δ is alternating if δ(A) = 0 whenever A ∈Mn×n(F ) has two equal rows;

3. δ is normalized if δ(In) = 1.
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4.2 Implication of the alternating property

The definition of alternating in Definition 4.1 looks like it is inappropriately named, since
that definition does not have to do with anything alternating. The following result shows
that this definition implies a condition which aligns better with the name (and which is
equivalent in many cases).

Proposition 4.2. Let δ : Mn×n(F ) → F be n-linear and alternating. If A,B ∈ Mn×n(F )
where B is obtained from A by switching two rows, then δ(A) = −δ(B).

Proof. For simplicity of notation assume that B is obtained from A by switching the first
two rows. That is, let α1, . . . , αn ∈ F n be the rows of A so that

A =



α1
α2
α3
...
αn

 and B =



α2
α1
α3
...
αn

 .

Then, where the first equality is because the first two rows are equal and the others are by
n-linearity, we have

0 = δ



α1 + α2
α1 + α2
α3
...
αn

 = δ



α1
α1 + α2
α3
...
αn

+ δ



α2
α1 + α2
α3
...
αn



= δ



α1
α1
α3
...
αn

+ δ



α1
α2
α3
...
αn

+ δ



α1
α2
α1
...
αn

+ δ



α2
α2
α3
...
αn


= 0 + δA+ δ(B) + 0.

The result follows, and the case of switching two arbitrary rows is nearly identical.

Remark 4.3. Consider the case that F = R. In this case any n-linear function δ : Mn×n(R)→
R for which δ(A) = −δ(B) whenever B is obtained by switching two rows of A is alternating
(can you see why?). Thus, if F = R then alternating can be defined as producing a minus
sign whenever two rows are switched, but this is not true for general fields. It is true for most
fields you can think of (R, C, Q, and even Zp where p is a prime and p 6= 2) but it does not
hold for fields such as Z2, which have so-called characteristic equal to 2. The characteristic
of a field is not really in the scope of these notes, so I won’t say anything more about it. �
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4.3 Permutation groups

For any n ∈ Z with n > 0 define the set

Sn = {σ : {1, . . . , n} → {1, . . . , n} | σ is a bijection}.

Recall that a function σ is a bijection if and only if it is one-to-one and onto. The set Sn
is actually a group (where the group operation is composition of functions - recall that the
composition of two bijections is a bijection) and it is referred to as the symmetric group or
the symmetric group on n elements. The elements of Sn are called permutations and can
be thought of as reordering the elements {1, . . . , n}. There is a rich theory of Sn and its
subgroups, but for our purposes we will only really need the definition and one important
fact.

For any σ ∈ Sn define N(σ) to be the number of pairs of elements which switch order
between the original ordering of {1, . . . , n} and the new ordering determined by σ. That is,
if

S(σ) = {i, j ∈ {1, . . . , n} | i < j and σ(i) > σ(j)}
then N(σ) is the size (or cardinality) of the set S(σ).
Definition 4.4. Let sgn : Sn → {−1,+1} be given by sgn(σ) = (−1)N(σ). We call sgn(σ)
the sign of the permutation σ. We say that σ is even if sgn(σ) = 1 and we say that σ is odd
if sgn(σ) = −1.

A transposition is a permutation that only switches two elements and leaves the rest
alone. That is, σ ∈ Sn is a transposition if there exists i, j ∈ {1, . . . , n} such that σ(i) = j,
σ(j) = i, and σ(k) = k for all k ∈ {1, . . . , n} with k 6= j and k 6= i. If σ is a transposition
that sgn(σ) = −1 because N(σ) = 1. The following proposition is not hard to prove, but I
will omit the proof anyway.
Proposition 4.5. Every permutation can be expressed as a composition of transpositions.
Moreoever, if σ ∈ Sn is a composition of k permutations then sgn(σ) = (−1)k.

The first part of Proposition 4.5 is obvious, while the idea of the proof of the second part
of Proposition 4.5 that each additional transposition either increases or decreases N(σ) by
1, and in either case changes sgn(σ).

4.4 Permutation groups and alternating n-linear functions

Let ej ∈ F n be a vector of all zeros except for a 1 in the jth position, so that

In =


e1
...
en

 .
Let Fn be the collection of all functions from {1, . . . , n} to itself, so

Fn = {f : {1, . . . , n} → {1, . . . , n}}.

