
587 Background

[Most of this should be familiar ... ]

(AS= Alon-Spencer, JLR= Janson-Łuczak-Ruciński, RG= Bollobás’ Random Graphs, MR= Molloy-Reed.)

Notation

N = {0, 1, . . .}, P = {1, 2, . . .}, [n] = {1, . . . , n}

(n)k = n(n− 1) · · · (n− k + 1) (= k!
(
n
k

)
)

2X = {subsets of X}(
X
k

)
= {k-subsets of X}

For f , g functions (of whatever, and with limits as that whatever tends to ... something):

f = O(g) means |f | ≤ C|g|with C constant;

f = Ω(g) means |f | ≥ C|g|with C a positive constant;

f = Θ(g) (also written f � g) means f = O(g) and f = Ω(g);

f = o(g) (or f � g) means f/g → 0, f = ω(g) (or f � g) means |f/g| → ∞;

f ∼ g means f/g → 1;

and f ≈ g means nothing precise.

Warning: we’ll often (as above) use “hidden parameters,” i.e. underlying parameters that we suppress in
our notation. This may be slightly confusing initially, but will eventually make our lives considerably easier.

Probability

I won’t try to do this for real here, but a few items of particular interest for us are mentioned below.
See Ross’s Introduction to Probability Models for a nice review of basics (if you need them). Beyond these,
Ross and Feller are good, clear introductions to probability. (Durrett is also nice, but significantly harder.)
Actually, the first chapters of RG and JLR give enough background for most of what we’ll do, and there’s
also a little in MR.

Hypergraphs

For us a hypergraph is a collectionH (possibly with repeats) of subsets (called edges) of some finite (vertex)
set V . (Note this notation differs slightly from that in AS, p.9.) One says H is r-uniform if each of its edges
has size r; d-regular if each of its vertices has degree d (i.e. belongs to exactly d edges); and simple (or nearly-
disjoint) if |A ∩B| ≤ 1 whenever A,B are distinct edges (a.k.a. any two vertices share at most one edge).

Random variables

Most of our r.v.’s X are discrete (that is, they take values in some finite or countable set), so are specified
by the probabilities P(X = x). The mean of a R-valued r.v.X is µX or EX , and the variance is σ2

X or Var(X).
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Distributions we’ll tend to see:

X ∼ Ber(p) means X is Bernoulli with parameter p; that is, X ∈ {0, 1} with P(X = 1) = p. If A is an event
then its indicator is the Bernoulli r.v. 1A given by

1A =

{
1 if A occurs
0 otherwise.

X ∼ Bin(n, p) means X is binomial with parameters n, p; i.e. X =
∑n
i=1Xi, with the Xi’s independent

Ber(p) r.v.s. So X is the number of successes in n independent trials, each with probability of success p, and

P(X = k) =
(
n
k

)
pk(1− p)n−k 0 ≤ k ≤ n.

X ∼ Geom(p) means X is geometric with parameter p; that is, P(X = i) = (1− p)i−1p. So we may regard X
as the number of trials until success if the trials are independent and each succeeds with probability p.

X ∼ Po(µ) means X is Poisson with mean µ; that is,

P(X = k) = e−µµk/k! for k ∈ N.

[Little exercises: (a) find the means and variances of X ∼ Bin(n, p) and Y ∼ Geom(p), and the variance of
Z ∼ Po(µ); (b) what can you say aboutX+Y ifX and Y are independent withX ∼ Po(µ) and Y ∼ Po(λ)?]

X ∼ N(0, 1) means X is standard normal, i.e. has density function

φ(t) = 1√
2π
e−t

2/2

and (therefore) distribution function

P(X < x) = Φ(x) := 1√
2π

∫ x
−∞ e−t

2/2dt.

Then µX = 0, σ2
X = 1, and one can show that as x→∞,

(P(X ≥ x) =) 1− Φ(x) ∼ x−1φ(x) (= 1
x
√
2π
e−x

2/2).

More generally, X ∼ N(µ, σ) has density function 1√
2π
e−(t−µ)

2/(2σ2), mean µ, and variance σ2.

