
582 PS4 Solutions

1. Suppose n = 2k and V = {x1, . . . , xk, y1, . . . , yk}. Let σ(x1), . . . , σ(xk)
be independent symmetric Bernoullis and set σ(yi) = −σ(xi). Then σ(V )
is automatically 0, and for H ∈ H, σ(H) ∼ Sm(H), where m(H) = |{i :

|H ∩ {xi, yi}| = 1}| ≤ t. Let AH = {|σ(H)| > C
√
t ln t}, with C TBA. Then

P(AH) < 2t−C
2/2 (by Chernoff), and the graph on vertex set H with

H ∼ H ′ ⇔ some {xi, yi} meets both H and H ′

is a Lovász graph for the AH ’s with degrees less than 2t2. The statement
now follows from the Local Lemma provided 2et2−C

2/2 < 1.

2. Noting that M tM = qI + J , we have, for any ε ∈ {±1}n,

n‖Mε‖2∞ ≥ (Mε)tMε = εt(qI + J)ε = qεtε+ (
∑
εi)

2 ≥ qn.

(Actually the last inequality is strict, since n is odd.)

Alternate: Suppose V = R ∪ B is a coloring achieving discrepancy k, and
choose x and y uniformly from R and B respectively. Then

1 ≥
∑
l∈H

P(x, y ∈ l) =
∑
l∈H

|l ∩R||l ∩B|
|R||B|

≥ (q2 + q + 1)
((q + 1− k)/2)((q + 1 + k)/2)

((q2 + q + 1)/2)2
=

(q + 1)2 − k2

q2 + q + 1
,

and the conclusion follows.

3. Modify the proof of Beck-Fiala by setting

Hi = {A ∈ H : |A ∩ Si| ≥ t}.

(The condition in our proof was |A ∩ Si| > t.)
The proof goes as before unless we reach an i for which M i (the Hi × Si

incidence matrix) has all row and column sums exactly t. If this does happen,
we can take, for each j in Si, εj to be 1 if εij ≥ 0 and −1 otherwise (and
ε ≡ εi on T i). This gives discrepancy at most 2t− 3 on H \Hi (as in class),
and at most t on Hi (so we use t ≤ 2t− 3).
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4. (Due to D.J. Kleitman, originally proved via shifting.) Notice that A,B
cross-intersecting is the same as

(∂n−k−`Ac) ∩ B = ∅, (1)

where Ac = {Ā : A ∈ A} (and ∂i is ∂ applied i times). If, on the other hand,
|Ac| = |A| >

(
n−1
k−1

)
=
(
n−1
n−k

)
, then KK implies |∂n−k−`Ac| >

(
n−1

(n−k)−(n−k−`)

)
=(

n−1
`

)
, in which case (1) gives |B| <

(
n
`

)
−
(
n−1
`

)
=
(
n−1
`−1

)
.

5. (Induction on n.) For ε ∈ {0, 1}, let Aε = {x ∈ A : xn = ε} and aε = |Aε|,
and assume (w.l.o.g.) a0 ≥ a1. Then

|∇(A)| ≥ a0(n− 1− log a0) + a1(n− 1− log a1) + (a0 − a1). (2)

(The first two terms, corresponding to edges in {xn = 0} and {xn = 1}, are
given by induction; the third is a lower bound on |∇(A0, {xn = 1} \ A1)|.)
So we want the r.h.s. of (2) to be at least a(n− log a), which we rewrite as

a0
a0 + a1

log
a0 + a1
a0

+
a1

a0 + a1
log

a0 + a1
a1

≥ 2a1
a0 + a1

.

Equivalently, the binary entropy of α,

H(α) = −α logα− (1− α) log(1− α) (α ∈ [0, 1]),

satisfies H(α) ≥ 2α for α ∈ [0, 1/2], which is true (e.g. look at its graph).

[Note: It’s slightly easier to show the equivalent |E(A)| ≤ (1/2)a log a.]

6. We show that n = R(3k, . . . , 3k)3 (r copies) has the stated property (so
the statement is true). Let f : [n]× [n]× [n]→ [r] and for 1 ≤ i < j < k ≤ n
set g({i, j, k}) = f(i, j, k). Thus g :

(
[n]
3

)
→ [r] and by our choice of n there

is some D = {i1 < · · · < i3k} ⊆ [n] with g constant on
(
D
3

)
. Now take

A = {i1, . . . , ik}, B = {ik+1, . . . , i2k} and C = {i2k+1, . . . , i3k}.

7.(a) Given δ, l, take L0 as in Szemerédi’s Theorem (so for any L > L0, any
A ⊆ [L] of size at least δL contains an l-term A.P.). For x ∈ X set

Ax = {i ∈ [L] : x ∈ Yi} (x ∈ X).
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It’s enough to show that there’s some x ∈ X for which |Ax| ≥ δ|L|: our choice
of L then guarantees that Ax contains an A.P. a, a+d, . . . , a+(l−1)d, which
gives the desired Yi’s. But δ|L| is a lower bound on the average of the |Ax|’s:

|X|−1
∑
x∈X

|Ax| = |X|−1
L∑
i=1

|Yi| ≥ |X|−1|L|δ|X| = δ|L|.

(b) We show N0 = L0(δ/2, k) has the desired property. Let N > N0, A ⊆
[N ] and |A| > δN . Set X = [2N ] and Yi = A + i for i ∈ [N ]. Then
Yi ⊆ X and |Yi| = |A| > (δ/2)|X|; so, since N > N0, there are a, d ∈ P
so that Ya ∩ Ya+d ∩ · · · ∩ Ya+(l−1)d 6= ∅. But for any x in this intersection,
{x− a, x− (a+ d), . . . , x− (a+ (k − 1)d)} is a k-term A.P. contained in A.
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