582 PS4 Solutions

1. Suppose $n=2 k$ and $V=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$. Let $\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{k}\right)$ be independent symmetric Bernoullis and set $\sigma\left(y_{i}\right)=-\sigma\left(x_{i}\right)$. Then $\sigma(V)$ is automatically 0 , and for $H \in \mathcal{H}, \sigma(H) \sim S_{m(H)}$, where $m(H)=\mid\{i$: $\left.\left|H \cap\left\{x_{i}, y_{i}\right\}\right|=1\right\} \mid \leq t$. Let $A_{H}=\{|\sigma(H)|>C \sqrt{t \ln t}\}$, with C TBA. Then $\mathbb{P}\left(A_{H}\right)<2 t^{-C^{2} / 2}$ (by Chernoff), and the graph on vertex set \mathcal{H} with

$$
H \sim H^{\prime} \Leftrightarrow \text { some }\left\{x_{i}, y_{i}\right\} \text { meets both } H \text { and } H^{\prime}
$$

is a Lovász graph for the A_{H} 's with degrees less than $2 t^{2}$. The statement now follows from the Local Lemma provided $2 e t^{2-C^{2} / 2}<1$.
2. Noting that $M^{t} M=q I+J$, we have, for any $\varepsilon \in\{ \pm 1\}^{n}$,

$$
n\|M \varepsilon\|_{\infty}^{2} \geq(M \varepsilon)^{t} M \varepsilon=\varepsilon^{t}(q I+J) \varepsilon=q \varepsilon^{t} \varepsilon+\left(\sum \varepsilon_{i}\right)^{2} \geq q n
$$

(Actually the last inequality is strict, since n is odd.)
Alternate: Suppose $V=R \cup B$ is a coloring achieving discrepancy k, and choose x and y uniformly from R and B respectively. Then

$$
\begin{aligned}
1 & \geq \sum_{l \in \mathcal{H}} \mathbb{P}(x, y \in l)=\sum_{l \in \mathcal{H}} \frac{|l \cap R||l \cap B|}{|R||B|} \\
& \geq\left(q^{2}+q+1\right) \frac{((q+1-k) / 2)((q+1+k) / 2)}{\left(\left(q^{2}+q+1\right) / 2\right)^{2}}=\frac{(q+1)^{2}-k^{2}}{q^{2}+q+1}
\end{aligned}
$$

and the conclusion follows.
3. Modify the proof of Beck-Fiala by setting

$$
\mathcal{H}^{i}=\left\{A \in \mathcal{H}:\left|A \cap S^{i}\right| \geq t\right\} .
$$

(The condition in our proof was $\left|A \cap S^{i}\right|>t$.)
The proof goes as before unless we reach an i for which M^{i} (the $\mathcal{H}^{i} \times S^{i}$ incidence matrix) has all row and column sums exactly t. If this does happen, we can take, for each j in S^{i}, ε_{j} to be 1 if $\varepsilon_{j}^{i} \geq 0$ and -1 otherwise (and $\varepsilon \equiv \varepsilon^{i}$ on T^{i}). This gives discrepancy at most $2 t-3$ on $\mathcal{H} \backslash \mathcal{H}^{i}$ (as in class), and at most t on \mathcal{H}^{i} (so we use $t \leq 2 t-3$).
4. (Due to D.J. Kleitman, originally proved via shifting.) Notice that \mathcal{A}, \mathcal{B} cross-intersecting is the same as

$$
\begin{equation*}
\left(\partial^{n-k-\ell} \mathcal{A}^{c}\right) \cap \mathcal{B}=\emptyset, \tag{1}
\end{equation*}
$$

where $\mathcal{A}^{c}=\{\bar{A}: A \in \mathcal{A}\}$ (and ∂^{i} is ∂ applied i times). If, on the other hand, $\left|\mathcal{A}^{c}\right|=|\mathcal{A}|>\binom{n-1}{k-1}=\binom{n-1}{n-k}$, then KK implies $\left|\partial^{n-k-\ell} \mathcal{A}^{c}\right|>\binom{n-1}{(n-k)-(n-k-\ell)}=$ $\binom{n-1}{\ell}$, in which case (1) gives $|\mathcal{B}|<\binom{n}{\ell}-\binom{n-1}{\ell}=\binom{n-1}{\ell-1}$.
5. (Induction on n.) For $\varepsilon \in\{0,1\}$, let $A_{\varepsilon}=\left\{x \in A: x_{n}=\varepsilon\right\}$ and $a_{\varepsilon}=\left|A_{\varepsilon}\right|$, and assume (w.l.o.g.) $a_{0} \geq a_{1}$. Then

