
The Form of A Related to Model Space Decomposition

We originally started researching the R = Rφ±Rψ case, for φ, ψ ∈ S2(V ∗), but came up with a
more general result concerning model space decomposition.

Theorem 2. If a model space (V,R) =

n⊕

i=1

(Vi, Ri) with each (Vi, Ri) indecomposable and

kerR = {0}, then, for A ∈ G(V,R) and some permutation σ we know A : Vi→ Vσ(i).

Outline of Proof: If A ∈ G(V,R) sends Vi to more than one other subspace non-trivially, then the

subspace AVi will decompose. Now, using A−1 ∈ G(V,R) to come back to Vi will show that Vi
decomposes, which is false. Also notice that A must send something to each Vi, since A is full
rank. Thus we have A : Vi→ Vσ(i). ¤

There are several other relevant facts about A. First of all, there are constrictions on the permuta-
tion σ. A is taking input meant for Ri and sending a transformed version to Rσ(i), which means

for each i there must exist an endomorphism B on Rdim(Vi) such that B∗Ri = Rσ(i). Notice this
can only happen when dim(Vi) = dim(Vσ(i)). Also see that there exists some exponent p for
which Ap has each Vi as an invariant subspace.

Conclusion and Opportunities for Further Research

•Notice that by combining the results of Theorem 1 and Theorem 2 we have a lot of information
describing the elements of a given structure group.

•We strongly believe that Lemma 1 can be generalized to include all non-degenerate bilinear
forms without much change to the proof.

• This project was initiated in order to find new invariants for pseudo-Riemannian model spaces,
so making the connection back to that original goal would be important.

• Theorem 2 can certainly be written entirely from the viewpoint of representation theory, and it
would be valuable to make this translation and consider its ramifications in that subject.

• Considering the special case of (V,R) =

n⊕

i=1

(Vi, Rφi) with each φi ∈ S2(V ∗) could potentially

lead to interesting results that would depend on the relation between φ and ψ.
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Structure Groups of Rφ

First consider the simplest case; for some M = (V, 〈·, ·〉 , R) let R = R〈·,·〉. It is known that this
R corresponds exactly to the case of constant sectional curvature [2]. We give our own proof to
the following known result.

Lemma 1. For the model space M = (V, 〈·, ·〉 , R) (with the inner product positive definite) we
have:

GM = G〈·,·〉⇔ R = cR〈·,·〉⇔ R has constant sectional curvature, κ.

Outline of Proof: Assume R has constant κ. Clearly G〈·,·〉 ⊂ GM since R = R〈·,·〉 and by
definition we have the opposite inclusion, so one implication is complete. Now we must assume
GM = G〈·,·〉 and show R has constant κ. In order to do this we consider a 2-plane and its image
under A ∈ GM, which is also a 2-plane. Using the definition of sectional curvature we are able
to show that those two arbitrary planes must have the same κ. ¤
We also consider more general cases. It is almost always true that GRφ

= Gφ on the weak model
space with φ ∈ S2(V ∗), but in the balanced signature case this does not necessarily hold.

Lemma 2. Let φ ∈ S2(V ∗) with rank greater than or equal to 3. Then the following are true:

1. If A ∈ GRφ
then A∗φ = ±φ.

2. If the signature is unbalanced then GRφ
= Gφ.

Outline of Proof: We know A ∈ GRφ
⇒ Rφ = A∗Rφ = RA∗φ. By [3] this implies that A∗φ =

±φ. Thus A is either in Gφ or is a para-isometry of φ, which can only exist in the balanced
signature case. ¤

The Elements of GW
We begin by exploring the connection between the decomposition of the model space and the
structure of GW .

Lemma 3. AssumeM = (V,R) = (V1, R1)⊕ (V2, R2) with Gi as the structure group for (Vi, Ri)
and ker{R} = {0}. Then having V1, V2 as invariant subspaces for all A ∈ G is equivalent to
G ' G1 ⊕G2.

This allows us to relate the irreducible subspaces of Gφ viewed from a representation theory
point of view to the indecomposable subspaces ofM viewed from a linear algebra point of view.
Another result describes an important decomposition of a model space for when the kernel of R
is non-trivial.

