582 PS3 Solutions

1. Fix R and for $i \in\{0, \ldots, t\}$, let $Z_{i}=\sum_{|T \cap R|=i} x_{T}$; so we want

$$
Z_{t}=(-1)^{t} Z_{0}
$$

For $i \in\{0, \ldots, t-1\}$, we have

$$
0=\sum_{|U \cap R|=i} \sum_{T \supseteq U} x_{T}=(t-i) Z_{i+1}+(i+1) Z_{i}
$$

where the first equality follows from $M(t-1, t) x=\underline{0}$ (and I accept the second without justification). So $Z_{i+1}=-\frac{t-i}{i+1} Z_{i}$ (for each such i), yielding

$$
Z_{t}=(-1)^{t} \cdot \frac{1}{t} \cdot \frac{2}{t-1} \cdots \cdots \frac{t}{1} \cdot Z_{0}=(-1)^{t} Z_{0}
$$

2. It's ETS that for S with $|S(v)|=t \forall v$, we can partition $\Gamma=\Gamma_{X} \cup \Gamma_{Y}$ so

$$
\begin{equation*}
S(v) \cap \Gamma_{X} \neq \emptyset \quad \forall v \in X \quad \text { and } \quad S(v) \cap \Gamma_{Y} \neq \emptyset \quad \forall v \in Y \tag{1}
\end{equation*}
$$

(We can then assign each $v \in X$ a color from $S(v) \cap \Gamma_{X}$ and similarly for $v \in Y$.) But for a random (uniform) partition, our assumption on the $|S(v)|$'s implies that (1) fails with probability at most $n 2^{-t}<1$; so there must be a partition for which (1) holds.
3. Fix a proper coloring $\sigma: V \rightarrow[\chi]$ (where $V=V(G)$). Given $S(v)$'s of size t, let $\gamma(s), s \in \Gamma$, be chosen uniformly and independently from $[\chi]$, and set

$$
T=T(\gamma)=\left\{v \in V: \gamma^{-1}(\sigma(v)) \cap S(v) \neq \emptyset\right\}
$$

Then (for any γ) $G[T]$ admits an S-legal coloring. (Any coloring that assigns each $v \in T$ a color from $\gamma^{-1}(\sigma(v)) \cap S(v)$ is proper, since all vertices colored s belong to the independent set $\sigma^{-1}(\gamma(s))$.) On the other hand, $\mathbb{E}|T|=$ $\left(1-(1-1 / \chi)^{t}\right) n\left(\right.$ since $\mathbb{P}(v \in T)=1-(1-1 / \chi)^{t}$ for every $\left.v \in V\right)$, etc.
[The conjecture mentioned is due to Albertson, Grossman and Haas, 1998.]
4. Observation: If $t \in \mathbb{P}$ and $\chi(H)<\chi / t$, then there is a $W \subseteq V$ with $|G[W]| \geq|W| t / 2$ and W independent in H (where for graphs size means number of edges).

Proof. If $V_{1} \cup \cdots \cup V_{m}$ is a coloring of H (so $H\left[V_{i}\right]$ is edgeless) with $m<\chi / t$, then (clearly) $\chi\left(G\left[V_{i}\right]\right)>t$ for some i; so the proposition in the problem says there is some $W \subseteq V_{i}$ with $\delta(G[W]) \geq t$ and (therefore) $|G[W]| \geq|W| t / 2$.

But the probability that there is a W as in the observation (necessarily with $|W|>t)$ is less than

$$
\sum_{s>t}\binom{n}{s} 2^{-s t / 2}
$$

which (check) is $o(1)$ if $t=\lfloor 2 \log n\rfloor$.
5. Assuming $q \geq m p$, let Y_{1}, \ldots, Y_{m} be independent copies of X_{p} and $Y=$ $\cup Y_{i}$. Then $Y \sim X_{r}$ where $r=1-(1-p)^{m} \leq q$ and

$$
1-\mu_{q}(\mathcal{F}) \leq 1-\mu_{r}(\mathcal{F})=\mathbb{P}(Y \notin \mathcal{F}) \leq \mathbb{P}\left(Y_{i} \notin \mathcal{F} \forall i\right)=2^{-m}
$$

(so $m=\log _{2}(1 / \varepsilon)$ does what we want). The other direction is similar: if $q \leq p / m$ and $\mu_{q}(\mathcal{F})=\delta$, then

$$
1 / 2=1-\mu_{p}(\mathcal{F}) \leq\left(1-\mu_{q}(\mathcal{F})\right)^{m}=(1-\delta)^{m}
$$

implies $-\ln 2 \leq m \ln (1-\delta)<-m \delta$ and $m<(\ln 2) / \delta$; thus $m>(\ln 2) / \varepsilon$ implies $\mu_{q}(\mathcal{F})<\varepsilon$.
6. Say (X, Y) is good if it gives the stated conclusion. We start with G, using the notation from the proof given in the problem. The key observation is that for any distinct $e, f \in G, \mathbb{E} Z_{e} Z_{f}=1 / 4$. Thus, setting $|G|=m$, we have

$$
\sigma_{Z}^{2}=\sum_{e} \sum_{f}\left(\mathbb{E} Z_{e} Z_{f}-\mathbb{E} Z_{e} \mathbb{E} Z_{f}\right)=\sum_{e}\left(\mathbb{E} Z_{e}^{2}-\mathbb{E}^{2} Z_{e}\right)=m / 4
$$

(where e and f run over G); so, by Chebyshev,

$$
\mathbb{P}(Z \leq .49|G|) \leq \mathbb{P}\left(\left|Z-\mu_{Z}\right| \geq .01 m\right) \leq \frac{m / 4}{(.01 m)^{2}}=\frac{2500}{|G|}
$$

Repeating this with H in place of G and combining gives

$$
\mathbb{P}((X, Y) \text { is good }) \geq 1-\left[\frac{2500}{|G|}+\frac{2500}{|H|}\right]
$$

which is positive if $\min \{|G|,|H|\}>5000$ (etc.).
7. We use the suggested notation and always assume $v, w \in L$. Let X_{v} be the indicator of the event $\left\{P_{v} \subseteq T_{p}\right\}$ and $X=\sum X_{v}$ (the number of
$v \in L$ reachable from ρ in T_{p}). Then $Q=\{X>0\}$ and (using the version of Chebyshev in the problem) we need $\mathbb{E} X^{2}<\mu^{2} / \delta$ (with $\mu=\mathbb{E} X$ and δ TBA).

We have $\mathbb{E} X_{v}=p^{n} \forall v$, so $\mu=(r p)^{n}$. In addition, $\mathbb{E} X_{v} X_{w}=p^{2 n-|v \wedge w|}$ and, for a given v and $i \in\{0, \ldots, n\}$,

$$
|\{w:|v \wedge w|=i\}| \leq r^{n-i}
$$

(The precise value is $(r-1) r^{n-i-1}$ if $i<n$ and 1 if $i=n$.) Thus

$$
\begin{aligned}
\mathbb{E} X^{2} & =\sum_{v} \sum_{w} \mathbb{E} X_{v} X_{w}=\sum_{v} \sum_{w} p^{2 n-|v \wedge w|} \\
& \leq r^{n} \sum_{i=0}^{n} r^{n-i} p^{2 n-i}=(r p)^{2 n} \sum_{i=0}^{n}(r p)^{-i} \\
& <\mu^{2} \sum_{i \geq 0}(1+\varepsilon)^{-i}=(1+\varepsilon) \mu^{2} / \varepsilon
\end{aligned}
$$

(and we take $\delta=\varepsilon /(1+\varepsilon)$).

