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ABSTRACT

The list-chromatic index, χ′
l
(G) of a multigraph G is the least t such that if

S(A) is a set of size t for each A ∈ E := E(G), then there exists a proper coloring
σ of G with σ(A) ∈ S(A) for each A ∈ E.

The list-chromatic index is bounded below by the ordinary chromatic index,
χ′(G), which in turn is at least the fractional chromatic index, χ′∗(G). In [30] we
showed that the chromatic and fractional chromatic indices are asymptotically the
same; here we extend this to the list-chromatic index:

Theorem χ′
l
(G) ∼ χ′∗(G) as χ′

l
(G)→∞.

The proof uses sampling from “hard-core” distributions on the set of matchings
of a multigraph to go from fractional to list colorings.

1 Introduction

A (proper edge-) coloring of a multigraph G = (V,E) is a map σ : E → Γ, Γ a
set of “colors,” such that σ(A) 6= σ(B) whenever A,B are (distinct) non-disjoint
edges. The chromatic index, χ′(G), of G is the least size of a Γ admitting such a
coloring. (Most of our graph-theoretic terminology is fairly standard; see e.g. [43],
but note this and some other references use “graph” where we use “multigraph.”)

The list-chromatic index, χ′
l
(G), of G is the least t such that if S(A) is a

set (“list”) of size t for each A ∈ E, then there exists a coloring σ of G with
σ(A) ∈ S(A) for each A ∈ E. (This notion is due to Vizing [60] and independently
to Erdős, Rubin and Taylor [12], the latter motivated by a conjecture of J. Dinitz
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(see [10]). See also [2] for an (already somewhat out-of-date) survey of some of the
many recent developments on list coloring.)

Write D(G) for the maximum degree in G and set

Γ(G) = max{ |E(W )|
b|W |/2c

: W ⊆ V, 3 ≤ |W | ≡ 1 (mod 2)},

χ′∗(G) = max{D(G),Γ(G)}. (1)

The reason for the ugly notation is that χ′∗ is the “fractional” version of χ′; see
(5) below. Fractional vs. integer is in fact our preferred point of view, but we first
discuss our problem in more traditional graph-theoretic terms.

It is easy to see that one always has χ′
l
(G) ≥ χ′(G) ≥ χ′∗(G). In [30] we proved

asymptotic agreement of χ′ and χ′∗; here we extend this to χ′
l
:

Theorem 1.1 For multigraphs G,

χ′
l
(G) ∼ χ′∗(G) as χ′∗(G)→∞.

That is: given δ > 0 there exists D(δ) so that for any multigraph G with χ′∗(G) >
D(δ) we have χ′

l
(G) < (1+δ)χ′∗(G). (It doesn’t matter which of χ′∗, χ′

l
is required

to tend to infinity, since they differ by at most a factor of 2.)
We will be fairly brief regarding background for Theorem 1.1, and refer the

reader to [30] for an expanded version of the following discussion.
It was conjectured first by Goldberg [18], and later independently by Andersen

[5] and Seymour [53] that

χ′(G) > D(G) + 1⇒ χ′(G) = dΓ(G)e, (2)

so in particular
χ′(G) ≤ χ′∗(G) + 1.

Moreover, a well-known conjecture—the “list-chromatic” or “list coloring” conjecture—
seemingly first proposed by Vizing in 1975 (see e.g. [19]) states that

χ′
l
(G) = χ′(G) for every multigraph G. (3)

So it may be that we can replace χ′ by χ′
l

in (2).
On the other hand, the best bound on χ′ prior to [30], due to Nishizeki and

Kashiwagi [47] (see also [46]), was

χ′(G) ≤ max{(11D(G) + 8)/10, dΓ(G)e}.
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(The proof follows an idea of Goldberg [18] with roots in the classic papers of
Shannon [54] and Vizing [58], [59].) In particular,

χ′(G) < 11χ′∗(G)/10 +O(1).

For list-coloring, the best previous bound is

χ′
l
(G) ≤ 9D(G)/5,

due to Hind [22]. In fact it does not seem easy—the reader might try—to signif-
icantly improve the trivial upper bound χ′

l
(G) < 2D(G), even for simple graphs.

The first such improvement was made by Bollobás and Harris [8]. The specializa-
tion of Theorem 1.1 to simple graphs (that is, χ′

l
(G) ∼ D(G)) was proved in [27]

(see following Conjecture 1.2), and again, via a completely different approach and
with an improved error term, in [19]. (See these papers for further background.)

The list-chromatic conjecture (3) for bipartite G (and in particular the above-
mentioned Dinitz Conjecture, which is just the case G = Kn,n) was given a beau-
tiful and wholly elementary proof by Fred Galvin [16]. Note that for a bipartite
multigraph G we have χ′(G) = D(G) (see [36, 37] or e.g. [43]). Lack of such an
easy description of χ′ is one difficulty distinguishing the general from the bipartite
case in (3). An elegant proof of χ′

l
(Kn) ≤ n (so in particular of (3) for Kn, n odd)

was given by Häggkvist and Janssen in [19], following ideas of Alon and Tarsi [4]
and Janssen [23].

Fractional vs. integer and a more general conjecture
Theorem 1.1 is part of a considerably more general conjecture first suggested in

[26]. A basic theme here—perhaps first proposed in [29] (see [26]) and developed
particularly in [26], [32], [29]—is that there are large, natural classes of integer
programming problems for which fractional versions (i.e. linear relaxations) are
good predictors of asymptotic behavior of the original problems. The conjecture
proposed here would be a particularly striking illustration of this idea. (Again, see
[30], in addition to the preceding references, for a little more on this.)

We need a few definitions. Recall that a k-uniform hypergraph is a collection
(possibly with repeats) of k-subsets, called edges, of some finite set V of vertices.
Graph-theoretic notions—those of interest here are degree, regularity, matching,
chromatic and list-chromatic indices—extend straightforwardly to hypergraphs.
(See e.g. [15].)

We write M(H), or just M, for the set of matchings of H. Thus an (edge)
coloring is just an f :M→ {0, 1} with∑

A∈M∈M
f(M) = 1 ∀A ∈ H. (4)
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The fractional version of this is a fractional coloring, that is, an f : M → R+

satisfying (4); and we have the fractional chromatic index:

χ′∗(H) = min{
∑
M∈M

f(M) : f a fractional coloring of H}. (5)

The celebrated “Matching Polytope Theorem” of J. Edmonds ([9], or e.g. [52],
as well as Section 8) is equivalent to the statement that for a multigraph G,
χ′∗(G) is given by (1). Thus [30] and Theorem 1.1 give asymptotic agreement of
list-chromatic, chromatic and fractional chromatic indices for multigraphs. Our
hope is that, even absent an Edmonds-type determination of χ′∗, we have such
agreement for hypergraphs of any fixed (or just bounded; this makes no difference)
edge size:

Conjecture 1.2 For fixed k and k-uniform H,

χ′
l
(H) ∼ χ′(H) ∼ χ′∗(H) as χ′∗(H)→∞.

(One can define a fractional list-chromatic index, but it turns out to be the same
as χ′∗.)

As mentioned above, Conjecture 1.2 was first proposed in [26]. It was suggested
by [49] and [27] which proved respectively χ′(H) ∼ d and χ′

l
(H) ∼ d assuming (in

addition to fixed edge size)
d(x) ∼ d ∀x ∈ V (6)

and
d(x, y) < o(d) for all distinct x, y ∈ V ,

where d(x) is the degree of x, d(x, y) is the number of edges containing both x and
y and the convergence (of d(x)/d to 1) in (6) is uniform in x.

Proof preview and outline of paper
Our approach here belongs to what we may call the “incremental random”

method. (See for example [1], [51] [14], [48], [49], [25], [27], [32], [34], [24], [56],
[35], [29], [30], as well as [15], [26], [28] for general discussions.) This involves
generating some object—in our case a coloring—in random or “semirandom” in-
crements, sometimes (as here) followed by a final “greedy” stage. Each increment
is produced according to some random process, and one needs to show that the
probability of choosing a “good” increment is positive (though perhaps small,
whence “semirandom”).

Analysis of such procedures can be somewhat painful. Typically one needs to
exercise rather tight control over various parameters and over a large number of
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iterations, and it is usually far from obvious that one can avoid unmanageable
deterioration in the relevant estimates. The realization that this is (sometimes)
possible was a fundamental contribution of some of the early papers in the subject
(e.g. [1], [51], [14], [48], [49]; see also [26] for an overview of the method as of
about five years ago.)

At present, however, having reached some appreciation of the feasibility of
such analysis, we may expect a shift of emphasis. I think the basic message of the
method as it stands now is this: if you can discover a procedure for generating the
increments which in principle ought to work, then you should eventually be able
to show that it does work (emphasis on “eventually”). But it may be—as in the
present case—that the procedure which “ought to work” is not a very obvious one:
it is here, at least in the eye of this beholder, that the real beauty of the subject
is currently to be found.

In the next few pages we attempt a rough description of, and some rationale
for, the “not very obvious” procedure we will use to prove Theorem 1.1. See also
Section 8 for an alternate approach for which we are currently stuck at “ought to.”

Basic iteration
One way to state a list-coloring problem for G is: we are given, for each color

γ, some Eγ ⊆ E, and are required to find matchings Mγ ⊆ Eγ whose union is
E. (We usually arrange that the Mγ are disjoint, though of course this doesn’t
matter.) To prove Theorem 1.1 we must show this is possible whenever each edge
belongs to (1 + δ)χ′∗ of the Eγ , provided χ′∗ is large enough relative to δ.

