642.582 Problem Set 2 (final)

1. Show that there is a fixed $C>1$ such that $|\operatorname{End}(P)|>C^{n}$ for each $n>1$ and poset P of size n (i.e. with ground set of size n).
[For simplicity let's restrict to P 's in which each element is comparable to at least one other. (Of course "isolated" elements just make it easier, right?) Like all problems here, this doesn't require a long solution.]
2. [Recall from class (and probably elsewhere): For a graph G, the matching number, $\nu(G)$, is the maximum size of a matching (set of disjoint edges); the (vertex) cover number, $\tau(G)$, is the minimum size of a vertex cover (set of vertices meeting all edges); and $\nu(G) \leq \tau(G)$ is trivial.]

Derive Dilworth's Theorem from
König's Theorem. If G is bipartite then $\tau(G)=\nu(G)$.
3. Determine the possibilities for equality in Sperner's Theorem.
4. Suppose G is a graph on $[n]$ with the property that each $e \in\binom{[n]}{2} \backslash E(G)$ belongs to a copy of K_{s} in $G+e$ ($=G$ with e added, of course). Show that

$$
|E(G)| \geq\binom{ n}{2}-\binom{n-s+2}{2} .
$$

[Not to be handed in: why is this sharp?]
5. Given a positive integer k, let $\mathcal{A}=\binom{[2 k-1]}{k}$ and $\mathcal{B}=\binom{[2 k-1]}{k-1}$, and let Γ_{k} be the bigraph on $\mathcal{A} \cup \mathcal{B}$ with $A \sim B$ if $A \supseteq B$ (where $A \in \mathcal{A}$ and $B \in \mathcal{B}$). With $v(k)=\left|V\left(\Gamma_{k}\right)\right|$, let $a(k)$ be the maximum size of a set of vertices of $\Gamma(k)$ containing no hexagon and $\alpha(k)=a(k) / v(k)$. Show $\alpha(k+1) \leq \alpha(k)$.
[This is pretty easy (eventually), but saying it nicely might take some thought. You can skip obvious justifications-I'm more interested in the idea.]
6. For $\mathcal{F} \subseteq 2^{V}$ and $X \subseteq V$, the trace of \mathcal{F} on X is

$$
\operatorname{Tr}(\mathcal{F}, X)=\{A \cap X: A \in \mathcal{F}\}
$$

and \mathcal{F} shatters X if $\operatorname{Tr}(\mathcal{F}, X)=2^{X}$. Let $\mathcal{S}(\mathcal{F})$ be the family of sets shattered by \mathcal{F}. Prove that (for any \mathcal{F})

$$
\begin{equation*}
|\mathcal{S}(\mathcal{F})| \geq|\mathcal{F}| . \tag{1}
\end{equation*}
$$

[Note $\mathcal{S}(\mathcal{F})=\mathcal{F}$ if \mathcal{F} is an ideal (that is, if $A \subseteq B \in \mathcal{F} \Rightarrow A \in \mathcal{F}$).
Your proof here should not use linear algebra (cf. Problem 8).]
7. Suppose $\mathcal{H} \subseteq 2^{V}$ is d-regular with $d \geq 2$, and

$$
|A \cap B|=\lambda \text { for all distinct } A, B \in \mathcal{H}
$$

Show that \mathcal{H} is uniform.
8. Give another proof of (1), as follows. Let M be the $\mathcal{F} \times \mathcal{S}(\mathcal{F})$ inclusion matrix; that is,

$$
M(F, S)= \begin{cases}1 & \text { if } F \supseteq S \\ 0 & \text { otherwise }\end{cases}
$$

Show that the rows of M are linearly independent over the reals; that is, there is no $\underline{0} \neq \mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying

$$
\sum_{A \supseteq I} \mu_{A}=0 \quad \forall I \in \mathcal{S} .
$$

