642.582 Problem Set 1 (final installment)

[Please see the homework guidelines on the course page. If something seems wrong, *please ask* before wasting a lot of time on it.]

- 1. Find (with justification) the number of sequences Π_1, \ldots, Π_n satisfying
- (i) for each i, Π_i is an unordered partition of [n] into i nonempty blocks (so $\Pi_1 = \{[n]\}$ and Π_n is the partition into singletons), and
- (ii) for i = 2, ..., n, Π_i is gotten from Π_{i-1} by splitting some block (necessarily of size at least 2) into two nonempty blocks.
- 2. For $x, n \in \mathbb{N}$, give a *simple* (one sentence?) explanation for the identity

$$\sum_{k=0}^{n} {x+k \choose k} = {x+n+1 \choose n}.$$

3. Let $X = \{x_1, \ldots, x_n\}$ with the x_i 's totally ordered by some unknown " \prec ." For $A \subseteq X$, let $\max(A)$ be the largest (under \prec) of the x_i 's in A.

Show that for any given $A_1, \ldots, A_m \subseteq X$, the number of possibilities for

$$\underline{v} := (\max(A_1), \dots, \max(A_m))$$

is less than 2^{m+n} .

[If you find the solution you'll probably get a somewhat better bound. For perspective, note n! is a trivial upper bound, but is much larger than 2^{m+n} if m isn't too big relative to n. This one could be challenging, though the proof is pretty simple. In writing, remember you needn't justify the obvious, and aim for a clear, compact explanation of why it's true.]

4. Suppose $A_1, \ldots, A_m, B_1, \ldots, B_m \subseteq X$ satisfy

$$|A_I| = |B_I| \ \forall I \subset [m] \quad \text{and} \quad |A_{[m]}| \neq |B_{[m]}|$$

(where $A_I = \bigcap_{i \in I} A_i$ and similarly for B_I). Use I-E to show that $|X| \ge 2^{m-1}$. [Exercise (not to be handed in): the bound is best possible (for every m).]

5. Let $V = V_1 \cup \cdots \cup V_k$ be a partition with $|V_i| = n \ \forall i$ and say $T \in \binom{V}{k}$ is a transversal if it meets every V_i . Show that if $h:\binom{V}{k} \to \mathbb{R}$ satisfies h(T) = 1 for each transversal T, then there is some $S \subseteq V$ with

$$|\overline{h}(S)| \ge c_k n^k,$$

where $c_k > 0$ depends only on k and $\overline{h}(S) = \sum \{h(T) : T \subseteq S, |T| = k\}$. [For $X \subseteq {V \choose k}$ please use $h(X) = \sum_{E \in X} h(E)$.]

6. Let $A_i = A_i^{(n)}$ be independent events with $X_i = \mathbf{1}_{A_i}$ and $\mathbb{P}(A_i) = p_i$, and set $X = \sum X_i$. Show that if $X \stackrel{d}{\to} \operatorname{Po}(\mu)$ for a fixed positive μ , then (i) $\sum p_i \to \mu$ and (ii) $\max p_i \to 0$. (As usual, X and p_i are really $X^{(n)}$ and $p_i^{(n)}$.) [This isn't necessarily easy to find, but should *not* require a long argument. Try starting by writing expressions for $\mathbb{P}(X = 0)$ and $\mathbb{P}(X = 1)$.

For perspective (repeat of a remark from class and not needed here): for general \mathbb{N} -valued r.v.'s $X = X^{(n)}$, $X \stackrel{\mathrm{d}}{\to} \mathrm{Po}(\mu)$ does not imply $\mathbb{E}X \to \mu$.]