As indicated above, we construct (rather, “construct”) the Mγ ’s in stages.
Initially we set G0 = G, G0

γ = Gγ . At the beginning of the ith stage we will have
chosen disjoint matchings F jγ ⊆ Eγ for γ ∈ Γ and j ∈ [i− 1], and will be left with
residual multigraphs

Gi−1
γ = Gγ −

⋃
γ′

i−1⋃
j=1

F jγ′ −
i−1⋃
j=1

V (F jγ ).

(Thus Gi−1
γ is obtained from Gγ by removing all edges colored (by any color)

through stage i− 1 together with vertices already covered by the portion of Mγ so
far determined.) The ith iteration is then as follows.

(a) For each γ choose (independently of other colors) a random (see below) match-
ing M i

γ ⊆ Ei−1
γ := E(Gi−1

γ ).

(b) If an edge A is in one or more M i
γ ’s, then assign it a color γ(A) chosen uniformly

at random from {γ : A ∈M i
γ}. Set F iγ = {A : γ(A) = γ}. (This is added to Mγ .)
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We then update by deleting ∪γ′F iγ′ and V (F iγ) from Gi−1
γ to form Giγ . (The final

“greedy” phase is omitted from the present discussion; see Section 3.)

Hard-core distributions
A crucial omission in the preceding description is the definition of a “random”

matching. As in [32], [30], the correct notion here is that of a “hard-core,” or
entropy-maximizing, distribution on the set M =M(G) of matchings of a multi-
graph G. This is the distribution defined from some λ : E(G) → R+ by taking
the probability of M to be proportional to

∏
{λ(A) : A ∈M}. (See Section 2.)

We will basically need two properties from our random matchings. The first
is (roughly) ∑

γ

pi−1
γ (A) ≈ 1 ∀A ∈ Ei−1 (7)

where pi−1
γ (A) = Pr(A ∈M i

γ) (defined to be zero if A 6∈ Ei−1
γ ) and Ei−1 = ∪γEi−1

γ

is the set of edges uncolored through stage i− 1.
The second—for use in the Lovász Local Lemma (Lemma 6.1)—is some degree

of (approximate) independence: behavior of the random matching at a particular
place in the graph shouldn’t depend very much on what happens far from that
place.

Initially (7) is easy, even in the exact form∑
γ

p0
γ(A) = 1 ∀A ∈ E. (8)

For, setting χ′∗ = D and assuming |{γ : A ∈ Eγ}| = (1 + δ)D for each A,
it’s immediate from the definition of χ′∗ that there are distributions (producing
random matchings M1

γ ) for which

Pr(A ∈M1
γ ) = [(1 + δ)D]−1 ∀A ∈ Eγ (9)

(see Section 3). Of course (9) gives (8).
Now a general distribution satisfying (9) need not have any useful properties

other than (9). But it turns out—see Theorem 2.1—that there is a (unique) hard-
core distribution with (9); and this distribution, which is also the unique entropy-
maximizing distribution with (9), does have substantial independence properties.
(See Lemma 2.2 and Section 4.1.) So we will use these distributions for our initial
choices M1

γ , and subsequent M i
γ ’s will be chosen according to the same distribu-

tions appropropriately conditioned on the outcomes of earlier iterations. (These
conditional distributions are again hard-core. It is also possible, again using The-
orem 2.1, to define new hard-core distributions at each stage, but the present
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approach seems a little more convenient.) For i > 0 we cannot hope to control in-
dividual piγ(A)’s but—this is in fact our main task—must still manage to maintain
some version of (7).

Remark. We are thus, as in [32], [30], making a rather direct randomized tran-
sition between the fractional and integer versions of our problem, exploiting the
fundamental observation Theorem 2.1 (from [50], [39], [40]). Note Theorem 2.1
does not depend on Edmonds’ Theorem. However we do need Edmonds’ Theorem
for our basic independence result, Lemma 2.2; and though I think this use, too,
could be avoided, it is the failure of anything like Lemma 2.2 which appears to be
the main obstacle to a proof of Conjecture 1.2.

At any rate, I believe hard-core distributions have the potential to play a
major role in the further development of the probabilistic method: they exist in
great generality (Theorem 2.1 is really just an example), and—as suggested by
entropy-maximization—tend to have useful independence properties. (But this is
only a tendency. Establishing such properties raises issues akin to those involved
in the phase transitions of statistical physics, and should itself be of considerable
interest.) So they may, as in [32], [30] and the present work, prove useful in
situations where the types of distributions common in the probabilistic method,
typically involving many truly independent choices, are unsuitable.

“Ought to work”
In iterating the procedure described above, we will fix the weights λγ (which

give the initial hard-core distributions with (9)) once and for all, and at the ith
iteration work with the hard-core distribution pi−1

γ given by the restriction of λγ
to Ei−1

γ .
To see why our approach might work, let us pretend for a moment that we

intend to color simply by choosing matchings Mγ = M1
γ according to distributions

satisfying (8). Of course choosing the Mγ ’s independently gives substantial overlap
and leaves about a (1/e)-fraction of the edges uncolored (note the p0

γ are small).
On the other hand, if we could arrange that, in addition to satisfying (8), the

Mγ were disjoint, then (Mγ : γ ∈ Γ) would automatically be a coloring. What’s
perhaps surprising is that we can actually manage something close to this. Of
course our parallel (incremental) construction of the Mγ ’s guarantees disjointness;
the interesting (and central) point is that it doesn’t perturb the initial hard-core
distributions very much.

This is based on the simple but key observation that one can sample from a
hard-core distribution in stages. Note that, viewed from a particular γ ∈ Γ, our
procedure becomes:

(a) Choose M i
γ ∈M(Gi−1

γ ) according to λγ .
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(b) Form F iγ by deleting from M i
γ all A with γ(A) 6= γ. Form Giγ by deleting from

Gi−1
γ all vertices of edges of F iγ and all edges of ∪γ′M i

γ′ .

We then continue with M i+1
γ chosen from M(Giγ) according to λγ .

Now for an A ∈ Ei−1
γ \M i

γ it’s easy to see, using (7) and the fact that the
pi−1
γ (A)’s are small, that

Pr(A 6∈ Eiγ) = 1−
∏
γ′ 6=γ

(1− pi−1
γ′ (A)) ≈ 1− e−1 (10)

(see (73)). Similarly (see (74)), for A ∈M i
γ it turns out that

Pr(A ∈ F iγ) ≈ 1− e−1. (11)

The “sampling in stages” mentioned above (and detailed in Section 4.2) says (mod-
ulo a minor point involving edges of M i

γ \F iγ) that if we had (10), (11) exactly and
independently for all A ∈ Ei−1

γ , then F iγ ∪M i+1
γ would be distributed as M i

γ . So if
we performed (a) with such an idealized version of (b) for i = 1, . . . , s, then

F 1
γ ∪ · · · ∪ F sγ ∪M s+1

γ (12)

would be distributed as M1
γ .

But if the actual matchings (12) were so distributed, then we would be nearly
done, since for large s these matchings will (as γ varies) be mostly disjoint. (They
are disjoint if, e.g., we replace M s+1

γ by F s+1
γ .)

This, then, is the essence of the proof: by constructing in parallel, we in
effect “couple” the processes producing our random matchings so as to keep the
distributions of the individual Mγ ’s close to the original hard-core distributions
p0
γ , while forcing the matchings to be disjoint.

Implementation
For organizational purposes our basic result is Lemma 3.1, which describes

what happens in a single iteration. The easy derivation of Theorem 1.1 from this
is given in Section 3.

Technical supports for the proof of Lemma 3.1 are the approximate indepen-
dence results of Section 4.1, martingales (Section 5), and the Local Lemma. (The
combination of martingales and the Local Lemma is used in similar ways in some
of the papers cited above, though choices of martingales here are perhaps less ob-
vious than in most earlier applications. It may also be that some or all of our
martingales could be replaced by the powerful ideas of Talagrand [57], the present
paper having actually been written before [57] appeared.)
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As suggested above, the crucial point (Lemma 3.1(b)) is maintenance of an
appropriate version of (7). Martingales are first used to show that the left hand
side of (7)—a sum of many small r.v.’s—is concentrated near its mean. This
part of the argument, given in Section 6, requires some care, as the sum in (7) is
typically affected by developments in all colors (even those for which A 6∈ Eγ), and
some of these effects can be relatively substantial. In particular we depend here on
the results of Section 4.1 (to bound the potential effects of various perturbations)
and Lemma 5.3 (from [27]), an “adaptive” concentration inequality which is more
delicate than more standard results along the lines of “Azuma’s Inequality.”

The most interesting and unusual feature of the present situation is that it’s not
even clear that the expected value of the sum in (7) is close to 1. (In antecedents,
estimation of expectations is generally fairly straightforward.) This is (roughly)
the content of Lemma 6.2, which is proved in Section 7 by tying (“coupling”) the
actual process to the idealized version. Here again martingales and the results of
Section 4.1 provide technical support.

Additional terminology
For X,Y ∈ V ∪E, we use ∆(x, y) or, if necessary, ∆G(X,Y ) for distance from

X to Y in G, defined in the natural way. (Thus, e.g., if A,B ∈ E then

∆(A,B) = min{∆(x, y) : x, y ∈ V, x ∈ A, y ∈ B}.)

As above, we write M(G) for the set of matchings of G. For additional graph-
theoretic background see e.g. [43].

We write a =δ b for e−δ < a/b < eδ. (In some earlier papers we used (1 + δ)
instead of eδ, but the present definition seems preferable because it composes
nicely: a =ε b =δ c⇒ a =ε+δ c.)