Notice now that Sn ⊂ Fn where Sn is those elements of Fn which are bijections.
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Proposition 4.6. Let δ : Mn×n(F )→ F be an n-linear, alternating function. If f ∈ Fn then

δ


ef(1)
ef(2)

...
ef(n)

 =

0 if f /∈ Sn
sgn(f)δ(In) if f ∈ Sn.

Proof. Recall that f ∈ Fn is a injection if and only if it is a surjection if and only if it is a
bijection because its domain and codomain are both finite with the same cardinality. Thus,
if f /∈ Sn we know that f is not injective, so there exists some distinct i, j ∈ {1, . . . , n} such
that f(i) = f(j) which means that the matrix with rows ef(1), . . . , ef(n) has two rows which
are equal, so

δ


ef(1)

...
ef(n)

 = 0

by definition since f is alternating.
All that remains is the case that f ∈ Sn. Since any permutation can be expressed as

a sequence of transpositions (recall this expression is not unique, but it does always exist)
let f = σk ◦ . . . σ1 where each σi ∈ Sn is a transposition. The strategy now is to apply the
transpositions one at a time to the identity matrix, and recall by Proposition 4.2 that each
time two rows are switched it multiples δ by −1. So we have

δ


eσ1(1)

...
eσ1(n)

 = (−1)δ(In),

δ


eσ2◦σ1(1)

...
eσ2◦σ1(n)

 = (−1)δ


eσ1(1)

...
eσ1(n)

 = (−1)(−1)δ(In) = (−1)2δ(In)

δ


eσ3◦σ2◦σ1(1)

...
eσ3◦σ2◦σ1(n)

 = (−1)δ


eσ2◦σ1(1)

...
eσ2◦σ1(n)

 = (−1)3δ(In)

and continuing in this way leads to

δ


eσk◦...◦σ1(1)

...
eσk◦...◦σ1(n)

 = (−1)kδ(In)

(I have been slightly informal here, but it can be done formally with induction). Thus, since
f = σk ◦ . . . σ1 we have

δ


ef(1)

...
ef(n)

 = (−1)kδ(In)
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and the result follows since by Proposition 4.5 we know that sgn(f) = (−1)k.

5 Defining the determinant for n× n matrices

5.1 Uniqueness

In this section we assume that an n-linear, alternating function from Mn×n(F ) to
F exists and prove that it is unique and must be given by a specific formula. This is
generalizing what we did in Section 2.3 for the 2 dimensional case.

Proposition 5.1. If δ : Mn×n(F )→ F is n-linear and alternating then

δ(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ(i)

 δ(In).

In particular, if δ(In) = 1 then

δ(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ(i)

and thus there is at most one n-linear, alternating, normalized function from Mn×n(F ) to
F .

Proof. Let A ∈ Mn×n(F ) with entries Aij and let α1, . . . , αn ∈ F n denote the rows of A.
Then the ith row of A is given by

αi = (Ai1, Ai2, . . . , Ain) =
n∑

ki=1
Aiki

eki
(5.1)

where we have used a different “dummy variable” for each sum to avoid confusion. Equa-

10



tion (5.1) and the n-linearity of δ imply that

δ(A) = δ


α1
α2
...
αn

 = δ


∑n
k1=1 A1k1ek1∑n
k2=1 A2k2ek2

...∑n
kn=1 Anknekn



=
n∑

k1=1
A1k1δ


ek1∑n

k2=1 A2k2ek2
...∑n

kn=1 Anknekn



=
n∑

k1=1
A1k1


n∑

k2=1
A2k2δ



ek1

ek2∑n
k3=1 A3k3ek3

...∑n
kn=1 Anknekn





=
n∑

k1=1

n∑
k2=1
· · ·

n∑
kn=1

A1k1A2k2 · · ·Anknδ


ek1

ek2
...
ekn




=
∑

k1,...,kn∈{1,...,n}

n∏
i=1

Aiki
δ


ek1

ek2
...
ekn

 .

