1.(a) Given δ, l, take L_{0} as in Szemerédi's Theorem (so for any $L>L_{0}$, any $A \subseteq[L]$ of size at least δL contains an l-term A.P.). For $x \in X$ set

$$
A_{x}=\left\{i \in[L]: x \in Y_{i}\right\} \quad(x \in X)
$$

It's enough to show that there's some $x \in X$ for which $\left|A_{x}\right| \geq \delta|L|$: our choice of L then guarantees that A_{x} contains an A.P. $a, a+d, \ldots, a+(l-1) d$, which gives the desired Y_{i} 's. But $\delta|L|$ is a lower bound on the average of the $\left|A_{x}\right|$'s:

$$
|X|^{-1} \sum_{x \in X}\left|A_{x}\right|=|X|^{-1} \sum_{i=1}^{L}\left|Y_{i}\right| \geq|X|^{-1}|L| \delta|X|=\delta|L| .
$$

(b) We show $N_{0}=L_{0}(\delta / 2, k)$ has the desired property. Let $N>N_{0}, A \subseteq$ $[N]$ and $|A|>\delta N$. Set $X=[2 N]$ and $Y_{i}=A+i$ for $i \in[N]$. Then $Y_{i} \subseteq X$ and $\left|Y_{i}\right|=|A|>(\delta / 2)|X| ;$ so, since $N>N_{0}$, there are $a, d \in \mathbb{P}$ so that $Y_{a} \cap Y_{a+d} \cap \cdots \cap Y_{a+(l-1) d} \neq \emptyset$. But for any x in this intersection, $\{x-a, x-(a+d), \ldots, x-(a+(k-1) d)\}$ is a k-term A.P. contained in A.
2. Let $X=\{A \subseteq[n]: n / 2-K \sqrt{n}<|A|<n / 2+K \sqrt{n}\}$, with the constant K chosen so $\left|2^{[n]} \backslash X\right|<\varepsilon 2^{n-1}$. Then $|S \cap X|>\varepsilon 2^{n-1}$. Let \mathcal{C} be the collection of maximal chains in X. Then $|C|<2 K \sqrt{n}$ for each $C \in \mathcal{C}$, while

$$
\frac{1}{|\mathcal{C}|} \sum_{C \in \mathcal{C}}|C \cap S|=\sum_{x \in S \cap X} \frac{|\{C: x \in C \in \mathcal{C}\}|}{|\mathcal{C}|} \geq \frac{|S \cap X|}{\binom{n}{\lfloor n / 2\rfloor}}>\frac{\varepsilon}{2} \sqrt{n}
$$

Thus there is a $C \in \mathcal{C}$ with

$$
|C \cap S|>\frac{\varepsilon}{2} \sqrt{n}>\frac{\varepsilon}{4 K}|C|
$$

and we may apply Szemerédi's Theorem to obtain (for large enough n) an arithmetic progression in C.

Alternate (using something from last semester): Let \mathcal{C} be a symmetric chain decomposition of $2^{[n]}$. Since $|\mathcal{C}|=O\left(2^{n} / \sqrt{n}\right)$, there are at most $o\left(2^{n}\right)$ elements of S contained in chains of length at most (say) $n^{1 / 4}$; so there is some $C \in \mathcal{C}$ with $|C|>n^{1 / 4}$ and $|S \cap C|>\varepsilon|C| / 2$, etc.
3. MP: for any $k, l(\in \mathbb{P}), g(k l) \geq g(k) g(l)^{k}$. A straightforward induction then gives the stated lower bound on g.

For the MP, let \mathcal{A} and \mathcal{B} be (resp.) k - and l-uniform, SF-free, intersecting hypergraphs of sizes $g(k)$ and $g(l)$ and set $V(\mathcal{H})=V(\mathcal{A}) \times V(\mathcal{B})$ and

$$
\left[\mathcal{H}=\left\{\left\{\left(a_{i}, b\right): i \in[k], b \in B_{i}\right\}: a_{1}, \ldots, a_{k} \in \mathcal{A}, B_{1}, \ldots, B_{k} \in \mathcal{B}\right\}\right.
$$