For natural number n we write [n] for {1, . . . , n}. In general we treat large num-
bers as integers, trusting that the reader will agree this is preferable to cluttering
the paper with essentially irrelevant b c’s.

2 Hard-core distributions

In this section we just want to give enough background to enable us to describe
our basic iteration (Lemma 3.1). Further preliminaries on hard-core distributions
are then given in Section 4.

As in [30], a key ingredient of the present work is the notion of a hard-core dis-
tribution (h.c.d.) on the setM =M(G) for a multigraph G. This is a distribution
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p = pλ derived from some λ : E → R+ according to

w(M) =
∏
A∈M

λ(A),

p(M) = w(M)/
∑

M ′∈M
w(M ′).

We will also say p is the hard-core distribution given by λ on G and sometimes
simply refer to M as chosen according to λ on G. In addition, we will often consider
the h.c.d. given by the restriction of λ to some subgraph G′ of G, and will simply
refer to this distribution as given by λ on G′.

Remark. The name “hard-core” is that given to such distributions in statis-
tical physics (e.g. [6]), where the weights λA are sometimes called activities.
(“Monomer-dimer system” and “exclusion model” are also used; see e.g. [20, 21],
[38], [41].) Other recent, rather diverse contexts in which hard-core distributions
have proved important include [42], [50], [39, 40]. (They are called “normal pop-
ulations” in [50], and in [39, 40] are not thought of as probability distributions at
all, but as “canonical” convex representations of points in Rn.)

We will make frequent (tacit) use of the observation that if M is chosen accord-
ing to λ on G and, for some disjoint F,H ⊆ E, we condition on {F ⊆M ⊆ E \H},
then M \ F is chosen according to λ on G− V (F )−H.

We write x ≺ M for x ∈ ∪A∈MA (that is, x is covered by the matching M).
For p a probability distribution onM, M ∈M chosen according to p, xi ∈ V and
A ∈ E, we write p(x1, . . . , xt) for Pr(x1, . . . , xt 6≺M), and p(A) for Pr(A ∈M). We
also extend this notation to conditional probabilities—e.g. p(x|y)—in the obvious
ways.

The numbers p(A) are the marginals of p. The marginal vectors (p(A) : A ∈
E) ∈ RE are of central interest here. The set of such vectors is actually a familiar
object, the matching polytope of G,

MP (G) = conv{1M : M ∈M(G)}
= {(p(A) : A ∈ E) : p a probability distribution on M}.

(In its usual form Edmonds Theorem is a description of the matching polytope,
so of those f ∈ [0, 1]E which are marginal vectors of probability distributions on
M; see following Proposition 8.1)

Of course, the existence of a fractional coloring of total weight T is equivalent
to the existence of a p with all marginals 1/T , so that

χ′∗(G) = min{T : {1/T}E ∈MP (G)}. (13)
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Here we are interested in which f ’s are marginals of hard-core distributions.
This is answered by the following result of Rabinovich, Sinclair and Wigderson
[50] and Lee [39], [40].

Theorem 2.1 If f ∈ RE, f ≥ 0, then there is a hard-core distribution p with
marginals f if and only if f ∈ (1− δ)MP (G) for some δ > 0, and in this case p is
both the unique such hard-core distribution and the (unique) entropy-maximizing
distribution with marginals f .

If we fix δ then the p given by Theorem 2.1 exhibits considerable approximate
independence, a phenomenon which is at the heart of the present work (and of
[30]), and is the reason for our interest in hard-core distributions in this context.
The basic result is from [31]:

Lemma 2.2 For any δ > 0 there is a δ′ > 0 such that if p is a hard-core distri-
bution whose vector of marginals lies in (1− δ)MP (G), then

p(x, y) > δ′ ∀x, y ∈ V.

The relevant consequence of Lemma 2.2 (Lemma 4.4) and a sort of complementary
result (Corollary 4.7), again providing some measure of approximate independence,
are given in Section 4.

3 Basic iteration

The following lemma describes what happens in a single iteration of the procedure
sketched in Section 1. For its statement, suppose G = (V,E) is a multigraph
with, for each γ ∈ Γ, Gγ = (Vγ , Eγ) ⊆ G, λγ : Eγ → R+, and pγ the associated
hard-core distribution. We will also, when convenient, regard λγ as defined on all
of E, with λγ(A) = 0 if A ∈ E \ Eγ .

Lemma 3.1 For each K, ζ > 0 there are ξ = ξ(K, ζ) > 0 and D∗ = D∗(K, ζ)
such that: if D > D∗ and

λγ(A) ≤ K/D ∀γ ∈ Γ, A ∈ Eγ , (14)

dG(v) ≤ D ∀v ∈ V, (15)∑
γ

pγ(A) =ξ 1 ∀A ∈ E, (16)
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then there are matchings Fγ ⊆ Eγ so that with

G′γ = Gγ − V (Fγ)− ∪Fγ′ ,

p′γ the hard-core distribution given by λγ on G′γ and G′ = G− ∪Fγ, we have

dG′(v) ≤ 1 + ζ

1 + ξ
e−1D ∀v ∈ V, (17)

∑
γ

p′γ(A) =ζ 1 ∀A ∈ E(G′). (18)

(The expression (1 + ζ)/(1 + ξ) is convenient later; of course substituting 1 + ζ
gives an equivalent statement.)

Following some preliminaries, Lemma 3.1 is proved in Sections 6 and 7. In the
rest of this section we show why it implies Theorem 1.1.

For Theorem 1.1 we must show that for any fixed δ > 0,

χ′
l
(G) < (1 + δ)χ′∗(G) (19)

whenever T := χ′∗(G) is sufficiently large. That is, given S(A) ⊆ Γ with |S(A)| =
(1 + δ)T for each A ∈ E, and Eγ := {A ∈ E : γ ∈ S(A)}, we must show there are
matchings Mγ ⊆ Eγ with

∪Mγ = E. (20)

For each γ ∈ Γ let λγ : Eγ → R+ be the weight function whose associated
hard-core distribution pγ has marginals

pγ(A) = [(1 + δ)T ]−1 ∀A ∈ Eγ .

Since this marginal vector is in (1+δ)−1MP (Gγ) (see (13)), we get existence of λγ
from Theorem 2.1, while from Lemma 2.2 and the fact that pγ(A) = λγ(A)pγ(x, y),
where x, y are the ends of A, we have, for each A,

λγ(A) ≤ K/T (21)

for some K = K(δ). Of course we also have∑
γ

pγ(A) = 1 ∀A ∈ E.

Now let s be a positive integer with s < 2 logK (log is ln, 2 is fairly arbitrary)
and

es > 4eK. (22)
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Set ζ0 = 0, ζs = 1 (this value, too, is quite arbitrary), and for i = s, . . . , 2,

ζi−1 = ξ(K, ζi)

(ξ as in Lemma 3.1).
Let T ∗ = D∗(K, ζ1) and assume T (= χ′∗(G)) satisfies

T > esT ∗. (23)

Set T0 = T and for i = 1, . . . , s,

Ti =
1 + ζi

1 + ζi−1
e−1Ti−1 = (1 + ζi)e

−iT.

Let G0 = G, G0
γ = Gγ , E0 = E(G0), E0

γ = E(G0
γ).

For i = 1, . . . , s we may apply Lemma 3.1 (with ζ = ζi, K as in (21) and
D = Ti−1) to find matchings F iγ ⊆ Ei−1

γ so that, with

Giγ = Gi−1
γ − V (F iγ)− ∪γ′F iγ′ , Eiγ = E(Giγ),

Gi = Gi−1 − ∪γF iγ , Ei = E(Gi),

λiγ the restriction of λγ to Eiγ , piγ the corresponding hard-core distribution, and
di(v) the degree of v in Gi, we have

di(v) ≤ Ti ∀v ∈ V,∑
γ

piγ(A) =ζi 1 ∀A ∈ Ei. (24)

(Notice that by (21), λi−1
γ (A) ≤ λγ(A) ≤ K/T ≤ K/Ti−1, which gives hypothesis

(14) of Lemma 3.1; and by (23), Ti−1 ≥ Ts ≥ D∗(K, ζ1) ≥ D∗(K, ζi)—that is, we
may assume the last inequality—so that the lemma does indeed apply.)

Finally we need to find matchings F s+1
γ ⊆ Esγ with ∪γF s+1

γ = Es. This can be
done greedily:

For each A ∈ Es we have (by (24))
∑
γ p

s
γ(A) > e−1 and, using (21),

psγ(A) ≤ λγ(A) ≤ K/T

(the first inequality is trivial; see (26)), so that, by (22),

|{γ : A ∈ Esγ}| > e−1T/K > 4e−sT = 2Ts.

On the other hand degrees in Gs are at most Ts, so a greedy coloring suffices at
this point.

2
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4 More on hard-core distributions

Throughout this section we take G = (V,E) with λ : E → R+ and write p or pG
for the corresponding h.c.d. onM =M(G). Similarly for H ⊆ G, pH is the h.c.d.
given by λ on H. We write fp for the vector (p(A) : A ∈ E) of marginals of p.

Recall that if x, y are the ends of A then

p(A) = λ(A)p(x, y). (25)

This gives the trivial but useful bound (already used above)

p(A) ≤ λ(A). (26)

Let λxy =
∑
{λ(A) : x, y are the ends of A}. In view of (25) we have

p(x) +
∑
y∼x

λxyp(x, y) = 1,

which, when divided by p(x), gives the basic identity

p(x) = [1 +
∑
y∼x

λxyp(y|x)]−1 (27)

Corollary 4.1 If D(G) ≤ D and λ(B) ≤ λ for all B ∈ E, then for all x ∈ V ,
p(x) ≥ [1 + λD]−1

This gives something like a converse of (26):

Corollary 4.2 If D(G) ≤ D and λ(B) ≤ λ for all B ∈ E, then for any A ∈ E,
p(A) ≥ [1 + λD]−2λ(A).

