642.582 Problem Set 4 (final installment)

1. Show that there is a fixed C such that if \mathcal{H} is a t-uniform, t-regular hypergraph on $V=[n]$, with n even and $t>1$, then there is an $f: V \rightarrow\{ \pm 1\}$ with

$$
\begin{equation*}
|f(H)| \leq C \sqrt{t \ln t} \quad \forall H \in \mathcal{H} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(V)=0 . \tag{2}
\end{equation*}
$$

[Easy once found ...]
2. A projective plane of order q is a hypergraph \mathcal{H} on vertex set V (elements of V and \mathcal{H} are usually called points and lines) satisfying:
(i) $|\mathcal{H}|=|V|=q^{2}+q+1$ (=: n, say);
(ii) $|l|=q+1=d_{\mathcal{H}}(x) \forall l \in \mathcal{H}$ and $x \in V$;
(iii) $\forall x, y \in V(x \neq y) \exists!l \in \mathcal{H}$ with $x, y \in l$; and
(iv) $\forall l, m \in \mathcal{H}(l \neq m) \exists!x \in l \cap m$.
(The conditions (i)-(iv) are somewhat redundant. As mentioned in class, you can find more on projective planes in vLW.)

Show that if \mathcal{H} is a projective plane of order q, then $\operatorname{disc}(\mathcal{H}) \geq \sqrt{q}$.
[Pseudo-hint: can be done in essentially one line.]
3. As in class, let

$$
f(t)=\max \left\{\operatorname{disc}(\mathcal{H}): \Delta_{\mathcal{H}}=t\right\}
$$

(where Δ is maximum degree). Show $f(t) \leq 2 t-3$ for $t \geq 3$.
[It's okay to refer to, rather than repeat, items from class.]
4. Say $\mathcal{A}, \mathcal{B} \subseteq 2^{[n]}$ are cross-intersecting if

$$
A \cap B \neq \emptyset \quad \forall A \in \mathcal{A}, B \in \mathcal{B} .
$$

Use Kruskal-Katona to show that if $k+l \leq n(k, l \geq 1)$ and $\mathcal{A} \subseteq\binom{n}{k}, \mathcal{B} \subseteq\binom{n}{l}$ are cross-intersecting, then either $|\mathcal{A}| \leq\binom{ n-1}{k-1}$ or $|\mathcal{B}|<\binom{n-1}{l-1}$.
[Another way (but not here please): shifting as in the proof of EKR.]
5. Show that for $A \subseteq Q_{n}$ of size a (and $\log =\log _{2}$),

$$
|\nabla(A)| \geq a(n-\log a)
$$

[Your proof should not give (or depend on) the precise result stated in class.]
6. Prove or disprove: For all $k, r \in \mathbb{P}$ there is an n such that for any $f:[n] \times[n] \times[n] \rightarrow[r]$ there are $A, B, C \subseteq[n]$ with $|A|=|B|=|C|=k$ and f constant on $A \times B \times C$.
[Note all problem parts have the same weight.]
7.(a) For all $\delta>0$ and $l \in \mathbb{P}$ there is an $L_{0}=L_{0}(\delta, l)$ for which the following is true. If $L>L_{0}, X$ is a finite set and $Y_{1}, \ldots, Y_{L} \subseteq X$ satisfy

$$
\left|Y_{i}\right| \geq \delta|X| \quad \forall i \in[L]
$$

then there are $a, d \in \mathbb{P}$ such that $(a+(l-1) d \leq L$ and $)$

$$
Y_{a} \cap Y_{a+d} \cap \cdots \cap Y_{a+(l-1) d} \neq \emptyset
$$

(b) Show that the statement in (a) implies Szemerédi's Theorem (in the form: for all $\delta>0$ and $k \in \mathbb{P}$ there is an N_{0} such that for any $N>N_{0}$, any $A \subseteq[N]$ of size at least δN contains a k-term A.P.).

