582 PS1 Solutions

1. This becomes more or less trivial if we think of starting at the other end, i.e. with Π_n , since the number of ways to move from Π_i to Π_{i-1} is always $\binom{i}{2}$ (namely, we can combine any two of the *i* blocks of Π_i). Thus the number of sequences is $\prod_{i=2}^n \binom{i}{2}$ (= $(n!)^2/(n2^{n-1})$).

2. For $k \in \{0, \dots, n\}$, $\binom{x+k}{k} = \binom{x+k}{x}$ is the number of (x+1)-element subsets of [x+n+1] with largest element x+k+1 (so the sum is $\binom{x+n+1}{x+1} = \binom{x+n+1}{n}$).

3. With $a_i := |\{j : x_i = \max(A_j)\}|$, the key observation is

$$\underline{v}$$
 is determined by (a_1, \dots, a_n) . (1)

This is enough: a_1, \ldots, a_n is a weak *n*-composition of *m*, so the number of possibilities for the a_i 's is at most $\binom{m+n-1}{n-1}$. (Of course it can be less, since weak compositions needn't correspond to legal \underline{v} 's.)

For (1) (one way) we proceed by induction on n, with n = 1 trivial. Choose i with $a_i = |\{j : x_i \in A_j\}|$, i.e. with $\max(A_j) = x_i$ for each A_j containing x_i (which is true, e.g., if x_i is maximum under \prec). Now delete x_i and all A_j 's containing it and say induction.

4. Let $X_I = \{x \in X : x \in A_i \Leftrightarrow i \in I\}$ and let $Y_I \subseteq Y$ be the analogue for the *B*'s. Inclusion-exclusion applied to the universe A_I and subsets $A_{I \cup \{j\}}$ $(j \in [m] \setminus I)$ gives

$$|X_I| = \sum_{J \supseteq I} (-1)^{|J \setminus I|} |A_J|.$$

(and similarly for the Y_I 's). Combining this with our hypothesis we find that, for each I,

$$|X_I| = \sum_{J \supseteq I} (-1)^{|J \setminus I|} |A_J| \neq \sum_{J \supseteq I} (-1)^{|J \setminus I|} |B_J| = |Y_I|.$$

It follows that either at least half of the X_I 's or at least half of the Y_I 's are nonempty, so $|X| \ge 2^{m-1}$.

[For the exercise: Fix $\varepsilon, \delta \in \{0, 1\}^m$ with even and odd weight respectively, let X be the set of even weight strings from $\{0, 1\}^m$ and set

$$A_i = \{ x \in X : x_i = \varepsilon_i \}, \quad B_i = \{ x \in X : x_i = \delta_i \}.$$

Then $|A_I| = |B_I| = 2^{m-1-|I|}$ if $I \neq [m]$, but $A_{[m]} = \{\varepsilon\}$ and $B_{[m]} = \emptyset$.]

5. Let $A = {\binom{V}{k}}$ and for $i \in [k]$ let $A_i = \{E \in A : E \cap V_i = \emptyset\}$. Then $A \setminus \bigcup A_i = \{\text{transversals}\}$ and

$$n^{k} = |h(A \setminus \cup A_{i})| = |\sum_{I \subseteq [k]} (-1)^{|I|} h(A_{I})| \le 2^{k} \max_{I} |h(A_{I})|,$$

which, since $h(A_I) = \overline{h}(\bigcup_{i \notin I} V_i)$, gives the desired result with $c_k = 2^{-k}$.

6. We have $\mathbb{P}(X=0) = \prod (1-p_i) \to e^{-\mu}$ and

$$\mathbb{P}(X=1) = \prod (1-p_i) \sum \frac{p_i}{1-p_i} \to \mu e^{-\mu},$$

whence

$$\sum p_i / (1 - p_i) \to \mu \tag{2}$$

and

$$\prod \left[(1-p_i)e^{p_i/(1-p_i)} \right] \to 1.$$
(3)

Since $(1-x)e^{x/(1-x)}$ is 1 when x = 0 and is strictly increasing on [0, 1], (3) implies max $p_i \to 0$, and then (2) gives $\sum p_i \to \mu$.

[Alternate: with $q_i = p_i/(1-p_i)$, $\mathbb{P}(X=2) \to e^{-\mu}\mu^2/2$ gives $\sum_{i < j} q_i q_j \to \mu^2/2$, which with (2) gives $\sum q_i^2 \to 0$, max $q_i \to 0$, etc.]