Proof. Taking x, y to be the ends of A and applying Corollary 4.1 to both p(x)
and p(y|x), we have p(x, y) ≥ [1 + λD]−2 and the result follows from (25).

2

4.1 Approximate independence

Here we give what we need in the way of (approximate) independence properties
of h.c.d.’s.

A first easy consequence of Lemma 2.2, observed in [30], is

14



Corollary 4.3 For all δ > 0 there exists K(δ) such that if fp ∈ (1 − δ)MP (G),
then ∑

y

λxy ≤ K(δ) ∀x ∈ V.

This will allow us in what follows to assume that our various weight functions
λ satisfy ∑

y

λxy ≤ K ∀x ∈ V (28)

for some constant K. The desired independence is then given by the following
result from [30] (see Lemma 3.2; the present statement is a little stronger than
that given in [30] but is what’s actually proved there.)

Lemma 4.4 For all K and ξ > 0 there exists ∆ = ∆1(K, ξ) so that for any λ
satisfying (28) and M drawn from M according to λ, the following are true.

(a) For any v ∈ V and Q any specification of the restriction of M to {B ∈ E :
∆(v,B) ≥ ∆},

p(v|Q) =ξ p(v).

(b) Similarly, for any A ∈ E and Q any specification of the restriction of M to
{B ∈ E : ∆(A,B) ≥ ∆},

p(A|Q) =ξ p(A).

Lemma 4.4 says that probabilities p(v), p(A) are not much affected by what hap-
pens far from v or A; actually in what follows we will only work with p(A).

We will also need to know something about the effects of perturbations which
take place closer to A. For this it’s convenient to work with Godsil’s [17] notion
of the path-tree T (G, v) associated with a graph G and v ∈ V (G). (This is called
a tree of walks in [17]; “path-tree” is from [43].)

The vertices of T = T (G, v) are the paths of G which begin at v. Two vertices
of T are adjacent if one is a maximal proper subpath of the other. We write v for
the singleton path (v) and take it to be the root of T . In what follows we will
actually be interested in some A 3 v, say with other end w, and will also write A
for the edge {(v), (v,A,w)} of T .

We take π to be the natural projection from T toG; thus π((y0, A1, y1, . . . , yl)) =
yl and π({(y0, . . . , yl−1), (y0, , . . . , yl−1, Al, yl)}) = Al. If G is weighted by λ, then
we also regard T as weighted by λ, with λB = λπ(B).

Path-trees turn out to capture considerable information about matchings, and
to be in some respects easier to work with than the original graph. (Again see
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[17] or the exposition in [43]. See also [33] for a more sophisticated application
of path-trees than that given here.) For our purposes the relevant connection is
given by

Lemma 4.5 With notation as above, pG(v) = p
T (G,v)

(v), and for any A 3 v,
pG(A) = p

T (G,v)
(A).

As observed in see [33], the first statement is an immediate consequence of the
main result of [17]. (Actually [17], [33] only discuss unweighted graphs, but their
arguments extend without modification to the more general case.) The second
statement is then easily seen to follow via p(A) = λ(A)p(v, w) = λ(A)p(v)p(w|v).

2

For T a tree weighted by λ and Y,Z ∈ V (T ) ∪ E(T ), let

ψ(Y, Z) = ψT (Y, Z) =
∏
{λ(B) : B ∈ E(P (Y,Z))},

where P (Y,Z) is the shortest path having an end in each of Y , Z. (So e.g.
ψ(Y,Z) = 1 if Y , Z share a vertex.)

Our basic complement to Lemma 4.4, proved below, is

Lemma 4.6 For any weighted (by λ) tree T, A ∈ E(T ) and x ∈ V (T ),

|p(A)− p(A|x)| ≤ λ(A)ψ(A, x).

For T1, T2 subtrees of a tree T , and A some distinguished edge of T , set

V (T1)∆∗V (T2) = {x ∈ V (T1)∆V (T2) : P (A, x)− x ⊆ T1 ∩ T2}

if A ∈ T1 ∩ T2 and V (T1)∆∗V (T2) = ∅ otherwise. Repeated application of
Lemma 4.6 yields a basic tool in what follows:

Corollary 4.7 With notation as above,

|pT1(A)− pT2(A)| ≤ λ(A)
∑
{ψ(x) : x ∈ V (T1)∆∗V (T2)}.

For the proof of Lemma 4.6 we need some additional notation. For F ⊆ E, set

w(F ) =
∏
A∈F

λ(A)
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(thus extending the w defined earlier on M), and for F ⊆ 2E , set

w(F) =
∑
F∈F

w(F ).

Proof of Lemma 4.6. Suppose the ends of A are v, w, with w the end closer to x.
Let P be the set of paths having one end x and containing A, and Q the set of
paths with one end v and not containing A.

Set M(A) = {M ∈ M : A ∈ M} and define M(x), M(A, x) analogously.
Then

|p(A)− p(A|x)| = |w(M(A))

w(M)
− w(M(A, x))

w(M(x))
|

=
|w(M(A))w(M(x))− w(M(A, x))w(M)|

w(M)w(M(x))
. (29)

The numerator is

|
∑
{w(M1)w(M2) : A ∈M1, x 6≺M2} −

∑
{w(M1)w(M2) : A ∈M1, x 6≺M1}|

(30)
(where we always take Mi ∈M), which reduces to∑

P∈P
w(P )w2(M(G− V (P )))

= λ(A)ψ(A, x)
∑
Q∈Q

w(Q)w2(G− V (P (v, x) ∪Q)). (31)

For the reduction, note that each term w(M1)w(M2) appearing in (30) is of the
form ∏

B

λ(B)f(J,B) (32)

where the multisubset J of E is the union of two matchings and f(J,B) is the
multiplicity of B in J . Let c(J) be the number of nonsingleton components of
J not containing A or x and not consisting of two vertices joined by an edge B
with f(J,B) = 2. If A, x are not in the same component of J , then the monomial
(32) appears 2c(J) times in each of the two sums in (30). If A, x are in the same
component P ∈ P, then (32) appears 2c(J) times in one of the sums and not at
all in the other; namely, it appears in the first sum if P (w, x) is even and in the
second if P (w, x) is odd. This is easily seen to give the left hand side of (31). (The
equality in (31) is an immediate consequence of the obvious bijection Q → P.)

But for any Q ∈ Q, the summand w(Q)w2(G − V (P (v, x) ∪ Q)) in (31) is at
most w2(M(G − V (P (w, x))), which is less than the denominator in (29). The
lemma follows.
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2

4.2 Generation in stages

As indicated in Section 1, we will choose the Fγ ’s of Lemma 3.1 by first choosing,
for each γ, Mγ ∈ Mγ according to pγ , and then deleting some edges that are in
other Mγ′ ’s. A simple but key idea here is that we can sample from a hard-core
distribution in stages. This procedure, an idealized version of our actual situation
as well as the basis for its analysis, is as follows.

Suppose p = pλ is a hard-core distribution on M = M(G), and for each
A ∈ E = E(G), let qA ∈ [0, 1]. Choose M ∈M via:

(a) Choose N ∈M according to p.

(b) Let {XA : A ∈ E} be chosen independently (of each other and of N) from
{0, 1} according to Pr(XA = 1) = qA. Set

F = {A ∈ N : XA = 1}, H = {A ∈ E \N : XA = 1}.

(c) Choose M ∈M according to p conditioned on {F ⊆M ⊆ E \H}.

Remark. Notice that (c) is equivalent to

(c′) Choose K ∈M(G− V (F )−H) according to λ and set M = F ∪K.

Lemma 4.8 (With notation as above) M is chosen according to p.

Corollary 4.9 (With notation as above) for each A ∈ E,

Pr(A ∈M |A 6∈ F ∪H) = p(A).

Proof of Corollary. By Lemma 4.8, Pr(A ∈M) = p(A). But we also have

Pr(A ∈M) = Pr(A ∈ F ) + Pr(A 6∈ F ∪H) Pr(A ∈M |A 6∈ F ∪H)

= p(A)qA + (1− qA) Pr(A ∈M |A 6∈ F ∪H),

and the Corollary follows.

2
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Proof of Lemma 4.8. Set

Q = {(F,H) : F ∈M, H ⊆ E \ F},

the set of possibilities for the pair (F,H). For Q = (F,H) ∈ Q, M ∈ M, write
M ∼ Q if F ⊆M ⊆ E \H. Notice that

Pr(M |Q) =

{
p(M)[

∑
{p(M ′) : M ′ ∼ Q}]−1 if M ∼ Q

0 otherwise.

(Here and below, expressions Pr(·) refer to (a)-(c) in the obvious ways. As usual
we write p(M) for the probability of M under p.)

The main point is that Pr(Q|N) doesn’t depend on N (provided N ∼ Q): if
we set

f(Q) =
∏

A∈F∪H
qA

∏
A 6∈F∪H

(1− qA),

then

Pr(Q|N) =

{
f(Q) if N ∼ Q
0 otherwise.

Combining these two observations, we have

Pr(M) =
∑
Q∼M

Pr(Q) Pr(M |Q)

=
∑
Q∼M

∑
N∼Q

p(N)f(Q)
p(M)∑

M ′∼Q p(M
′)

= p(M)
∑
Q∼M

f(Q)

= p(M).