Now, we can rewrite this sum be realizing that there is a bijection between the set Fn and
the set {k1, . . . , kn ∈ {1, . . . , n}} given by f 7→ (f(1), . . . , f(n)) so we have

δ(A) =
∑
f∈Fn

n∏
i=1

Aif(i)δ


ef(1)
ef(2)

...
ef(n)

 . (5.2)
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Now we apply Proposition 4.6 to Equation 5.2 to get

δ(A) =
∑
f∈Fn

(
n∏
i=1

Aif(i)

)
δ


ef(1)
ef(2)

...
ef(n)



=
∑
f∈Sn

(
n∏
i=1

Aif(i)

)
δ


ef(1)
ef(2)

...
ef(n)


=
∑
f∈Sn

sgn(f)
n∏
i=1

Aif(i)δ(In)

as desired.

5.2 Existence

In this section we prove that an n-linear, alternating, normalized function from Mn×n(F ) to
F exists using the ”cofactor expansion” technique, which gives an alternate formula for the
determinant.
Definition 5.2. If A ∈ Mn×n(F ) then for each i, j ∈ {1, . . . , n} let Ãij denote the matrix
in M(n−1)×(n−1)(F ) given by removing the ith row and jth column from A.

Proposition 5.3. Let δ : M(n−1)×(n−1)(F ) → F be an (n − 1)-linear alternating function.
Then for any choice of j ∈ {1, . . . , n} the function Ej : Mn×n(F )→ F given by

Ej(A) =
n∑
i=1

(−1)i+jAijδ(Ãij)

is an n-linear alternating function.

Proof. First fix some i, j ∈ {1, . . . , n} and consider the function Φ: Mn×n(F )→ F given by
Φ(A) = Aijδ(Ãij). Let α1, . . . , αn ∈ F n denote the rows of A, and let B be the same matrix
except that row k is replaced by αk + cβ for some c ∈ F , β ∈ F n where β = (b1, . . . , bn).
Also, let C be the matrix which is equal to A and B for all rows except row k, where the kth

row of C is given by β. We claim that for any value of k we have that Φ(B) = Φ(A) + Φ(C),
which means that Φ is n-linear.

If k = i then B̃ij = Ãij because the only different row has been removed, and Bij =
Aij + cbj, so

Φ(B) = (Aij + cbj)δ(Ãij) = Φ(A) + Φ(C)
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as desired. If k 6= i then Bij = Aij = Cij and δ is n-linear, so again we have that Φ(B) =
Φ(A) + Φ(C). Thus Φ is n-linear and since a linear combination of n-linear functions is still
n-linear we conclude that Ej is n-linear.

To complete the proof we must show that Ej is alternating. Suppose that A ∈Mn×n(F )
has rows α1, . . . , αn ∈ F n and for some distinct k1, k2 ∈ {1, . . . , n} we have that αk1 = αk2 ,
where we may assume that k1 < k2. We must show that Ej(A) = 0. If k1, k2 6= i then
δ(Ãij) = 0 because δ is alternating and Ãij has two equal rows. Thus,

Ej(A) =
j∑
i=1

(−1)i+jAijδ(Ãij) = (−1)k1+jAk1jδ(Ãk1j) + (−1)k2+jAk2jδ(Ãk2j)

because all other terms in the sum are zero. To show that Ej(A) = 0 it is sufficient to argue
that

Ak1jδ(Ãk1j) + (−1)k2−k1Ak2jδ(Ãk2j) = 0
and in fact since the k1 and k2 rows of A are equal we know that Ak1j = Ak2j so it is sufficient
to show

δ(Ãk1j) = (−1)k2−k1−1δ(Ãk2j).

Now, this equation holds because since the rows k1 and k2 are equal these two matrices, Ãk1j

and Ãk2j, have the same rows in a different order (since each of these matrices has eliminated
one of the pair of rows which are equal to each other). Specifically, Ãk1j may be obtained
from Ãk2j by moving the (k1)th row of Ãk2j down to the k2−1 position by switching positions
with the adjacent row k2 − k1 − 1 times. By Proposition 4.2 this introduces a factor of −1
each time on the function δ, since δ is alternating. The result follows.

Corollary 5.4. For each n ∈ Z, n > 1, there exists an n-linear, alternating, normalized
function from Mn×n(F )→ F .

Proof. We proceed by induction on n. For the case of n = 1 consider the function δ(A) = A11
where A = (A11) is a 1 × 1 matrix. It is clear that δ(I1) = 1 and δ(α + cβ) = δ(α) + cδ(β)
for all α, β, c ∈ F . Furthermore, it is vacuously true that δ is alternating, so we conclude δ
is the desired function.

