642.582 Problem Set 1 (final installment)
[Please see the homework guidelines on the course page.
If something seems wrong, please ask before wasting a lot of time on it.]

1. Find (with justification) the number of sequences Π_{1}, \ldots, Π_{n} satisfying
(i) for each i, Π_{i} is an unordered partition of $[n]$ into i nonempty blocks (so $\Pi_{1}=\{[n]\}$ and Π_{n} is the partition into singletons), and
(ii) for $i=2, \ldots, n, \Pi_{i}$ is gotten from Π_{i-1} by splitting some block (necessarily of size at least 2) into two nonempty blocks.
2. For $x, n \in \mathbb{N}$, give a simple (one sentence?) explanation for the identity

$$
\sum_{k=0}^{n}\binom{x+k}{k}=\binom{x+n+1}{n}
$$

3. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ with the x_{i} 's totally ordered by some unknown " \prec." For $A \subseteq X$, let $\max (A)$ be the largest (under \prec) of the x_{i} 's in A.

Show that for any given $A_{1}, \ldots, A_{m} \subseteq X$, the number of possibilities for

$$
\underline{v}:=\left(\max \left(A_{1}\right), \ldots, \max \left(A_{m}\right)\right)
$$

is less than 2^{m+n}.
[If you find the solution you'll probably get a somewhat better bound. For perspective, note n ! is a trivial upper bound, but is much larger than 2^{m+n} if m isn't too big relative to n. This one could be challenging, though the proof is pretty simple. In writing, remember you needn't justify the obvious, and aim for a clear, compact explanation of why it's true.]
4. Suppose $A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m} \subseteq X$ satisfy

$$
\left|A_{I}\right|=\left|B_{I}\right| \forall I \subset[m] \quad \text { and } \quad\left|A_{[m]}\right| \neq\left|B_{[m]}\right|
$$

(where $A_{I}=\cap_{i \in I} A_{i}$ and similarly for B_{I}). Use I-E to show that $|X| \geq 2^{m-1}$. [Exercise (not to be handed in): the bound is best possible (for every m).]
5. Let $V=V_{1} \cup \cdots \cup V_{k}$ be a partition with $\left|V_{i}\right|=n \forall i$ and say $T \in\binom{V}{k}$ is a transversal if it meets every V_{i}. Show that if $h:\binom{V}{k} \rightarrow \mathbb{R}$ satisfies $h(T)=1$ for each transversal T, then there is some $S \subseteq V$ with

$$
|\bar{h}(S)| \geq c_{k} n^{k}
$$

where $c_{k}>0$ depends only on k and $\bar{h}(S)=\sum\{h(T): T \subseteq S,|T|=k\}$.
[For $X \subseteq\binom{V}{k}$ please use $h(X)=\sum_{E \in X} h(E)$.]
6. Let $A_{i}=A_{i}^{(n)}$ be independent events with $X_{i}=\mathbf{1}_{A_{i}}$ and $\mathbb{P}\left(A_{i}\right)=p_{i}$, and set $X=\sum X_{i}$. Show that if $X \xrightarrow{\text { d }} \operatorname{Po}(\mu)$ for a fixed positive μ, then (i) $\sum p_{i} \rightarrow \mu$ and (ii) $\max p_{i} \rightarrow 0$. (As usual, X and p_{i} are really $X^{(n)}$ and $p_{i}^{(n)}$.) [This isn't necessarily easy to find, but should not require a long argument. Try starting by writing expressions for $\mathbb{P}(X=0)$ and $\mathbb{P}(X=1)$.
For perspective (repeat of a remark from class and not needed here): for general \mathbb{N}-valued r.v.'s $X=X^{(n)}, X \xrightarrow{\text { d }} \operatorname{Po}(\mu)$ does not imply $\mathbb{E} X \rightarrow \mu$.]