2

5 Concentration

In this section we briefly review the necessary martingale background. The dis-
cussion here is contained in that of [27] (to which we refer for proofs). See also,
e.g., [45], [44], [7] for further information.

Our notation mainly follows [45]. Briefly, we are given a probability space
based on a finite set Ω, and a sequence of equivalence relations {≡i}mi=0 on Ω,
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each refining the preceding one. We take Ai to be the set of atoms of the partition
corresponding to ≡i, and Fi the associated Boolean algebra. For a random variable
X : Ω→ R we set Xi = E[X|Fi] (that is, for each ω ∈ H ∈ Ai, Xi(ω) = E[X|H]).
Then {Xi} is a martingale with respect to {Fi} (i.e. E[Xi|Fi−1] = Xi−1). Finally,
set Zi = Xi − Xi−1 for i = 1, . . . ,m and Z =

∑
Zi. The sequence {Zi} is a

martingale difference sequence (with respect to {Fi}); that is,

E[Zi|Fi−1] = 0.

In this paper we will always take Ω =
∏m
i=1 Ωi for some finite probability spaces

Ωi, and
ω ≡i ω′ iff ωj = ω′j 1 ≤ j ≤ i. (33)

In particular, we will always have F0 = {∅,Ω} and X constant on each H ∈ Am
(actually, elements of Am are singletons), so that X0 = E[X], Xm = X and
Z = X − E[X]. We write ω ∼i ω′ (with ω, ω′ ∈ Ω) if ωj = ω′j ∀j 6= i.

Typical of the type of inequality we need, though not strong enough for most
of our applications, is the following “bounded differences inequality” (the name,
as far as I know, is from [44]).

Lemma 5.1 (With notation as above) suppose that (for some c1, . . . , cm),

|X(ω)−X(ω′)| ≤ ci

whenever ω ∼i ω′. Then for any λ > 0,

Pr(|X − E[X]| ≥ λ) ≤ 2 exp[−2λ2/(
∑

c2
i )].

Bounds of this type are derived via “Chernoff’s method” (Markov’s inequality
applied to E[eηZ ] for a suitable η); for example:

E[eηZ ] ≤ eη2T/2 ∀|η| ≤ S ⇒ Pr(|Z| > λ) < 2e−λ
2/2T ∀0 ≤ λ ≤ ST. (34)

The main issue is thus bounding E[eηZ ]. We will need the following two results
from [27] (see Lemmas 3.9 and 3.4 respectively).

Lemma 5.2 Suppose Wα (α = 0, 1 . . .) are the possible values of ωi, with Pr(ωi =
Wα) = qα. Suppose further that

|X(ω)−X(ω′)| ≤ cα ≤ c

whenever ω, ω′ ∈ Hi−1, ω ∼i ω′, ωi = W0 and ω′i = Wα. Then

E[eηZi |Hi−1] ≤ exp[8η2c
∑
α 6=0

qαcα]

∀|η|c ≤ 1.
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(The restriction α 6= 0 in the sum is just for emphasis, since we can take c0 =
0.) Lemma 5.2 (in conjunction with (36) below) does significantly better than
Lemma 5.1 when q0 is close to 1.

Lemma 5.3 With notation as above, and with Hj understood to range over Aj
for each j,

E[eηZ ] ≤ max

{
m∏
i=1

E[eηZi |Hi−1] : H0 ⊇ H1 ⊇ · · · ⊇ Hm−1

}
. (35)

(This was the main martingale contribution of [27]. Earlier results used instead

E[eηZ ] ≤
m∏
i=1

max{E[eηZi |Hi−1] : Hi−1 ∈ Ai−1}. (36)

Lemma 5.3 can be stronger than results based on (36) when, roughly speaking,
the influence of a particular ωj on X varies widely from one evolution H0 ⊇ H1 ⊇
· · · ⊇ Hm to another. See e.g. the proof of (52) below.)

6 Proof of Lemma 3.1

We first describe a random procedure for generating matchings Fγ . Once we have
properly understood the probable local behavior of the procedure, we can invoke
the Lovász Local Lemma [11] to finish.

We use the Local Lemma in the form (see [13] or e.g. [3, p.55])

Lemma 6.1 Let A1, . . . , An be events in an arbitrary probability space, and Σ a
graph on vertex set [n] with all degrees at most d such that for any i ∈ [n] and
S ⊆ {j ∈ [n] \ {i} : i 6∼Σ j},

Pr(Ai| ∧j∈S Aj) ≤ p. (37)

Then if ep(d+ 1) ≤ 1, Pr(∧i∈[n]Ai) > 0.

Though (37) is all that’s needed for the conclusion of Lemma 6.1, in our situa-
tion much more will actually be true; namely the probability of Ai will not be
significantly affected by any conditioning involving events Aj with j 6∼Σ i. (See
Lemma 6.3.)

The Fγ ’s are obtained as follows.
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(1) For each γ choose Mγ according to pγ and independently of other choices.
(Note we’re recycling: the present Mγ is not that of (20).)

(2) For each A ∈ ∪Mγ , choose γ(A) uniformly (and independently of other choices)
from {γ : A ∈Mγ}, and set Fγ = {A : γ(A) = γ} (⊆Mγ).

We then define G′γ , p′γ and G′ as in the statement of Lemma 3.1. In what follows
we write d(v) for dG(v) and d′(v) for dG′(v).

Of the conclusions of the lemma, (18) is by far the more difficult to handle. As
noted below, it’s easy to see that

Pr(A 6∈ ∪Fγ) = Pr(A 6∈ ∪Mγ) ≈ e−1

for each A, so that we typically have d′(v) ≈ e−1d(v). To derive (17) (via
Lemma 6.1) we then need to say something about concentration of d′(v); this
will be an easy application of the results of Section 5. We also need to say—a
consequence of Lemma 4.4—that behavior at v is nearly independent of behavior
far from v.

For (18), the results of Section 5 will again give concentration (of
∑
γ p
′
γ(A)

on {A 6∈ ∪Mγ}), though the analysis in this case is more delicate, and in par-
ticular requires Lemma 5.3. What’s unusual here is that expectation causes some
difficulties.

What we will show is that each p′γ(A), conditioned on survival of A, has ex-
pectation close to pγ(A); that is (roughly),

E[p′γ(A)|A 6∈ ∪Mγ′ ] ≈ pγ(A). (38)

As observed in Section 1, this is perhaps the most interesting part of our analysis.
(There’s a slight additional complication because—again for use in the Local

Lemma—we need (38) to hold regardless of what happens far from A. This is the
reason for the more general hypothesis (39) in Lemma 6.2 below.)

Take G, Gγ etc. to be as in the discussion preceding Lemma 3.1, and Mγ , p′γ
etc. as described above.

Lemma 6.2 For each K and ζ > 0 there are ξ = ξ1(K, ζ) > 0, D1 = D1(K, ζ)
and ∆ = ∆2(K, ζ) for which the following is true. Fix γ ∈ Γ and A ∈ Eγ, let
D > D1, and assume the hypotheses of Lemma 3.1 with (16) replaced by∑

γ′ pγ′(B) =ξ 1 for all B ∈ Eγ with ∆G(A,B) ≤ ∆. (39)

Then
E[p′γ(A)|A 6∈ ∪Mγ′ ] =

ζ
pγ(A).
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This is proved in Section 7. In the rest of the present section we show that it
implies Lemma 3.1.

Assume the conditions of Lemma 3.1 with ξ = 1
2ξ1(K, ζ/2) (trivial remark:

this will be much smaller than ζ) and D∗ ≥ D1(K, ζ/2) large enough to justify the
estimates below.

We would like to apply Lemma 6.1 to obtain the conditions (17), (18); however,
the precise interdependence of these events seems a bit subtle, making it convenient
to work with a modified p′γ , as follows.

Let ∆1 = ∆1(K, ξ) (see Lemma 4.4). For each A ∈ E fix an end vA of A,
and let T (A) = T (G, vA). In addition, for each Eγ 3 A let T ′γ(A) be the subtree
of T (G′γ , vA) whose vertices are those at distance at most ∆1 from A. (So in
particular each T ′γ(A) is a subtree of T (A).) We regard A, vA as elements of T (A),
T ′γ(A) in the usual way.

Let p′′γ(A) = Pr(A ∈M), with M drawn from M(T ′γ(A)) according to λγ . By
Lemma 4.5 and our choice of ∆1, we have (for any A, γ)

p′′γ(A) =
ξ
p′γ(A). (40)

(This estimate is stronger than necessary; the choice of ∆1 is dictated by (49)
below.)

Now for v ∈ V , A ∈ E, define r.v.’s

Xv = d′(v),

XA =
∑
γ

p′′γ(A)

and events

Tv = {Xv >
1 + ζ

1 + ξ
e−1D}

TA = {A 6∈ ∪Mγ , XA 6=ζ−ξ 1}.

We will apply Lemma 6.1 to show that there there exist Fγ (γ ∈ Γ) for which
none of these events occurs; that is,

Pr(
∧
v∈V

T v ∧
∧
A∈E

TA) > 0. (41)

This with (40) gives Lemma 3.1.
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Set ∆2 = ∆2(K, ζ/2) (see Lemma 6.2) and ∆ = 2∆1 + ∆2. Form the graph Σ
with V (Σ) = V ∪ E and

Y ∼Σ Z iff ∆G(Y,Z) ≤ ∆.