Now suppose the claim holds for some fixed n, so there exists an n-linear, alternating
δ : Mn×n(F )→ F for which δ(In) = 1. Then by Proposition 5.3 the function E1 : M(n+1)×(n+1)(F )→
F given by

E1(A) =
n∑
i=1

(−1)i+1Ai1δ(Ãi1)

is also n-linear and alternating. Moreover, since the entry in the ith row of the first column
of In+1 is nonzero if and only if i = 1 we see that

E1(In+1) =
n∑
i=1

(−1)i+1(In+1)i1δ( ˜(In+1)i1) = (−1)1+1(In+1)11δ( ˜(In+1)11) = 1δ(In) = 1

so E1 is normalized as well.
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5.3 Conclusion: the existence of a unique determinant

Now we can summarize the results of this section, and finally define the determinant for an n×
n matrix. The following theorem is implied by combining Proposition 5.1 and Corollary 5.4.

Theorem 5.5. For each n ∈ Z, n > 0, and each field F there exists a unique n-linear,
alternating, normalized function from Mn×n(F ) to F .

In light of Theorem 5.5 we may make the following definition.
Definition 5.6. We denote by det : Mn×n(F ) → F the unique n-linear, alternating, nor-
malized function from Mn×n(F ) to F .

We have derived two formula for an n-linear, alternating, normalized function from
Mn×n(F ) to F , in Proposition 5.1 and in Proposition 5.3. By Theorem 5.5 there is only
one such function, the determinant, so these two formula must both be ways of computing
the determinant. Thus, we have the following:

Theorem 5.7. Let A ∈Mn×n(F ) with entries Aij. Then

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ(i) =
n∑
i=1

(−1)i+jAij det(Ãij)

for any j = 1, . . . , n.

Also, now that we have defined the determinant function we can state the following useful
corollary to Proposition 5.1.

Corollary 5.8. If δ : Mn×n(F )→ F is n-linear and alternating then δ(A) = det(A)δ(In).

6 Additional properties of the determinant

Here we prove several important properties of the determinant.

Theorem 6.1. Let A,B ∈Mn×n(F ). Then det(AB) = det(A) det(B).

Proof. Fix any A,B ∈ Mn×n(F ) and define Φ: Mn×n(F ) → F by Φ(C) = det(CB). Then
for α1, . . . , αn ∈ F n we have

Φ


α1
...
αn

 = det


α1B

...
αnB

 (6.1)

where αiB ∈ F n denotes the matrix multiplication between αi thought of as a 1× n matrix
and the n× n matrix B. Equation (6.1) immediately implies that Φ is n-linear and also we
see that if two rows of C are equal then two rows of CB are equal so Φ(C) = det(CB) = 0,
so Φ is alternating.

Since Φ is an n-linear, alternating function by Corollary 5.8 we know that Φ(C) =
det(C)Φ(In) and Φ(In) = det(InB) = det(B) so we conclude for any matrix C ∈ Mn×n(F )
we have Φ(C) = det(C) det(B). In particular, det(AB) = Φ(A) = det(A) det(B).
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Remark 6.2. In the language of group theory, Theorem 6.1 states that the determinant
function is a homomorphism from the group of matrices (with operation given by matrix
multiplication) to the group F (with operation given by the field multiplication). �

Theorem 6.3. Let A ∈Mn×n(F ). Then A is invertible if and only if det(A) 6= 0. Moreover,
if A is invertible then det(A−1) = (det(A))−1.

Proof. First suppose that A is invertible and let A−1 denote its inverse. Then, using Theo-
rem 6.1, we have

1 = det(In) = det(AA−1) = det(A) det(A−1)

so det(A) is nonzero and det(A−1) = (det(A))−1.
Next suppose that A is not invertible. This means that the rows of A do not span all of

F n, so they must form a linearly dependent set. This means one of the rows of A, which we
can assume without loss of generality is the first row, can be written as a linear combination
of the other rows. Let α1, . . . , αn ∈ F n be the rows of A and let a2, . . . , an ∈ F be such that
α1 = ∑n

i=2 aiα1 so, keeping in mind that the determinant of any matrix with two equal rows
is zero, we have

det(A) = det


∑n
i=2 aiα1
α2
...
αn

 =
n∑
i=2

ai det


αi
α2
...
αn

 = 0,

as desired.

