
583 PS5 Solutions

1.(a) Given δ, l, take L0 as in Szemerédi’s Theorem (so for any L > L0, any
A ⊆ [L] of size at least δL contains an l-term A.P.). For x ∈ X set

Ax = {i ∈ [L] : x ∈ Yi} (x ∈ X).

It’s enough to show that there’s some x ∈ X for which |Ax| ≥ δ|L|: our choice
of L then guarantees that Ax contains an A.P. a, a+d, . . . , a+(l−1)d, which
gives the desired Yi’s. But δ|L| is a lower bound on the average of the |Ax|’s:

|X|−1
∑
x∈X

|Ax| = |X|−1
L∑
i=1

|Yi| ≥ |X|−1|L|δ|X| = δ|L|.

(b) We show N0 = L0(δ/2, k) has the desired property. Let N > N0, A ⊆
[N ] and |A| > δN . Set X = [2N ] and Yi = A + i for i ∈ [N ]. Then
Yi ⊆ X and |Yi| = |A| > (δ/2)|X|; so, since N > N0, there are a, d ∈ P
so that Ya ∩ Ya+d ∩ · · · ∩ Ya+(l−1)d 6= ∅. But for any x in this intersection,
{x− a, x− (a+ d), . . . , x− (a+ (k − 1)d)} is a k-term A.P. contained in A.

2. Let X = {A ⊆ [n] : n/2−K
√
n < |A| < n/2 +K

√
n}, with the constant

K chosen so |2[n]\X| < ε2n−1. Then |S∩X| > ε2n−1. Let C be the collection
of maximal chains in X. Then |C| < 2K

√
n for each C ∈ C, while

1

|C|
∑
C∈C

|C ∩ S| =
∑

x∈S∩X

|{C : x ∈ C ∈ C}|
|C|

≥ |S ∩X|(
n
bn/2c

) >
ε

2

√
n.

Thus there is a C ∈ C with

|C ∩ S| > ε

2

√
n >

ε

4K
|C|,

and we may apply Szemerédi’s Theorem to obtain (for large enough n) an
arithmetic progression in C.

Alternate (using something from last semester): Let C be a symmetric chain
decomposition of 2[n]. Since |C| = O(2n/

√
n), there are at most o(2n) ele-

ments of S contained in chains of length at most (say) n1/4; so there is some
C ∈ C with |C| > n1/4 and |S ∩ C| > ε|C|/2, etc.
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3. MP: for any k, l (∈ P), g(kl) ≥ g(k)g(l)k. A straightforward induction
then gives the stated lower bound on g.

For the MP, let A and B be (resp.) k- and l-uniform, SF-free, intersecting
hypergraphs of sizes g(k) and g(l) and set V (H) = V (A)× V (B) and

[H = {{(ai, b) : i ∈ [k], b ∈ Bi} : a1, . . . , ak ∈ A, B1, . . . , Bk ∈ B}

(and check this works).

[Less formally: we replace each vertex a of H by a copy, Ba, of B, and then
each A ∈ A corresponds to |B|k edges of H gotten by replacing each a ∈ A
by some Ba ∈ Ba (and taking their union).]

4. Let A0 = {x ∈ A : dB(x) > βn}. We know |A0| ≥ (1 − ε)n > (2β − 1)n
(the second inequality holding because β+ε ≤ 1). So A0 contains an edge xy.
But |NB(x)∩NB(y)| > (2β − 1)n, so there is an edge zw in NB(x)∩NB(y),
and G[{x, y, z, w}] = K4.

5. Say xk ∈ Xi is good if min{|{l < k : xl ∈ Xi}|, |{l > k : xl ∈ Xi}|} > εm,
define “yk good” similarly, and say k is good if both xk and yk are.

Observation: If k is good, xk ∈ Xi and yk ∈ Yj, then (Xi, Yj) is (ε-)irregular.

The number of good k’s is at least (1−4ε)n (why?), and Xi is in an irregular
pair whenever there is a good k with xk ∈ Xi (again, why?); so the number
of Xi’s in irregular pairs is at least (1− 4ε)n/m = (1− 4ε)t.

For the bonus (the answer is yes): Start with partitions X = U1 ∪ · · · ∪Ut+1,
Y = V1∪· · ·∪Vt+1, where the Ui’s and Vi’s are intervals written in the natural
order, but with |U1| = |Vt+1| = m and all other blocks of size (t − 1)m/t.
Now revise to X1, . . . , Xt and Y2, . . . , Yt+1, where X1 = U1, Yt+1 = Vt+1; for
i ≥ 2, Xi is Ui plus m/t elements of Ut+1; and for i ≤ t, Yi is Vi plus m/t
elements of V1. (And show this works for t > 2ε−2, the only irregular pairs
being (Xi, Yi), 2 ≤ i ≤ t.)

6. First a convenient (though avoidable) observation (why is it true?):

if (X, Y ) is ε-irregular with density d, then there are X ′ ⊆ X and Y ′ ⊆ Y
with d(X ′, Y ′) 6∈ (d− ε, d+ ε) and |X ′| = ε|X|, |Y ′| = ε|Y |
(where we pretend large numbers are integers).

Lemma. If (X, Y ) is ε-irregular with density d, then there are X0 ⊆ X and
Y0 ⊆ Y with |X0| ≥ ε|X|, |Y0| ≥ ε|Y | and d(X0, Y0) > d+ ε3.
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(Then start with any equipartition V = A∪B and apply the lemma at most
ε−3 times to obtain an ε-regular pair with part sizes at least εε

−3
n/2.)

Proof of lemma. Let X ′ Y ′ be as above. If d(X ′, Y ′) > d+ ε, take (X0, Y0) =
(X ′, Y ′). If d(X ′, Y ′) < d− ε, then (with X̄ ′ = X \X ′, Ȳ ′ = Y \ Y ′)

d = ε2d(X ′, Y ′) + ε(1− ε)[d(X ′, Ȳ ′) + d(X̄ ′, Y ′)] + (1− ε)2d(X̄ ′, Ȳ ′)

< ε2(d− ε) + ε(1− ε)[d(X ′, Ȳ ′) + d(X̄ ′, Y ′)] + (1− ε)2d(X̄ ′, Ȳ ′), (1)

implying that (at least) one of the densities on the r.h.s. of (1) is greater
than [(1− ε2)d+ ε3]/(1− ε2) > d+ ε3.
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