Then
dΣ(Y ) < D∆+2 ∀Y ∈ V (Σ). (42)

On the other hand, we will show that for any Y, Y1, . . . , Ym ∈ V (Σ) with
Y 6∼Σ Yi for 1 ≤ i ≤ m,

Pr(TY | ∧mi=1 T Yi) < D−ω(1) (43)

which with (42) gives (41) via Lemma 6.1.
What we actually show is that TY is unlikely under any conditioning that

involves only edges far from Y :

Lemma 6.3 Let Q be any specification of the restrictions of all Mγ’s and Fγ’s to
{B ∈ E : ∆(Y,B) > ∆1 + ∆2}. Then

Pr(TY |Q) < D−ω(1). (44)

This gives (43), since for Yi 6∼Σ Y , TYi depends only on which Q (as in Lemma 6.3)
is produced by our random procedure. (This was our primary reason for introduc-
ing the p′′γ(A)’s.)

Proof. With Q as in the statement of the lemma, let X be XY conditioned on Q
and Z = X − E[X].

We first consider the case Y = v. (This doesn’t require Lemma 6.2.) By (16)
and our choice of ∆1, ∑

γ

pγ(A|Q) =2ξ 1 ∀A 3 v. (45)

Thus, for each A 3 v,

Pr(A 6∈ ∪Mγ |Q) =
∏
γ(1− pγ(A|Q))

=
O(1/D)

exp[−
∑
γ pγ(A|Q)]

=3ξ e−1

(the first estimate follows easily from (45) and the fact that pγ(A|Q) ≤ λγ(A) ≤
K/D (see (14), (26)); 3ξ in the second estimate could be replaced by e2ξ − 1), and
it follows that, say,

E[X] =4ξ e
−1d(v) ≤ e−1D (46)
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(using (15) for the inequality).
To show concentration, suppose Γ = {γ1, . . .} and for each i, set

ωi =

{
A if v ∈ A ∈Mγi

∅ if Mγi 6� v.

Then X depends only on ω = (ω1, . . .). (Actually X only depends on those ωi for
which some A 3 v is in Eγi , but other colors are automatically excluded below.)
So we may write X = X(ω), and, obviously (with notation as in Section 5),

|X(ω)−X(ω′)| ≤ 1 ∀ω ∼ ω′. (47)

On the other hand, setting

pi = Pr(ωi 6= ∅) =
∑
A3v

pγi(A|Q),

we have (using (45), though nothing so precise is needed here)∑
pi =

∑
A3v

∑
γ

pγ(A) =2ξ d(v) ≤ D. (48)

Combining this with (47), (35) (or (36)) and Lemma 5.2 (with W0 = ∅, cα = c = 1)
followed by (34), we have, for any D ≥ λ = ω(

√
D logD),

Pr(Z > λ) < 2 exp[− λ2

32
∑
pi

] < D−ω(1).

This, with (46), gives (44). (Strictly speaking, this application of (34) requires∑
pi = ω(

√
D logD ); but if this fails then d(v) < e−1D (see (48)) and Tv is

impossible.)

We now turn to the case Y = A. For any B with ∆(A,B) ≤ ∆2 and any γ,
we have (by our choice of ∆1)

pγ(B|Q) =ξ pγ(B), (49)

so that by (16), ∑
γ

pγ(B|Q) =2ξ 1.

Thus after conditioning on Q we are still in the situation described by Lemma 6.2,
which allows us to conclude that

E[
∑
γ

p′γ(A)|Q,A 6∈ ∪Mγ ] =ζ/2

∑
pγ(A|Q) =2ξ 1,
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and consequently, because of (40),

E[X|A 6∈ ∪Mγ ] =ζ/2+3ξ 1. (50)

We now write Q′ for Q ∧ {A 6∈ ∪Mγ}, X ′ for X conditioned on {A 6∈ ∪Mγ}
(so XA conditioned on Q′) and Z ′ for X ′ −E[X ′]. By (50) we will have (44) if we
can show, e.g.,

Pr(|Z ′| > ξ) < D−ω(1) (51)

(Actually (51) holds with ξ replaced by any ω(
√

(logD)/D ); see (53).)
For the (unfortunately rather long) proof of (51) we regard X ′ as defined on

the product space
Ω =

∏
γ

Ωγ ,

where an element ωγ of Ωγ consists of Mγ chosen from Mγ according to λγ con-
ditioned on Q′, together with independent r.v.’s αγ(B) for B ∈Mγ , each uniform
on [0, 1].

Given such ωγ ’s, we set

Fγ = {B ∈Mγ : αγ(B) = max{αγ′(B) : B ∈Mγ′}}

(ignoring the zero-probability event {∃B and γ 6= γ′ with αγ(B) = αγ′(B)}). This
clearly gives our original distribution on ((Mγ , Fγ) : γ ∈ Γ) conditioned on Q′, so,
as stated above, we may regard

∏
Ωγ as the space underlying X ′.

We will show using Lemma 5.3 that for appropriate constant C we have

E[eηZ
′
] ≤ eCη2/D ∀|η| ≤ D/C. (52)

According to (34) this gives

Pr(|Z ′| > β) < 2e−β
2D/(4C) (53)

for any 0 ≤ β ≤ 2, so in particular gives (51).

Proof of (52). Let Γ = {γ1, . . . , γm+n} with {γ : A ∈ Eγ} = {γ1, . . . , γm}, and
write ω = (ω1, . . . , ωm+n) for our random element of Ω. We generally replace γj
by j in subscripts (yielding Ωj , λj , Mj , αj , Gj , Ej , Fj , G

′
j , T

′
j and p′′j ), but write

pj for pγj conditioned on Q′.
Set X ′i = E[X ′|ω1, . . . , ωi] and Z ′i = X ′i − X ′i−1 (so

∑
Z ′i = Z ′). Further

notation (Ai, Hi, ω ∼j ω′ etc.) follows Section 5.
To show (52) via Lemma 5.3 we need bounds on the individual terms

E[eηZ
′
j |ω1, . . . , ωj−1]. (54)
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For j ∈ [m] we will use a bound exp[O(η2D−2)] which will not depend on ω (see
(65)). For j > m valid general bounds (independent of ω) on (54) are too weak to
give (52), but we can give a better bound depending on ω1, . . . , ωm. (Roughly, the
bound will be larger when more edges of Ej are in the matchings Mi, i ∈ [m].)

As in Section 5, our bounds on (54) will derive from bounds on |X ′(ω)−X ′(ω′)|
for appropriate ω ∼ ω′. These bounds in turn will be based on similarity of the
versions of the trees T ′γ(A) corresponding to ω and ω′, and will be consequences
of Corollary 4.7.

For the rest of this section we write T for T (A), Ti for T (Gi, vA), and G′i(ω),
T ′i (ω) and p′′i (A|ω) for the values of G′i, T

′
i (A) and p′′i (A) corresponding to ω ∈ Ω.

We write ψi(·) for ψTi(A, ·) and set ψ(·) = (K/D)∆T (A,·) (see Section 4.1 for ψ),
so in particular we have ψi(·) ≤ ψ(·) whenever ψi(·) is defined.

Let ωj = (Mj(ω), αj(ω)). (So αj(ω) is a sequence of r.v.’s, one for each B ∈
Mj(ω).)

Recalling that

X ′(ω)−X ′(ω′) =
m∑
i=1

(p′′i (A|ω)− p′′i (A|ω′)),

we want to assess the impact of ωj on the probabilities p′′i (A|ω) (i ∈ [m]).
In case i = j, an adequate bound is given by (14) and (26):

|p′′j (A|ω)− p′′j (A|ω′)| ≤ K/D (55)

(for arbitrary ω, ω′).
Suppose now that we are given i ∈ [m], j ∈ [m + n] \ {i}, and ω ∼j ω′. For

convenience, set Mj(ω) = Mj , Mj(ω
′) = M ′j , write αi for αi(ω) = αi(ω

′), and set

F ′i = {B ∈Mi : αi(B) = max{αk(B) : k ∈ [m] \ {j}, B ∈Mk}}. (56)

(We may think of F ′i as the tentative value of Fi given by (ωk : k ∈ [m] \ {j}).)
In what follows we use

∑′ to mean we sum overB ∈ E(T ) with ∆T (A,B) ≤ ∆1.
We assert that, with π the projection from T to G,

|p′′i (A|ω)− p′′i (A|ω′)| ≤ λi(A)
∑′{ψ(B)[1{π(B)∈F ′i} + λi(B)] : π(B) ∈Mj∆M

′
j}.
(57)

(Recall we conventionally take λi(B) = 0 if B 6∈ Ei.)
To see this, first notice that it follows from the definition of G′i that

V (G′i(ω))∆V (G′i(ω
′)) ⊆ V (F ′i ∩ (Mj∆M

′
j)) (58)
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and

{C ∈ E(G′i(ω))∆E(G′i(ω
′)) : C ∩ (V (G′i(ω))∆V (G′i(ω

′))) = ∅}

⊆ Ei ∩ (Mj∆M
′
j). (59)

On the other hand, x ∈ V (T ) can only be in ∆∗ := V (T ′i (ω))∆∗ V (T ′i (ω
′)) if

either

(a) π(x) ∈ V (G′i(ω))∆V (G′i(ω
′)) or

(b) x is the end further from A of some B ∈ E(Ti) for which

π(B) ∈ E(G′i(ω))∆E(G′i(ω
′)) and π(B) ∩ (V (G′i(ω))∆V (G′i(ω

′))) = ∅.

(If the last condition fails then either x satisfies (a) or is not in ∆∗ because the
other end of B—that closer to A—satisfies (a).)

Now if (a) holds (and x ∈ ∆∗), then by (58) x is the end closer to A of some
B ∈ π−1(F ′i∩(Mj∆M

′
j)) (and we have ψi(x) = ψi(B) ≤ ψ(B)). Also, by (59), B as

in (b) must lie in π−1(Mj∆M
′
j) and, moreover, ψi(x) = ψi(B)λi(B) ≤ ψ(B)λi(B).

