582 PS2 Solutions

1. Since we assume no isolates WMA $|\min (P)| \leq n / 2$. In what follows x 's and y 's are elements of P. Set

$$
l(x)=\max \left\{l: \exists x_{1}<\cdots<x_{l}=x\right\}
$$

(the maximum size of a chain with largest element x). Let $y_{1}<\cdots<y_{k}$ be a longest chain in P (so $k=l\left(y_{k}\right)$ is the largest of the $l(x)$'s). Now just notice that any $\sigma: P \rightarrow P$ satisfying

$$
\sigma(x) \begin{cases}=y_{1} & \text { if } l(x)=1 \\ \in\left\{y_{l-1}, y_{l}\right\} & \text { if } l(x)=l \geq 2\end{cases}
$$

belongs to $\operatorname{End}(p)$ and that the number of such σ 's is at least $2^{n / 2}$.
2. If the elements of P are x_{1}, \ldots, x_{n}, let G be the bigraph on $\left\{v_{1}, \ldots, v_{n}\right\} \cup$ $\left\{w_{1}, \ldots, w_{n}\right\}$ with $v_{i} \sim w_{j}$ iff $x_{i}<x_{j}$. We just need
Claim. (i) $\beta(P) \leq n-\nu(G)$, and (ii) $w(P) \geq n-\tau(G)$.
(Then König's Theorem gives $\beta(P) \leq w(P)$, which is what we want.)
For (i): With a matching M of G associate the chain partition of P generated (in the obvious way) by the relations $\left\{x_{i}<x_{j}: v_{i} w_{j} \in M\right\}$. Then x_{i} is maximal in its chain iff M does not cover v_{i}, so the number of chains is $n-|M|$ (and then take M of size $\nu(G)$).
For (ii): If $\left\{v_{i}: i \in I\right\} \cup\left\{w_{j}: j \in J\right\}$ is a (vertex) cover of G, then $\left\{x_{k}: k \in[n] \backslash(I \cup J)\right\}$ is an antichain of P of size at least $n-|I \cup J|$; in particular, a cover of size $\tau(G)$ gives an antichain of size at least $n-\tau(G)$.
3. We want to show that if $\mathcal{A} \subseteq 2^{[n]}$ is an antichain of size $\binom{n}{\lfloor n / 2\rfloor}$, then \mathcal{A} is one of $\mathcal{L}_{1}:=\binom{[n]}{[n / 2\rfloor}, \mathcal{L}_{2}:=\binom{[n]}{[n / 2\rceil}$. This is immediate from the LYM proof of Sperner unless n is odd and $\mathcal{A} \subseteq \mathcal{L}_{1} \cup \mathcal{L}_{2}$. The result is then an instance of

Real statement: If the bigraph G on $X \cup Y$ is regular (of positive degree) and connected, then its only largest independent sets are X and Y.
(To apply, notice that \mathcal{A} is independent in the natural bigraph G on $\mathcal{L}_{1} \cup \mathcal{L}_{2}$.)
Because: If I is independent with $I \cap X=J \neq \emptyset, X$, then $I \subseteq J \cup(Y \backslash N(I))$ and $|I| \leq|Y|+|J|-|N(J)|<|Y|$, with " $<$ " given by the hypotheses on G.
4. This is a consequence of the theorem of Bollobás mentioned in class in connection with LYM. Let $\binom{[n]}{2} \backslash E(G)=\left\{A_{1}, \ldots, A_{m}\right\}$, and for $i \in[m]$ let C_{i} be the vertex set of some copy of K_{s} in $G+A_{i}$ containing A_{i}, and $B_{i}=[n] \backslash C_{i}$. Then $\left|A_{i}\right|=2,\left|B_{i}\right|=n-s$ and

$$
A_{i} \cap B_{j}=\emptyset \quad \Leftrightarrow \quad i=j
$$

(why?); so Bollobás gives $m \leq\binom{ n-s+2}{2}$, which is what we want.
(To see that the bound is sharp take $E(G)=\{x y:\{x, y\} \cap[s-2] \neq \emptyset\}$.)
5. We use "general principle" from Katona's proof of EKR. Let $X=V\left(\Gamma_{k}\right)$ and let Y be a hexagon-free subset of X with $|Y|=\alpha_{k}|X|$. Let

$$
\mathcal{H}=\left\{X_{i j}: i, j \in[2 k], i \neq j\right\}
$$

where $X_{i j}=\{A \in X: i \in A \subseteq[2 k] \backslash\{j\}\}$.
Then $\Gamma_{k}\left[X_{i j}\right] \cong \Gamma_{k-1}$ (as usual, $\Gamma_{k}\left[X_{i j}\right]$ is the subgraph of Γ_{k} induced by $X_{i j}$) and $Y \cap X_{i j}$ is (trivially) hexagon-free; so $\left|Y \cap X_{i j}\right| \leq \alpha_{k-1}\left|X_{i j}\right|(\forall i, j)$. But then by the "general principle," $\left(\alpha_{k}|X|=\right)|Y| \leq \alpha_{k-1}|X|$.
6. For $i \in[n]$, set

$$
S_{i} A=A \backslash\{i\} \quad(A \subseteq[n])
$$

and, for $\mathcal{F} \subseteq 2^{[n]}$,

$$
S_{i} \mathcal{F}=\left\{S_{i} A: A \in \mathcal{F}\right\} \cup\left\{A \in \mathcal{F}: S_{i} A \in \mathcal{F}\right\}
$$

