
582 PS2 Solutions

1. Since we assume no isolates WMA |min(P )| ≤ n/2. In what follows x’s
and y’s are elements of P . Set

l(x) = max{l : ∃ x1 < · · · < xl = x}

(the maximum size of a chain with largest element x). Let y1 < · · · < yk
be a longest chain in P (so k = l(yk) is the largest of the l(x)’s). Now just
notice that any σ : P → P satisfying

σ(x)

{
= y1 if l(x) = 1,
∈ {yl−1, yl} if l(x) = l ≥ 2,

belongs to End(p) and that the number of such σ’s is at least 2n/2.

2. If the elements of P are x1, . . . , xn, let G be the bigraph on {v1, . . . , vn}∪
{w1, . . . , wn} with vi ∼ wj iff xi < xj. We just need

Claim. (i) β(P ) ≤ n− ν(G), and (ii) w(P ) ≥ n− τ(G).

(Then König’s Theorem gives β(P ) ≤ w(P ), which is what we want.)

For (i): With a matching M of G associate the chain partition of P generated
(in the obvious way) by the relations {xi < xj : viwj ∈M}. Then xi is
maximal in its chain iff M does not cover vi, so the number of chains is
n− |M | (and then take M of size ν(G)).

For (ii): If {vi : i ∈ I} ∪ {wj : j ∈ J} is a (vertex) cover of G, then
{xk : k ∈ [n] \ (I ∪ J)} is an antichain of P of size at least n − |I ∪ J |; in
particular, a cover of size τ(G) gives an antichain of size at least n− τ(G).

3. We want to show that if A ⊆ 2[n] is an antichain of size
(

n
bn/2c

)
, then A is

one of L1 :=
(

[n]
bn/2c

)
, L2 :=

(
[n]
dn/2e

)
. This is immediate from the LYM proof of

Sperner unless n is odd and A ⊆ L1 ∪ L2. The result is then an instance of

Real statement : If the bigraph G on X ∪ Y is regular (of positive degree)
and connected, then its only largest independent sets are X and Y .

(To apply, notice that A is independent in the natural bigraph G on L1∪L2.)

Because: If I is independent with I ∩X = J 6= ∅, X, then I ⊆ J ∪ (Y \N(I))
and |I| ≤ |Y |+ |J | − |N(J)| < |Y |, with “<” given by the hypotheses on G.
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4. This is a consequence of the theorem of Bollobás mentioned in class in
connection with LYM. Let

(
[n]
2

)
\ E(G) = {A1, . . . , Am}, and for i ∈ [m]

let Ci be the vertex set of some copy of Ks in G + Ai containing Ai, and
Bi = [n] \ Ci. Then |Ai| = 2, |Bi| = n− s and

Ai ∩Bj = ∅ ⇔ i = j

(why?); so Bollobás gives m ≤
(
n−s+2

2

)
, which is what we want.

(To see that the bound is sharp take E(G) = {xy : {x, y} ∩ [s− 2] 6= ∅}.)

5. We use “general principle” from Katona’s proof of EKR. Let X = V (Γk)
and let Y be a hexagon-free subset of X with |Y | = αk|X|. Let

H = {Xij : i, j ∈ [2k], i 6= j},

where Xij = {A ∈ X : i ∈ A ⊆ [2k] \ {j}}.

Then Γk[Xij] ∼= Γk−1 (as usual, Γk[Xij] is the subgraph of Γk induced by Xij)
and Y ∩Xij is (trivially) hexagon-free; so |Y ∩Xij| ≤ αk−1|Xij| (∀i, j). But
then by the “general principle,” (αk|X| =) |Y | ≤ αk−1|X|.

6. For i ∈ [n], set
SiA = A \ {i} (A ⊆ [n])

and, for F ⊆ 2[n],

SiF = {SiA : A ∈ F} ∪ {A ∈ F : SiA ∈ F}.

Then |SiF| = |F| and we claim that (for any F and i)

S(SiF) ⊆ S(F). (1)

It follows (as in EKR) that WMA SiF = F ∀i, i.e. F is an ideal (and QED).

Proof of (1). (Try it first.) Suppose instead that X ∈ S(SiF) \ S(F), say
with A ∈ Tr(SiF , X) \Tr(F , X), and let B ∈ SiF satisfy B ∩X = A. Then
(i) B 6∈ F implies i 6∈ B and B ∪ i ∈ F , (ii) i ∈ X (or (B ∪ i)∩X = A), and
(iii) i 6∈ A (since A ⊆ B); so there must be C ∈ SiF with C∩X = A∪ i. But
then i ∈ C ∈ SiF implies C\i ∈ F , a contradiction since (C\i)∩X = A.
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[An even easier argument from Justin (briefly):

(Induction on |X| with |X| = 1 trivial.) Let Fx = {A ∈ F : x ∈ A} and
Fx̄ = {A ∈ F : x 6∈ A}, and observe:

(i) A ∈ S(Fx) ∪ S(Fx̄) ⇒ x 6∈ A,

(ii) A ∈ S(Fx) ∩ S(Fx̄) ⇒ A ∪ {x} ∈ S(F) \ [S(Fx) ∪ S(Fx̄)].

Thus (using induction for the second inequality)

|S(F)| ≥ |S(Fx) ∪ S(Fx̄)|+ |S(Fx) ∩ S(Fx̄)|
= |S(Fx)|+ |S(Fx̄)| ≥ |Fx|+ |Fx̄| = |F|. ]

7. For any A ∈ H, counting in two ways gives

∑
A 6=B∈H

|B ∩ A| =


∑

x∈A(dH(x)− 1) = |A|(d− 1)

(|H| − 1)λ.

So |A| = λ(|H| − 1)/(d− 1) for each A ∈ H.

8. (Due to Frankl and Pach.) Suppose we do have µ as in the problem and
let I be minimal with

∑
A⊇I µA 6= 0. For a contradiction it’s enough to show∑
A∩I=J

µA 6= 0 ∀J ⊆ I.

But inclusion-exclusion and our assumption on I give∑
A∩I=J

µA =
∑

J⊆K⊆I

(−1)|K\J |
∑
A⊇K

µA = (−1)|I\J |
∑
A⊇I

µA 6= 0.
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