Since no B in the preceding paragraph corresponds to more than one x (and
since, by the definition of T ′i (A), x ∈ ∆∗ implies ∆T (A, x) ≤ ∆1), it follows that
λi(A)

∑
{ψi(x) : x ∈ ∆∗}, which by Corollary 4.7 is an upper bound on the left

hand side of (57), is also a lower bound on the right hand side.

2

Now, still fixing j ∈ [m+ n] (and ω ∼j ω′), but letting i vary, set, for each B,

h(B) =
K

D
ψ(B)[|{i ∈ [m] \ {j} : π(B) ∈ F ′i}|+

∑
i∈[m]\{j}

λi(B)]. (60)

Then summing (59) on i ∈ [m] \ {j} (using λi(A) ≤ K/D) and combining with
(55) gives

|X ′(ω)−X ′(ω′)| ≤
∑′{h(B) : π(B) ∈Mj∆M

′
j}+ (K/D) · 1{j∈[m]}. (61)

We now turn to bounding the terms (54). First observe that the expression

|{i ∈ [m] \ {j} : π(B) ∈ F ′i}|+
∑

i∈[m]\{j}
λi(B)
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in (60) is at most O(1): the first term is at most 1 (by the definition of F ′i ), while
for the second we have, using (14)-(16) and Corollary 4.2,∑

λi(B) ≤ (K + 1)2
∑

pγi(π(B)) = O(1). (62)

Thus
h(B) = O(D−1ψ(B)). (63)

On the other hand, since each x ∈ V (Ti) is in at most two edges of π−1(Mj∆M
′
j),

we have∑′{ψ(B) : π(B) ∈Mj∆M
′
j} ≤ 2

∑
{ψ(x) : ∆T (A, x) ≤ ∆1} < O(1)

(since by (15) the second sum is at most 2
∑∆1
i=0K

i).
Thus (61) implies that

|X ′(ω)−X ′(ω′)| < O(1/D) ∀ω ∼j ω′, (64)

whence, according to Lemma 5.2 (with W0 arbitrary and just using c = O(1/D)
and

∑
qα ≤ 1),

E[eηZ
′
j |ω1, . . . , ωj−1] ≤ exp[O(η2D−2)] ∀|η|c ≤ 1 and ω ∈ Ω. (65)

This is the bound we will use if j ∈ [m].
For larger j we need to be more careful. Here we fix ω1, . . . , ωm (equivalently

fix Hm ∈ Am) with associated matchings M1, . . . ,Mm and “tentative” F ′1, . . . , F
′
m

given by (56). (More precisely, they are given by (56) with Mk’s and αk’s corre-
sponding to an arbitrary ω ∈ Hm.)

Now for given j > m, let ∅ = M0
j ,M

1
j , . . . be the possible values of Mj , and

set pj(M
α
j ) = qαj .

Suppose ω, ω′ ∈ Hm with ω ∼j ω′, Mj(ω) = M0
j (= ∅) and Mj(ω) = Mα

j .
Then by (61) we have

|X ′(ω)−X ′(ω′)| <
∑′{h(B) : π(B) ∈Mα

j } =: cα.

Moreover, setting c = max{cα : α 6= 0}, we have by (64) (more precisely, by the
discussion leading to (64)),

c < O(1/D). (66)

This, according to Lemma 5.2, gives

E[eηZ
′
j |ω1, . . . , ωj−1] < exp[8η2c

∑
qαj cα]

= exp[O(η2D−1
∑
α

qαj
∑′{h(B) : π(B) ∈Mα

j })] (67)
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whenever |η|c ≤ 1.
But, still fixing Hm and now letting j run over m + 1, . . . ,m + n, we have

(justification follows)∑
j

∑
α

qαj
∑′{h(B) : π(B) ∈Mα

j }) =
∑′h(B)

∑
j

pj(π(B))

= O(
∑′h(B))

= O(D−1
∑′ψ(B)) (68)

= O(1). (69)

Because:
∑
j pj(π(B)) = O(1) follows from (62) and (26) (note it is not simply

contained in (16), since pj(π(B)) is not the same as pγj (π(B))); (68) is from (63);
and (69) follows from∑′ψ(B) ≤ D

∑
{ψ(x) : ∆T (A, x) ≤ ∆1}.

Inserting the above bound in (67) we have for any ω ∈ Hm (but note Hm was
arbitrary) and |η|c ≤ 1,

m+n∏
j=m+1

E[eηZ
′
j |ω1, . . . , ωj−1] < exp[O(η2/D)],

and, finally, this together with (65) (used for j ∈ [m]) and Lemma 5.3 gives (52).

2

7 Proof of Lemma 6.2

Throughout this section we fix γ ∈ Γ and A ∈ Eγ .
We may assume, to avoid trivialities in what follows, that K (in Lemma 6.2)

is a bit large (e.g. K > 10 is probably enough) and ζ a bit small.
Let ζ1 = 1

7ζK
−2, ζ2 = 1

3ζ1, and set ∆ = ∆1(K, ζ2) (see Lemma 4.4 for ∆1).
Fix ξ > 0 with

ξ < ζ2/(400K∆+5) (70)

and take D1 large enough so that D > D1 justifies the estimates below. (Of course
one can—and we do—just think of ∆, ξ as constants with ∆ large relative to K,
ζ, and ξ small relative to ∆, and then let D →∞.)

Note that, as earlier, (14) and (26) imply pγ(B) ≤ K/D for all B, γ, and the
same will be true for any conditional (hard-core) distribution pγ(·|Q), since this
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is again based on the weights λγ . We will use this observation repeatedly, usually
without further mention.

It’s convenient to encode the process which generates the sets Fγ′ ∩ Eγ as
follows. Let A = A0, A1, . . . , Am be some ordering of Eγ . Set

Wi = {γ′ 6= γ : Ai ∈Mγ′},

Xi =

{
1{Wi 6=∅} if Ai 6∈Mγ

1γ(Ai)=γ if Ai ∈Mγ .

Set W = (W1, . . . ,Wm), X = (X1, . . . , Xm) and Q = (Mγ , X).
We are mainly interested in Ai for which ∆G(A,Ai) ≤ ∆ (as in (39)). Call such

Ai, and also their indices i, relevant, and assume the relevant i’s are 1, . . . , k. We
also call a vertex x relevant if ∆G(A, x) ≤ ∆, so in particular any Ai containing a
relevant vertex is itself relevant.

Viewed “from γ” our process first chooses Mγ and then, depending on what
happens for γ′ 6= γ, discards some edges of Eγ (possibly including some from
Mγ) and takes Fγ to consist of the surviving edges of Mγ . We would like to say
that these deletions—which are described by the Xi’s—occur fairly independently,
enough so to allow us to model Q by a process of the type described in Section 4.2.

To begin, notice that for each i,

Pr(Ai 6∈ E′γ |Ai 6∈Mγ) = 1−
∏
γ′ 6=γ

(1− pγ′(Ai)), (71)

while, setting Zi = |{γ′ 6= γ : Ai ∈Mγ′}|,

Pr(Ai ∈ Fγ |Ai ∈Mγ) = E[
1

Zi + 1
]. (72)

It follows, using (39), that for relevant i we have, say,

Pr(Ai 6∈ E′γ |Ai 6∈Mγ) =2ξ 1− e−1 (73)

Pr(Ai ∈ Fγ |Ai ∈Mγ) =2ξ 1− e−1 (74)

(Verification is left to the reader. Note that Zi is approximately Poisson with mean∑
γ′ 6=γ pγ′(Ai), and that for Z Poisson with mean ϑ, E[(Z+1)−1] = ϑ−1(1−e−ϑ).)

Set q = 1− e−1. We will prove Lemma 6.2 by “coupling” Q with an idealized
versionQ∗ = (M∗, X∗) of the type described in Section 4.2 (note (73), (74) describe
something similar to step (b) of that construction):

(a) Choose M∗ ∈Mγ according to pγ .
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(b) For each i with Ai ∈ Eγ , choose X∗i (independently of M∗ and of other X∗j ’s)
according to

Pr(X∗i = 1) = q, Pr(X∗i = 0) = 1− q.

Set
F ∗ = {Ai ∈M∗ : X∗i = 1}, H∗ = {Ai ∈ Eγ \M∗ : X∗i = 1},

G∗ = Gγ − V (F ∗)−H∗, E∗ = E(G∗),

and let p∗ be the hard-core distribution given by λγ on G∗.
To see where this is heading, recall that by Corollary 4.9,

E[p∗(A)|A ∈ E∗] = pγ(A). (75)

Thus, setting Q = {Q}, Q∗ = {Q∗}, we will have something like Lemma 6.2
provided our coupling—a probability measure on Q×Q∗—is mostly concentrated
on pairs (Q,Q∗) for which p′γ(A|Q) and p∗(A|Q∗) are close. (See (76) for a precise
statement. In what follows we use Lemma 4.8 directly rather than Corollary 4.9;
nonetheless, it is the corollary that guides our thinking.)

Note. The expressions p′γ(A|Q), p∗(A|Q∗) are a little redundant, since, e.g., p′γ(A)
is a function of Q; still, their use seems to add some clarity in what follows.

A coupling
Fix Mγ = M∗. (We will always take Mγ = M∗, so our interest is really in the

coupling of X and X∗. Probabilities in what follows are conditioned on Mγ . This
has no effect on W , but does slightly influence X in that Pr(Xi = 1) depends on
whether Ai ∈Mγ (though not on any other information from Mγ).)