$$
\begin{equation*}
|\nabla(A)| \geq a_{0}\left(n-1-\log a_{0}\right)+a_{1}\left(n-1-\log a_{1}\right)+\left(a_{0}-a_{1}\right) . \tag{2}
\end{equation*}
$$

(The first two terms, corresponding to edges in $\left\{x_{n}=0\right\}$ and $\left\{x_{n}=1\right\}$, are given by induction; the third is a lower bound on $\left|\nabla\left(A_{0},\left\{x_{n}=1\right\} \backslash A_{1}\right)\right|$.) So we want the r.h.s. of (2) to be at least $a(n-\log a)$, which we rewrite as

$$
\frac{a_{0}}{a_{0}+a_{1}} \log \frac{a_{0}+a_{1}}{a_{0}}+\frac{a_{1}}{a_{0}+a_{1}} \log \frac{a_{0}+a_{1}}{a_{1}} \geq \frac{2 a_{1}}{a_{0}+a_{1}} .
$$

Equivalently, the binary entropy of α,

$$
H(\alpha)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha) \quad(\alpha \in[0,1])
$$

satisfies $H(\alpha) \geq 2 \alpha$ for $\alpha \in[0,1 / 2]$, which is true (e.g. look at its graph).
[Note: It's slightly easier to show the equivalent $|E(A)| \leq(1 / 2) a \log a$.]
6. We show that $n=R(3 k, \ldots, 3 k)^{3}$ (r copies) has the stated property (so the statement is true). Let $f:[n] \times[n] \times[n] \rightarrow[r]$ and for $1 \leq i<j<k \leq n$ set $g(\{i, j, k\})=f(i, j, k)$. Thus $g:\binom{[n]}{3} \rightarrow[r]$ and by our choice of n there is some $D=\left\{i_{1}<\cdots<i_{3 k}\right\} \subseteq[n]$ with g constant on $\binom{D}{3}$. Now take $A=\left\{i_{1}, \ldots, i_{k}\right\}, B=\left\{i_{k+1}, \ldots, i_{2 k}\right\}$ and $C=\left\{i_{2 k+1}, \ldots, i_{3 k}\right\}$.
7.(a) Given δ, l, take L_{0} as in Szemerédi's Theorem (so for any $L>L_{0}$, any $A \subseteq[L]$ of size at least δL contains an l-term A.P.). For $x \in X$ set

$$
A_{x}=\left\{i \in[L]: x \in Y_{i}\right\} \quad(x \in X)
$$

It's enough to show that there's some $x \in X$ for which $\left|A_{x}\right| \geq \delta|L|$: our choice of L then guarantees that A_{x} contains an A.P. $a, a+d, \ldots, a+(l-1) d$, which gives the desired Y_{i} 's. But $\delta|L|$ is a lower bound on the average of the $\left|A_{x}\right|$'s:

$$
|X|^{-1} \sum_{x \in X}\left|A_{x}\right|=|X|^{-1} \sum_{i=1}^{L}\left|Y_{i}\right| \geq|X|^{-1}|L| \delta|X|=\delta|L|
$$

(b) We show $N_{0}=L_{0}(\delta / 2, k)$ has the desired property. Let $N>N_{0}, A \subseteq$ $[N]$ and $|A|>\delta N$. Set $X=[2 N]$ and $Y_{i}=A+i$ for $i \in[N]$. Then $Y_{i} \subseteq X$ and $\left|Y_{i}\right|=|A|>(\delta / 2)|X| ;$ so, since $N>N_{0}$, there are $a, d \in \mathbb{P}$ so that $Y_{a} \cap Y_{a+d} \cap \cdots \cap Y_{a+(l-1) d} \neq \emptyset$. But for any x in this intersection, $\{x-a, x-(a+d), \ldots, x-(a+(k-1) d)\}$ is a k-term A.P. contained in A.

