
582 PS3 Solutions

1. Fix R and for i ∈ {0, . . . , t}, let Zi =
∑
|T∩R|=i xT ; so we want

Zt = (−1)tZ0.

For i ∈ {0, . . . , t− 1}, we have

0 =
∑
|U∩R|=i

∑
T⊇U xT = (t− i)Zi+1 + (i+ 1)Zi,

where the first equality follows from M(t−1, t)x = 0 (and I accept the second
without justification). So Zi+1 = − t−i

i+1
Zi (for each such i), yielding

Zt = (−1)t · 1
t
· 2
t−1 · · · · ·

t
1
· Z0 = (−1)tZ0.

2. It’s ETS that for S with |S(v)| = t ∀v, we can partition Γ = ΓX ∪ ΓY so

S(v) ∩ ΓX 6= ∅ ∀v ∈ X and S(v) ∩ ΓY 6= ∅ ∀v ∈ Y. (1)

(We can then assign each v ∈ X a color from S(v) ∩ ΓX and similarly for
v ∈ Y .) But for a random (uniform) partition, our assumption on the |S(v)|’s
implies that (1) fails with probability at most n2−t < 1; so there must be a
partition for which (1) holds.

3. Fix a proper coloring σ : V → [χ] (where V = V (G)). Given S(v)’s of
size t, let γ(s), s ∈ Γ, be chosen uniformly and independently from [χ], and
set

T = T (γ) = {v ∈ V : γ−1(σ(v)) ∩ S(v) 6= ∅}.

Then (for any γ) G[T ] admits an S-legal coloring. (Any coloring that assigns
each v ∈ T a color from γ−1(σ(v))∩ S(v) is proper, since all vertices colored
s belong to the independent set σ−1(γ(s)).) On the other hand, E|T | =
(1− (1− 1/χ)t)n (since P(v ∈ T ) = 1− (1− 1/χ)t for every v ∈ V ), etc.

[The conjecture mentioned is due to Albertson, Grossman and Haas, 1998.]

4. Observation: If t ∈ P and χ(H) < χ/t, then there is a W ⊆ V with
|G[W ]| ≥ |W |t/2 and W independent in H (where for graphs size means
number of edges).
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Proof. If V1∪ · · · ∪Vm is a coloring of H (so H[Vi] is edgeless) with m < χ/t,
then (clearly) χ(G[Vi]) > t for some i; so the proposition in the problem says
there is someW ⊆ Vi with δ(G[W ]) ≥ t and (therefore) |G[W ]| ≥ |W |t/2.

But the probability that there is a W as in the observation (necessarily
with |W | > t) is less than ∑

s>t

(
n
s

)
2−st/2,

which (check) is o(1) if t = b2 log nc.

5. Assuming q ≥ mp, let Y1, . . . , Ym be independent copies of Xp and Y =
∪Yi. Then Y ∼ Xr where r = 1− (1− p)m ≤ q and

1− µq(F) ≤ 1− µr(F) = P(Y 6∈ F) ≤ P(Yi 6∈ F ∀i) = 2−m

(so m = log2(1/ε) does what we want). The other direction is similar: if
q ≤ p/m and µq(F) = δ, then

1/2 = 1− µp(F) ≤ (1− µq(F))m = (1− δ)m

implies − ln 2 ≤ m ln(1 − δ) < −mδ and m < (ln 2)/δ; thus m > (ln 2)/ε
implies µq(F) < ε.

6. Say (X, Y ) is good if it gives the stated conclusion. We start with G, using
the notation from the proof given in the problem. The key observation is
that for any distinct e, f ∈ G, EZeZf = 1/4. Thus, setting |G| = m, we have

σ2
Z =

∑
e

∑
f (EZeZf − EZeEZf ) =

∑
e(EZ2

e − E2Ze) = m/4

(where e and f run over G); so, by Chebyshev,

P(Z ≤ .49|G|) ≤ P(|Z − µZ | ≥ .01m) ≤ m/4

(.01m)2
=

2500

|G|
.

Repeating this with H in place of G and combining gives

P((X, Y ) is good) ≥ 1−
[

2500

|G|
+

2500

|H|

]
,

which is positive if min{|G|, |H|} > 5000 (etc.).

7. We use the suggested notation and always assume v, w ∈ L. Let Xv

be the indicator of the event {Pv ⊆ Tp} and X =
∑
Xv (the number of
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v ∈ L reachable from ρ in Tp). Then Q = {X > 0} and (using the version of
Chebyshev in the problem) we need EX2 < µ2/δ (with µ = EX and δ TBA).

We have EXv = pn ∀v, so µ = (rp)n. In addition, EXvXw = p2n−|v∧w|

and, for a given v and i ∈ {0, . . . , n},

|{w : |v ∧ w| = i}| ≤ rn−i.

(The precise value is (r − 1)rn−i−1 if i < n and 1 if i = n.) Thus

EX2 =
∑

v

∑
w EXvXw =

∑
v

∑
w p

2n−|v∧w|

≤ rn
∑n

i=0 r
n−ip2n−i = (rp)2n

∑n
i=0(rp)

−i

< µ2
∑

i≥0(1 + ε)−i = (1 + ε)µ2/ε

(and we take δ = ε/(1 + ε)).
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