1.(a) For all $\delta>0$ and $l \in \mathbb{P}$ there is an $L_{0}=L_{0}(\delta, l)$ for which the following is true. If $L>L_{0}, X$ is a finite set, and $Y_{1}, \ldots, Y_{L} \subseteq X$ satisfy

$$
\left|Y_{i}\right| \geq \delta|X| \quad \forall i \in[L]
$$

then there are $a, d \in \mathbb{P}$ such that $(a+(l-1) d \leq L$ and $)$

$$
Y_{a} \cap Y_{a+d} \cap \cdots \cap Y_{a+(l-1) d} \neq \emptyset .
$$

(b) Show that the statement in (a) implies Szemerédi's Theorem (in the form: for all $\delta>0$ and $k \in \mathbb{P}$ there is an N_{0} such that for any $N>N_{0}$, any $A \subseteq[N]$ of size at least δN contains a k-term A.P.).
2. (Here SF means 3 -sunflower.) Let $f(n)=f_{3}(n)$ be the maximum size of an n-uniform, SF-free \mathcal{H} and let $g(n)$ be the maximum size of such an \mathcal{H} that's also intersecting.
Fact: $g(n) \geq 10$.
[Reason: Form \mathcal{H} by identifying antipodal points of an icosahedron.]
Use the Fact to show that if n is a power of 3 , then $g(n) \geq 10^{(n-1) / 2}$.
[So (the point of the problem) $f(n) \geq 2 g(n)$ is (much) larger than 2^{n}. If you find the construction: (a) please make some effort to find a nice way to describe it; (b) you can go light on verification details.]
4. Let $G=(V, E), V=A \sqcup B$, with $(A, B) \varepsilon$-regular and $|A|=|B|=n$. Assume further that $d(A, B) \geq \beta+\varepsilon$ with $\beta>1 / 2$ (and $\varepsilon>0$), and that $\alpha(G) \leq(2 \beta-1) n$. Then $\omega(G) \geq 4$. (Recall α and ω are independence and clique number respectively.)
5. Let G be bipartite on $\left(X=\left\{x_{1}, \ldots, x_{n}\right\}\right) \cup\left(Y=\left\{y_{1}, \ldots, y_{n}\right\}\right)$ with $x_{i} \sim y_{j}$ iff $i \leq j$. (This is sometimes called a half-graph.)

Suppose $\left\{X_{i}\right\}_{i=1}^{t}$ and $\left\{Y_{i}\right\}_{i=1}^{t}$ are partitions of X and Y with $\left|X_{i}\right|=$ $\left|Y_{i}\right|=n / t=: m \forall i$. Show that if $\varepsilon>0$ is slightly small, then the number of ε-irregular pairs (X_{i}, Y_{j}) isn't much less than t. (E.g. if $\varepsilon=o(1)$ then the number is at least $(1-o(1)) t$.)
[Not part of the problem but you could try: Can it be less than t?]

