582 PS1 Solutions

1. This becomes more or less trivial if we think of starting at the other end, i.e. with Π_{n}, since the number of ways to move from Π_{i} to Π_{i-1} is always $\binom{i}{2}$ (namely, we can combine any two of the i blocks of Π_{i}). Thus the number of sequences is $\prod_{i=2}^{n}\binom{i}{2}\left(=(n!)^{2} /\left(n 2^{n-1}\right)\right)$.
2. For $k \in\{0, \ldots, n\},\binom{x+k}{k}=\binom{x+k}{x}$ is the number of $(x+1)$-element subsets of $[x+n+1]$ with largest element $x+k+1$ (so the sum is $\binom{x+n+1}{x+1}=\binom{x+n+1}{n}$).
3. With $a_{i}:=\left|\left\{j: x_{i}=\max \left(A_{j}\right)\right\}\right|$, the key observation is

$$
\begin{equation*}
\underline{v} \text { is determined by }\left(a_{1}, \ldots, a_{n}\right) \text {. } \tag{1}
\end{equation*}
$$

This is enough: a_{1}, \ldots, a_{n} is a weak n-composition of m, so the number of possibilities for the a_{i} 's is at most $\binom{m+n-1}{n-1}$. (Of course it can be less, since weak compositions needn't correspond to legal \underline{v} 's.)
For (1) (one way) we proceed by induction on n, with $n=1$ trivial. Choose i with $a_{i}=\left|\left\{j: x_{i} \in A_{j}\right\}\right|$, i.e. with $\max \left(A_{j}\right)=x_{i}$ for each A_{j} containing x_{i} (which is true, e.g., if x_{i} is maximum under \prec). Now delete x_{i} and all A_{j} 's containing it and say induction.
4. Let $X_{I}=\left\{x \in X: x \in A_{i} \Leftrightarrow i \in I\right\}$ and let $Y_{I} \subseteq Y$ be the analogue for the B 's. Inclusion-exclusion applied to the universe A_{I} and subsets $A_{I \cup\{j\}}$ $(j \in[m] \backslash I)$ gives

$$
\left|X_{I}\right|=\sum_{J \supseteq I}(-1)^{|J \backslash I|}\left|A_{J}\right|
$$

(and similarly for the Y_{I} 's). Combining this with our hypothesis we find that, for each I,

$$
\left|X_{I}\right|=\sum_{J \supseteq I}(-1)^{|J \backslash I|}\left|A_{J}\right| \neq \sum_{J \supseteq I}(-1)^{|J \backslash I|}\left|B_{J}\right|=\left|Y_{I}\right| .
$$

It follows that either at least half of the X_{I} 's or at least half of the Y_{I} 's are nonempty, so $|X| \geq 2^{m-1}$.
[For the exercise: Fix $\varepsilon, \delta \in\{0,1\}^{m}$ with even and odd weight respectively, let X be the set of even weight strings from $\{0,1\}^{m}$ and set

$$
A_{i}=\left\{x \in X: x_{i}=\varepsilon_{i}\right\}, \quad B_{i}=\left\{x \in X: x_{i}=\delta_{i}\right\}
$$

Then $\left|A_{I}\right|=\left|B_{I}\right|=2^{m-1-|I|}$ if $I \neq[m]$, but $A_{[m]}=\{\varepsilon\}$ and $\left.B_{[m]}=\emptyset.\right]$
5. Let $A=\binom{V}{k}$ and for $i \in[k]$ let $A_{i}=\left\{E \in A: E \cap V_{i}=\emptyset\right\}$. Then $A \backslash \cup A_{i}=\{$ transversals $\}$ and

$$
n^{k}=\left|h\left(A \backslash \cup A_{i}\right)\right|=\left|\sum_{I \subseteq[k]}(-1)^{|I|} h\left(A_{I}\right)\right| \leq 2^{k} \max _{I}\left|h\left(A_{I}\right)\right|,
$$

which, since $h\left(A_{I}\right)=\bar{h}\left(\cup_{i \notin I} V_{i}\right)$, gives the desired result with $c_{k}=2^{-k}$.
6. We have $\mathbb{P}(X=0)=\prod\left(1-p_{i}\right) \rightarrow e^{-\mu}$ and

$$
\mathbb{P}(X=1)=\prod\left(1-p_{i}\right) \sum \frac{p_{i}}{1-p_{i}} \rightarrow \mu e^{-\mu}
$$

whence

$$
\begin{equation*}
\sum p_{i} /\left(1-p_{i}\right) \rightarrow \mu \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod\left[\left(1-p_{i}\right) e^{p_{i} /\left(1-p_{i}\right)}\right] \rightarrow 1 \tag{3}
\end{equation*}
$$

Since $(1-x) e^{x /(1-x)}$ is 1 when $x=0$ and is strictly increasing on $[0,1],(3)$ implies $\max p_{i} \rightarrow 0$, and then (2) gives $\sum p_{i} \rightarrow \mu$.
[Alternate: with $q_{i}=p_{i} /\left(1-p_{i}\right), \mathbb{P}(X=2) \rightarrow e^{-\mu} \mu^{2} / 2$ gives $\sum_{i<j} q_{i} q_{j} \rightarrow$ $\mu^{2} / 2$, which with (2) gives $\sum q_{i}^{2} \rightarrow 0, \max q_{i} \rightarrow 0$, etc.]