Then $\left|S_{i} \mathcal{F}\right|=|\mathcal{F}|$ and we claim that (for any \mathcal{F} and i)

$$
\begin{equation*}
\mathcal{S}\left(S_{i} \mathcal{F}\right) \subseteq \mathcal{S}(\mathcal{F}) \tag{1}
\end{equation*}
$$

It follows (as in EKR) that WMA $S_{i} \mathcal{F}=\mathcal{F} \forall i$, i.e. \mathcal{F} is an ideal (and QED).
Proof of (1). (Try it first.) Suppose instead that $X \in \mathcal{S}\left(S_{i} \mathcal{F}\right) \backslash \mathcal{S}(\mathcal{F})$, say with $A \in \operatorname{Tr}\left(S_{i} \mathcal{F}, X\right) \backslash \operatorname{Tr}(\mathcal{F}, X)$, and let $B \in S_{i} \mathcal{F}$ satisfy $B \cap X=A$. Then (i) $B \notin \mathcal{F}$ implies $i \notin B$ and $B \cup i \in \mathcal{F}$, (ii) $i \in X$ (or $(B \cup i) \cap X=A$), and (iii) $i \notin A$ (since $A \subseteq B$); so there must be $C \in S_{i} \mathcal{F}$ with $C \cap X=A \cup i$. But then $i \in C \in S_{i} \mathcal{F}$ implies $C \backslash i \in \mathcal{F}$, a contradiction since $(C \backslash i) \cap X=A$.
[An even easier argument from Justin (briefly):
(Induction on $|X|$ with $|X|=1$ trivial.) Let $\mathcal{F}_{x}=\{A \in \mathcal{F}: x \in A\}$ and $\mathcal{F}_{\bar{x}}=\{A \in \mathcal{F}: x \notin A\}$, and observe:
(i) $A \in \mathcal{S}\left(\mathcal{F}_{x}\right) \cup \mathcal{S}\left(\mathcal{F}_{\bar{x}}\right) \Rightarrow x \notin A$,
(ii) $A \in \mathcal{S}\left(\mathcal{F}_{x}\right) \cap \mathcal{S}\left(\mathcal{F}_{\bar{x}}\right) \Rightarrow A \cup\{x\} \in \mathcal{S}(\mathcal{F}) \backslash\left[\mathcal{S}\left(\mathcal{F}_{x}\right) \cup \mathcal{S}\left(\mathcal{F}_{\bar{x}}\right)\right]$.

Thus (using induction for the second inequality)

$$
\begin{aligned}
|\mathcal{S}(\mathcal{F})| & \geq\left|\mathcal{S}\left(\mathcal{F}_{x}\right) \cup \mathcal{S}\left(\mathcal{F}_{\bar{x}}\right)\right|+\left|\mathcal{S}\left(\mathcal{F}_{x}\right) \cap \mathcal{S}\left(\mathcal{F}_{\bar{x}}\right)\right| \\
& \left.=\left|\mathcal{S}\left(\mathcal{F}_{x}\right)\right|+\left|\mathcal{S}\left(\mathcal{F}_{\bar{x}}\right)\right| \geq\left|\mathcal{F}_{x}\right|+\left|\mathcal{F}_{\bar{x}}\right|=|\mathcal{F}| . \quad\right]
\end{aligned}
$$

7. For any $A \in \mathcal{H}$, counting in two ways gives

$$
\sum_{A \neq B \in \mathcal{H}}|B \cap A|=\left\{\begin{array}{l}
\sum_{x \in A}\left(d_{\mathcal{H}}(x)-1\right)=|A|(d-1) \\
(|\mathcal{H}|-1) \lambda .
\end{array}\right.
$$

So $|A|=\lambda(|\mathcal{H}|-1) /(d-1)$ for each $A \in \mathcal{H}$.
8. (Due to Frankl and Pach.) Suppose we do have μ as in the problem and let I be minimal with $\sum_{A \supseteq I} \mu_{A} \neq 0$. For a contradiction it's enough to show

$$
\sum_{A \cap I=J} \mu_{A} \neq 0 \quad \forall J \subseteq I
$$

But inclusion-exclusion and our assumption on I give

$$
\sum_{A \cap I=J} \mu_{A}=\sum_{J \subseteq K \subseteq I}(-1)^{|K \backslash J|} \sum_{A \supseteq K} \mu_{A}=(-1)^{|I \backslash J|} \sum_{A \supseteq I} \mu_{A} \neq 0 .
$$