And we might also see: X ∼ Exp(λ) means X is exponential with parameter λ (0 ≤ λ <∞); that is,

P(X > x) = e−λx x ≥ 0.

Estimates

Stirling’s formula:
n! ∼

√
2πn (n/e)n.

Even better estimates exist, but we won’t need them, and usually won’t even care about the
√

2πn.

Approximation by powers of e

For any x ∈ R, 1 + x < ex. This doesn’t give away much if x is small, and in such cases replacing 1 + x

by the easier-to-work-with ex should be pretty much a reflex. Sometimes we also need a reverse inequality
(e.g. to test the accuracy of (1 + x)n ≈ exn); for this you can use something like 1 + x > ex−x

2

, valid at least
for |x| slightly small (exercise to see more precisely where it’s okay).
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Binomial coefficients

We use these frequently, so you should get comfortable with them; if you’re not already, it might help to
go through the easy verifications of the following statements.

For any n, k, (
n
k

)k ≤ (nk) ≤ nk

k! ≤
(
en
k

)k
.

If k � n2/3, then (
n
k

)
∼ nk

k! e
−k2/(2n);

in particular, if k �
√
n then (

n
k

)
∼ nk

k! .

If k = αn with α > 0 fixed, then
(
n
k

)
≈ 2H(α)n, where H(α) = −α log2 α − (1 − α) log2(1 − α) (the binary

entropy of α). More precisely (and usually more precisely than we need),

(1)
(
n
k

)
∼ [2πα(1− α)n]−1/2 2H(α)n.

If k is only assumed to be close to αn, then we get approximations of this estimate; for instance, k ∼ αn gives
log
(
n
k

)
∼ H(α)n, but not (1). (Note “log f ∼ log g” is weaker than “f ∼ g.”)

Large deviations

For independent r.v.’s these are treated in great detail in Appendix A of AS. Chapter 2 of JLR is also good
(less detailed but more general). We mention just a prototypical example: for X ∼ Bin(n, 1/2) and k > 0,

P(X ≥ n/2 + k) (= 2−n
∑
{
(
n
i

)
: i > n/2 + k}) < e−2k

2/n.

(Tiny exercise: this is equivalent to AS, Theorem A.1.)

Inclusion-exclusion

For events A1, . . . , An, AI := ∩i∈IAi and Sk :=
∑
{P(AI) : I ∈

(
[n]
k

)
},

P(∩i∈[n]Āi) =
∑
{(−1)|I|P(AI) : I ⊆ [n]} =

∑n
k=0(−1)kSk

and, more generally (K. Jordán’s formula),

P(exactly r of the Ai occur) =
∑n
k=r(−1)k+r

(
k
r

)
Sk.

Moreover the partial sums here alternately over- and underestimate the left hand side; succinctly:

(−1)l−r
∑l
k=r(−1)k+r

(
k
r

)
Sk ≥ 0

for each l ≥ r. For r = 0, these are the Bonferroni Inequalities; I don’t know if the general version has a name.

Convergence

A sequence {Xn} of r.v.’s converges in distribution to X , if P(Xn ≤ x)→ P(X ≤ x) =: F (x) for each point

of continuity x of F . This is written Xn
d−→ X . We also write, e.g., Xn

d−→ N(0, 1) when Xn
d−→ X with

X ∼ N(0, 1). Don’t worry too much about the definition: we will almost always (or always) have either

(i) X is normal (so every x is a point of continuity); or

(ii) X and the Xn’s are discrete, in which case Xn
d−→ X just means that P(Xn = x) → P(X = x) for each

fixed x.

[E.g. (exercise): if Xn ∼ Bin(n, c/n) with c fixed, then Xn
d−→ Po(c).]
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Similarly (not an exercise): if X ∼ Bin(n, p) with np(1 − p) → ∞, then (X − np)/
√
np(1− p) d−→ N(0, 1).

(Note the hidden parameter: p is p(n).) This is a special case of both the DeMoivre-Laplace Theorem (see
e.g. RG, p.13 for a very complete statement, the last couple lines of which are what we want) and the Central
Limit Theorem.


