642.582 Problem Set 3 (final)

1. Fix $0 \leq t \leq r \leq n$. [Also, let $M(i, j)$ be the incidence matrix used in class, and assume R, T and U range over subsets of [n] of sizes r, t and $t-1$ respectively.] Finish Lovász's proof of EKR by showing that if $M(t-1, t) x=$ $\underline{0}$, then for any R,

$$
\sum_{T \cap R=\emptyset} x_{T}=(-1)^{t} \sum_{T \subseteq R} x_{T} .
$$

[Definitions for the next two problems:
For a graph $G=(V, E)$ and $S=(S(v): v \in V)$ with each $S(v) \subseteq \Gamma$ ($=\{$ "colors" $\}$), a coloring $\sigma: V \rightarrow \Gamma$ is S-legal if it's proper in the usual sense and $\sigma(v) \in S(v) \forall v \in V$.

The list-chromatic number (or choosability), $\chi_{l}(G)$, of G is the least s such that every S as above with $|S(v)|=s \forall v$ admits an S-legal coloring. Note $\chi_{l} \geq \chi$ is trivial and the inequality can be strict (e.g. $\chi_{l}\left(K_{33}\right)=3$).]
2. Show that $\chi_{l}(G) \leq\left\lfloor\log _{2} n\right\rfloor+1$ (=: t, say) for any n-vertex bigraph G (say with bipartition $X \cup Y$).
[A-S, 2.7.9]
3. Show that if $\chi(G)=\chi$, then for any S (as above) with $|S(v)|=t \forall v$, there's an S-legal coloring of at least

$$
\left[1-(1-1 / \chi)^{t}\right] n
$$

vertices (where $n=|V(G)|$).
[Easy once found. In the background there's this lovely problem:
Conjecture. If $\chi_{l}(G)=s \geq t$, then for any S with $|S(v)|=t \forall v$, there is an S-legal coloring of at least $(t / s) n$ vertices.

Note that the t / s can't be improved in general and-exercise (not to be handed in) -the conjecture is true when $t \mid s$. As far as I know it's open in all other cases, e.g. $(s, t)=(3,2)$.]
4. For a graph G, let G_{p} be the random subgraph gotten by keeping edges independently, each with probability p (e.g. when $G=K_{n}, G_{p}=G_{n, p}$).

Show that there is a fixed $c>0(c=1 / 2$ will do $)$ for which: if $G=(V, E)$, $|V|=n$ and $\chi(G)=\chi$, then for $H=G_{1 / 2}\left(\right.$ and $\left.\log =\log _{2}\right)$,

$$
\mathbb{P}(\chi(H)<c \chi / \log n)=o(1) .
$$

[Again easy once found, I'm not sure how easy to find. Try to show that $\chi(H)<c \chi / \log n$ implies some other unlikely event. You're allowed to use:

Proposition. For any graph H with chromatic number χ, there is some $W \subseteq$ $V(H)$ with $\delta(H[W]) \geq \chi-1$ (where δ is minimum degree).
(The proof is a nice exercise if unfamiliar, but not part of the problem.)]
5. Show: For each $\varepsilon>0$ there is an m such that if X is a finite set, $\mathcal{F} \subseteq 2^{X}$ is nontrivial (i.e. $\mathcal{F} \neq \emptyset, 2^{X}$) and increasing, and $p=p_{c}(\mathcal{F})$, then:
if $q>m p$ then $\mu_{q}(\mathcal{F})>1-\varepsilon$, and if $q<p / m$ then $\mu_{q}(\mathcal{F})<\varepsilon$.
[Recall $p_{c}(\mathcal{F})$ is defined by $\mu_{p_{c}(\mathcal{F})}(\mathcal{F})=1 / 2$. This is a sequence-free version of the fact that for any sequence of finite sets $\left\{X_{n}\right\}$ and nontrivial, increasing $\mathcal{F}_{n} \subseteq 2^{X_{n}}, p_{c}\left(\mathcal{F}_{n}\right)$ is a threshold in the Erdős-Rényi sense.]
6. An important though easy fact: for any graph G on vertex set V, there's a partition $X \cup Y$ of V such that

$$
\left|\nabla_{G}(X, Y)\right| \geq|G| / 2
$$

(where $\nabla_{G}(X, Y)=\{e \in G: e \cap X \neq \emptyset \neq e \cap Y\}$; note we regard G as a set of edges).

Proof. If $X \cup Y$ is a uniform partition of V, then $\mathbb{E}\left|\nabla_{G}(X, Y)\right|=|G| / 2$.
[Here's the proof in too much detail, to set possibly useful notation: Let $X \cup Y$ be a uniform partition of V, and for $e \in G$ let $Z_{e}=\mathbf{1}_{\left\{e \in \nabla_{G}(Z, Y)\right\}}$. Then $Z:=\sum_{e \in G} Z_{e}=\left|\nabla_{G}(X, Y)\right|, \mathbb{E} Z_{e}=1 / 2$ and $\mathbb{E} Z=|G| / 2$.]

And finally the problem: show that if G, H are two graphs on V and $\min \{|G|,|H|\}$ is sufficiently large, then there is a partition $V=X \cup Y$ with

$$
\left|\nabla_{G}(X, Y)\right| \geq .49|G| \text { and }\left|\nabla_{H}(X, Y)\right| \geq .49|H| .
$$

7. Let T be the r-branching tree of depth n; thus T has a root, say ρ, at level 0 , and for $i \in[n]$, each vertex at level $i-1$ has r children at level i. (We'd usually think of a fixed $r \geq 2$ and large n, but the problem is general.)

Let T_{p} be the random subtree of T in which each edge of T is present with probability p independent of other choices. (This is percolation on T.) Let Q be the event that T_{p} contains a path from ρ to some leaf of T. Show that for each $\varepsilon>0$ there is a $\delta=\delta_{\varepsilon}>0($ not depending on $r, n)$ such that if $p=(1+\varepsilon) / r$ then

$$
\mathbb{P}(Q)>\delta
$$

[Please use the following variant of Chebyshev's Inequality (a special case of the Paley-Zygmund Inequality).
Proposition. For any nonnegative r.v. $X, \mathbb{P}(X>0) \geq \mu^{2} / \mathbb{E} X^{2}$
(where $\mu=\mu_{X}$). More generally: for any $X, \mathbb{P}(X=0) \leq \sigma_{X}^{2} / \mathbb{E} X^{2}$. The proof is a good small exercise using Cauchy-Schwarz (not to be handed in).
Suggested notation: v, w, x, y for vertices of $T ; L$ for the set of leaves of T; P_{v} for the (unique) (ρ, v)-path in T; $|v|$ for the depth of v in $T ; v \wedge w$ for the last vertex in $P_{v} \cap P_{w}$ (the most recent common ancestor of v and w); and $v \leq w$ for " v is an ancestor of w " (so " \wedge " and " \leq " apparently think of T growing upward).
Solution: don't waste time justifying steps that are clearly okay.]

