Asymptotic notation

Notation below is used for f, g functions of some parameter, e.g. n or x, which (as here) the notation often suppresses. The limiting statements are meant as the parameter approaches some limit (most often $n \rightarrow \infty$); the others are for the parameter in some specified range.
$f \sim g: \quad f / g \rightarrow 1$
$f=O(g):|f| /|g|$ is bounded above
$f=o(g): \quad f / g \rightarrow 0 \quad$ (also written $f \ll g$)
$f=\Omega(g): \quad g=O(f)$
(equiv: $|f| /|g|$ is bounded below by a positive constant)
$f=\omega(g): \quad|f| /|g| \rightarrow \infty$ (equiv: $g=o(f)$)
$f=\Theta(g): \quad f=O(g)$ and $g=O(f) \quad$ (also written $f \asymp g$)
(equiv: $|f| /|g|$ lies between two positive constants)
$f \lesssim g: \quad \lim \sup f / g \leq 1$ (not sure we'll see this one)
We can then, for example, write simply $O(g)$ to mean any (perhaps unspecified) function whose absolute value is known to be bounded above by $C g$ for some fixed C. Big and little "Oh" are often used for error terms, for example

$$
e^{x}=1+x+O\left(x^{2}\right) \quad \text { as } \quad x \rightarrow 0,
$$

in which case the functions $O(\cdot), o(\cdot)$ will often be negative. In most (or all?) of our other uses f and g will be positive.