Lemma 4. Define V = V/kerR and also define π : V → V to be a projection. If R is defined by
π∗R = R as an algebraic curvature tensor on V , then (V,R) ' (V ,R)⊕ (kerR, 0).

Using this decomposition we can begin to see the form of elements of GW . Notice that the vector
spaces are not invariant spaces in the following case, because ker{R} 6= {0}.

Theorem 1. On some V of dimension n with φ ∈ S2(V ∗) of rank k notice that for any A ∈ Gφ
written as a matrix in the orthonormal basis ordered so that the null vectors are last, we have

A =

[
A 0
B C

]

where A ∈ GV is k × k, B can be any (n− k)× k matrix, and C ∈ Gl(n− k).

Outline of Proof: Clearly A ∈ GV because it only acts on V and can not even know about the
other parts of V . The zero block must be there since the kerφ is invariant. The B block can be
anything because this block is simply sending portions of vectors to the kernel, which does not
effect anything. Finally, the C block has to be full rank only to keep A ∈ Gl(n). ¤

Background

The Riemannian curvature tensor is a very important mathematical object in differential geometry
and the study of smooth manifolds. This object is actually a tensor field, so restricting it to a single
point produces a tensor known as an Algebraic Curvature Tensor (ACT). We study possible ACTs
in order to gain insight about the overall tensor field. If V is a real vector space of finite dimension
n then R ∈ ⊗4V ∗ is an Algebraic Curvature Tensor if:

R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y)

and R(x, y, z, w) +R(x, z, w, y) +R(x,w, y, z) = 0

for all x, y, z, w ∈ V . The following class of ACTs is particularly important. Take x, y, z, w ∈ V
and some symmetric bilinear form φ ∈ S2(V ∗) and define

Rφ(x, y, z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w).

These are known as the canonical curvature tensors. Defining A(V ) as the set of all possible
ACTs on V , it is known [3] that

A(V ) = span{Rφ|φ ∈ S2(V ∗)}.

A similar definition and result exist for anti-symmetric forms, but this is not explicitly relevant to
our results.

The ordered pair (V,R) of a vector space and an ACT is known as a weak model space, often
denoted W , and by adding on an inner product 〈·, ·〉 we have the triple M = (V, 〈·, ·〉 , R), which
is known as a model space. If all of the objects in the model space can decompose into a direct
sum on the same vector spaces, we say that the model space decomposes, and write

M = (V, 〈·, ·〉 , R) = (V1, 〈·, ·〉1 , R1)⊕ (V2, 〈·, ·〉2 , R2).

Goals and Motivation

In particular, we will be studying the structure groups of these objects. The structure group of
some covariant tensor, or group of covariant tensors, is defined as the group of endomorphisms on
the vector space V which preserve the tensors under precomposition. For example, the structure
group of a weak model space W , using the notation A∗R(x, y, z, w) ≡ R(Ax,Ay,Az,Aw), is

GR = {A ∈ Gl(n)|A∗R = R}.

We consider the structure groups of several broad classes of model spaces, and explore the con-
nections between the structure of GM and the structure of M. In particular, we use R = Rφ and
R = Rφ ±Rψ for φ, ψ ∈ S2(V ∗) and we also study structure groups of φ ∈ S2(V ∗).

It is often desired to know if a given manifold is locally homogeneous. It is also of interest to
determine when manifolds are k-curvature homogeneous, which means that the first k covariant
derivatives of R are each locally constant. There exist what are known as Weyl scalar invariants
built by contractions of R, and in the Riemannian these scalar functions are all constant if and
only if the manifold is locally homogenous [4]. This result can not be generalized to the pseudo-
Riemannian case. In fact, there exist vanishing scalar invariant (VSI) manifolds for which all
scalar contractions of R are zero, but not all of these manifolds are locally homogeneous. How-
ever, there are classes of pseudo-Riemannian manifolds for which alternate scalar invariants have
been found (for an example, see [1]). Thus, by studying the structure group of a given model
space, we attempt to form new invariants which will also work in the pseudo-Riemannian case.
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