Proposition 6.4. If A ∈Mn×n(F ) is upper or lower trianglular then det(A) is the product
of the diagonal entries of A.

Proof. Suppose that A is upper triangular. Then

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ(i)

but if σ ∈ Sn is not the identity then there exists some i ∈ {1, . . . , n} such that i > σ(i) in
which case Ai σ(i) = 0. Thus every term in the sum except for the term corresponding to σ
being the identity permutation, which we denote here by I, is zero, so we have

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ(i) = sgn(I)
n∏
i=1

Ai I(i) =
n∏
i=1

Aii

as desired. The case of a lower trianglar matrix is similar.

Recall that At is the transpose of A, defined so that (At)ij = Aji. Notice that every
element of Sn is invertible and has exactly one inverse in Sn. This means that {σ−1 | σ ∈
Sn} = Sn. We use this fact, and the fact that sgn(σ) = sgn(σ−1), to prove the following:

15



Proposition 6.5. Let A ∈Mn×n(F ). Then detA = detAt.

Proof. We rewrite the sum in the definition of determinant several times, reordering a sum
or product when necessary:

det(At) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

(At)i σ(i)

=
∑
σ∈Sn

sgn(σ)
n∏
i=1

Aσ(i) i

=
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ−1(i) (reordered the sum)

=
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ(i) (reordered the product)

= det(A).

A corollary of Proposition 6.5 is another way to compute the determinant.

Corollary 6.6. Let A ∈Mn×n(F ). Then

det(A) =
n∑
j=1

(−1)i+jAij det(Ãij)

for any i = 1, . . . , n.

7 Final thoughts

7.1 Interpretation and uses of determinant

In this (informal) section, we give a little bit of context to the determinant by listing some
applications.

There is a function λ known as the Lebesgue measure which takes as an input a subset
of Rn and gives as an output the “measure” of that set1. That is, for any relatively nice
(i.e. measurable) set S ⊂ Rn, λ(S) denotes the usual n-volume of S. Let A ∈ Mn×n(R).
Then, as in the motivating example in Section 2, |det(A)| = λ(B) where B is the paralellpiped
spanned by the rows of A. In fact, det(A) gives information about how A changes the volume
of any set. Indeed, for any measurable set S ⊂ Rn we have that λ(A(S)) = |det(A)|λ(S).
This is related to the use of determinant in vector calculus. You may recall that when
changing coordinates to perform an integral you had to include in the integral the “Jacobian

1There is a technicality here that not every subset has a well-defined volume, so λ can only act on what
are known as measurable sets. Luckily, probably every set you can imagine is measurable so this doesn’t
cause us too much trouble.
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determinant”, which is the determinant of the matrix of derivatives of the coordinate change
map. This factor includes the information about how the change of coordinates map is
transforming the volume of the region.

Also, given any basis β = (v1, . . . , vn) of Rn for the matrix A which has rows v1, . . . , vn.
Since β is linearly independent left action by A is a bijection, so det(A) 6= 0. We can use
the sign of det(A) to determine the orientation of the basis, either positive or negative.

Finally, by Theorem 6.3, to check if a matrix is invertible it suffices to check if its
determinant is non-zero, which is often much easier to check (this will be useful when talking
about eigenvalues).

7.2 Summary

Here we summarize the important results which are listed elsewhere in this document:

Theorem. There exists exactly one n-linear, alternating, normalized function fromMn×n(F )
to F , which we denote by det. Let A ∈ Mn×n(F ), then we may compute det(A) in several
ways:

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai σ(i) =
n∑
i=1

(−1)i+kAik det(Ãik) =
n∑
j=1

(−1)k+jAkj det(Ãkj)

for any choice of k ∈ {1, . . . , n}.

Theorem. Let A,B ∈Mn×n(F ). Then:

1. det(AB) = det(A) det(B);
2. det(At) = det(A);
3. det(A) 6= 0 if and only if A is invertible;
4. if A is invertible then det(A−1) = (det(A))−1;
5. if B can be obtained from A by switching two rows then det(B) = − det(A);
6. if B can be obtained from A by multiplying one row by k ∈ F then det(B) = k det(A).
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