(and check this works).
[Less formally: we replace each vertex a of \mathcal{H} by a copy, \mathcal{B}_{a}, of \mathcal{B}, and then each $A \in \mathcal{A}$ corresponds to $|\mathcal{B}|^{k}$ edges of \mathcal{H} gotten by replacing each $a \in A$ by some $B_{a} \in \mathcal{B}_{a}$ (and taking their union).]
4. Let $A_{0}=\left\{x \in A: d_{B}(x)>\beta n\right\}$. We know $\left|A_{0}\right| \geq(1-\varepsilon) n>(2 \beta-1) n$ (the second inequality holding because $\beta+\varepsilon \leq 1$). So A_{0} contains an edge $x y$. But $\left|N_{B}(x) \cap N_{B}(y)\right|>(2 \beta-1) n$, so there is an edge $z w$ in $N_{B}(x) \cap N_{B}(y)$, and $G[\{x, y, z, w\}]=K_{4}$.
5. Say $x_{k} \in X_{i}$ is good if $\min \left\{\left|\left\{l<k: x_{l} \in X_{i}\right\}\right|,\left|\left\{l>k: x_{l} \in X_{i}\right\}\right|\right\}>\varepsilon m$, define " y_{k} good" similarly, and say k is good if both x_{k} and y_{k} are.
Observation: If k is good, $x_{k} \in X_{i}$ and $y_{k} \in Y_{j}$, then $\left(X_{i}, Y_{j}\right)$ is (ε-)irregular.
The number of good k 's is at least $(1-4 \varepsilon) n$ (why?), and X_{i} is in an irregular pair whenever there is a good k with $x_{k} \in X_{i}$ (again, why?); so the number of X_{i} 's in irregular pairs is at least $(1-4 \varepsilon) n / m=(1-4 \varepsilon) t$.
For the bonus (the answer is yes): Start with partitions $X=U_{1} \cup \cdots \cup U_{t+1}$, $Y=V_{1} \cup \cdots \cup V_{t+1}$, where the U_{i} 's and V_{i} 's are intervals written in the natural order, but with $\left|U_{1}\right|=\left|V_{t+1}\right|=m$ and all other blocks of size $(t-1) m / t$. Now revise to X_{1}, \ldots, X_{t} and Y_{2}, \ldots, Y_{t+1}, where $X_{1}=U_{1}, Y_{t+1}=V_{t+1}$; for $i \geq 2, X_{i}$ is U_{i} plus m / t elements of U_{t+1}; and for $i \leq t, Y_{i}$ is V_{i} plus m / t elements of V_{1}. (And show this works for $t>2 \varepsilon^{-2}$, the only irregular pairs being $\left(X_{i}, Y_{i}\right), 2 \leq i \leq t$.)
6. First a convenient (though avoidable) observation (why is it true?):
if (X, Y) is ε-irregular with density d, then there are $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ with $d\left(X^{\prime}, Y^{\prime}\right) \notin(d-\varepsilon, d+\varepsilon)$ and $\left|X^{\prime}\right|=\varepsilon|X|,\left|Y^{\prime}\right|=\varepsilon|Y|$
(where we pretend large numbers are integers).
Lemma. If (X, Y) is ε-irregular with density d, then there are $X_{0} \subseteq X$ and $Y_{0} \subseteq Y$ with $\left|X_{0}\right| \geq \varepsilon|X|,\left|Y_{0}\right| \geq \varepsilon|Y|$ and $d\left(X_{0}, Y_{0}\right)>d+\varepsilon^{3}$.
(Then start with any equipartition $V=A \cup B$ and apply the lemma at most ε^{-3} times to obtain an ε-regular pair with part sizes at least $\varepsilon^{\varepsilon^{-3}} n / 2$.)

Proof of lemma. Let $X^{\prime} Y^{\prime}$ be as above. If $d\left(X^{\prime}, Y^{\prime}\right)>d+\varepsilon$, take $\left(X_{0}, Y_{0}\right)=$ $\left(X^{\prime}, Y^{\prime}\right)$. If $d\left(X^{\prime}, Y^{\prime}\right)<d-\varepsilon$, then (with $\left.\bar{X}^{\prime}=X \backslash X^{\prime}, \bar{Y}^{\prime}=Y \backslash Y^{\prime}\right)$

$$
\begin{align*}
d & =\varepsilon^{2} d\left(X^{\prime}, Y^{\prime}\right)+\varepsilon(1-\varepsilon)\left[d\left(X^{\prime}, \bar{Y}^{\prime}\right)+d\left(\bar{X}^{\prime}, Y^{\prime}\right)\right]+(1-\varepsilon)^{2} d\left(\bar{X}^{\prime}, \bar{Y}^{\prime}\right) \\
& <\varepsilon^{2}(d-\varepsilon)+\varepsilon(1-\varepsilon)\left[d\left(X^{\prime}, \bar{Y}^{\prime}\right)+d\left(\bar{X}^{\prime}, Y^{\prime}\right)\right]+(1-\varepsilon)^{2} d\left(\bar{X}^{\prime}, \bar{Y}^{\prime}\right), \tag{1}
\end{align*}
$$

implying that (at least) one of the densities on the r.h.s. of (1) is greater than $\left[\left(1-\varepsilon^{2}\right) d+\varepsilon^{3}\right] /\left(1-\varepsilon^{2}\right)>d+\varepsilon^{3}$.