Given W , X, we choose X∗ as follows. Set

qi = qi(W ) = Pr(Xi = 1|W0, . . . ,Wi−1)

and:

(i) if qi ≥ q, let the Bernoulli r.v. εi = εi(W ) be given by

Pr(εi = 1) =
qi − q
qi

(independently of all other random choices), and set X∗i = Xi(1− εi);

(ii) if qi < q, let εi be Bernoulli with

Pr(εi = 1) =
q − qi
1− qi
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and set X∗i = Xi + (1−Xi)εi.

That is: in (i) we obtain X∗i from Xi by substituting 0 for 1 with probability εi in
case Xi = 1, and similarly in (ii) with the roles of 0 and 1 reversed. This evidently
gives for all W , i and X∗0 , . . . , X

∗
i−1,

Pr(X∗i = 1|W,X∗0 , . . . , X∗i−1) = q,

and it follows that (M∗, X∗) has the distribution described in (a) and (b) above.

Analysis of the coupling
Let us write µ for the coupling; that is, µ(Q,Q∗) is the probability that the

process described above produces the pair (Q,Q∗).
Call (Q,Q∗) ∈ Q×Q∗ good if

|p′γ(A|Q)− p∗(A|Q∗)| ≤ ζ1λγ(A)

and bad otherwise. Our main task will be to show

Pr((Q,Q∗) is bad) < ζ1 + o(1). (76)

We first show that this gives Lemma 6.2. Here it’s convenient to extend p′γ
and p∗ to Eγ \ E′γ and Eγ \ E∗ (respectively) in the natural way:

p′γ(A|Q) =

{
1 if A ∈ Fγ under Q
0 if A 6∈ Fγ ∪ E′γ under Q,

p∗(A|Q∗) =

{
1 if A ∈ F ∗ under Q∗

0 if A 6∈ F ∗ ∪ E∗ under Q∗.

Notice that with this convention, Lemma 4.8 gives

E[p∗(A|Q∗)] = pγ(A). (77)

(The left hand side of (77) is the probability that A is in a matching chosen
according to pγ conditioned on the (random) event {F ∗ ⊆ M ⊆ E \H∗}; and by
Lemma 4.8 this matching has the same distribution as one chosen according to
pγ .)

Now consider the difference

|E[p′γ(A)]− pγ(A)| = |E[p′γ(A|Q)]− E[p∗(A|Q∗)]|

≤
∑
Q

∑
Q∗

µ(Q,Q∗)|p′γ(A|Q)− p∗(A|Q∗)|. (78)
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Since p′γ(A|Q), p∗(A|Q∗) are never more than λγ(A), the terms |p′γ(A|Q)−p∗(A|Q∗)|
in (78) are bounded above by λγ(A) in all cases, and by ζ1λγ(A) if (Q,Q∗) is good.

It follows, using (76) and Corollary 4.2, that the right hand side of (78) is at
most

ζ1λγ(A) + λγ(A) Pr((Q,Q∗) is bad) < (2ζ1 + o(1))(K + 1)2pγ(A)

=: αpγ(A), (79)

so that
E[p′γ(A)] =

β
pγ(A), (80)

where β = − log(1− α) ≈ α.
Now let

Q0 = {A ∈ E′γ} = {A 6∈Mγ , X0 = 0},

so that
E[p′γ(A)] = Pr(A ∈ Fγ) + Pr(Q0)E[p′γ(A)|Q0].

For the “known” terms on the right hand side here we have the estimates

Pr(A ∈ Fγ) =2ξ pγ(A)(1− e−1)

(by (74)) and
Pr(Q0) =

∏
γ′

(1− pγ′(A)) =2ξ e
−1.

Combining these with (80) and rearranging, we find that, say,

E[p′γ(A)|Q0] =3β+4ξ pγ(A)

(provided β, ξ are a bit small). Thus we have Lemma 6.2.

2

Proof of (76). Again fix Mγ = M∗. Note that we may ignore the case A ∈ Mγ ,
since this occurs with probability only pγ(A) ≤ K/D. So we assume henceforth
that A 6∈Mγ .

Once Mγ is fixed, Q (resp. Q∗) is determined by X (resp. X∗), so we write
p′γ(A|X) and p∗(A|X∗) in what follows.

For the proof of (76) we first show that with probability close to 1 all relevant
qi(W ) are close to their expected values, which in turn, according to (73), (74),
are close to q. This allows us to confine our attention to W ’s for which

qi(W ) ≈ q for all relevant i.
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We then show that for any such W , p∗(A|X∗) is likely to be close to p′γ(A|X).
Set q0

i = E[qi(W )] = Pr(Xi = 1) and recall that the “relevant” indices are
1, . . . , k.

Lemma 7.1 There is a constant C so that with probability 1− o(1)

|qi(W )− q0
i | < C

√
(logD)/D ∀i ∈ [k]. (81)

Proof. Fix i ∈ [k]. We would like to use the results of Section 5 to show that qi(W )
is concentrated near its mean, q0

i . This requires a little care, since the number of
relevant j’s can be something like D∆ and it can happen that changing a single
Wj changes qi(W ) by Ω(1/D).

But, setting {γ′ 6= γ : Ai ∈ Eγ′} = {γ1, . . . , γs} and ωj = ωj(W ) = Mγj ∩
{A1, . . . , Ai−1}, we see that qi(W ) depends only on ω1, . . . , ωs. Thus, setting

Yj = Yj(ω1, . . . , ωs) = E[qi(W )|ω1, . . . , ωj−1],

we find that (Yj)
s
j=0 is a martingale with Y0 = E[qi(W )] = q0

i , Y := Ys = qi(W )
and, we assert,

ω ∼j ω′ ⇒ |Y (ω)− Y (ω′)| ≤ λγj (Ai).

To see this note that qi(W ) is given for Ai 6∈Mγ (resp. Ai ∈Mγ) by the right hand
side of (71) (resp. (72)) with pγ′(Ai) replaced by pγ′(Ai|W0, . . . ,Wi−1). (Though
they don’t appear explicitly, the pγ′(Ai) determine the right hand side of (72).
Of course γ′ may now be taken to run over γ1, . . . , γs.) But then, using the fact
that pγj (Ai|W0, . . . ,Wi−1) is always between 0 and λγj (Ai), it’s easy to see that
changing ωj changes qi(W ) by at most λγj (Ai). (In case Ai ∈Mγ this can be seen
without any calculation if we recall that qi(W ) = Pr(γ(Ai) = γ|W0, . . . ,Wi−1).)

The lemma now follows from Lemma 5.1: Letting cj = λγj (Ai), we know
cj ≤ K/D and, by Corollary 4.2, (14), (15) and (39),∑

cj ≤ (1 +K)2
∑

pγj (Ai) < (1 +K)2(1 + ξ),

so that ∑
c2
j <

(1 +K)2(1 + ξ)K

D
=:

T

D
.

Thus by Lemma 5.1,

Pr(|qi(W )− q0
i | ≥ C

√
(logD)/D ) < 2 exp[−(2C2 logD)/T ].

On the other hand, k < D∆+2 (by (15)), so we have Lemma 7.1 for any C >√
(∆ + 2)T/2.
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For the rest of our discussion we fix W satisfying (81). By Lemma 7.1 we will
have (76) if we can show that for each such W

Pr(|p∗(A|X∗)− p′γ(A|X)| > ζ1λγ(A)) < ζ1 (82)

Proof of (82). We will show that (82) holds even if, in addition to Mγ and W , we
also fix X.

Let us first review our situation. We are given Mγ 63 A, W = (W0, . . . ,Wk)
and X = (X0, . . . , Xk) ∈ {0, 1}k+1. We choose X∗ = (X∗0 , . . . , X

∗
k) randomly from

{0, 1}k+1 by changing each Xi to 1−Xi with probability ε′i given by

ε′i =

{
εi = εi(W ) if either qi = qi(W ) > q and Xi = 1 or qi < q and Xi = 0
0 otherwise,

these changes made independently. We then define

G′γ = Gγ − V ({Ai ∈Mγ : Xi = 1})− {Ai ∈Mγ : Xi = 0} − {Ai 6∈Mγ : Xi = 1},

G∗ = Gγ − V ({Ai ∈Mγ : X∗i = 1})− {Ai 6∈Mγ : X∗i = 1},

and write p′, p∗ for the hard-core distributions given by λγ on G′, G∗.
Notice that the ε′i are small: by (81) together with (73) or (74) (depending on

whether Ai ∈Mγ), we have for relevant i (we omit the easy calculation)

0 ≤ ε′i < 4ξ. (83)

We would like to show, based on this fact, that G′γ , G∗ are usually close enough
to allow us to conclude that p∗(A|X∗) ≈ p′γ(A|X). Here, as earlier, it turns out to
be easier to work, not directly with G′γ , G∗, but with the associated trees of walks.

Fix an end v of A, set T = T (Gγ , v) (weighted by λγ), with π : T → Gγ the
usual projection, and write v, A also for the natural elements of T (those whose
projections are the elements v and A of Gγ). Set ψ(·) = ψT (A, ·).

Let T∆ be the subtree of T whose vertex set is {x ∈ V (T ) : ∆T (A, x) ≤ ∆}.
(The edges of T∆ are thus those B ∈ E(T ) with ∆T (A,B) ≤ ∆− 1.) Notice that

if B ∈ E(T ) contains a vertex of T∆, then π(B) is relevant. (84)

Set

T ′ = T (G′γ , v) ∩ T∆,

T ∗ = T (G∗, v) ∩ T∆.
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(Note that T ′, T ∗ may be empty since v may be covered by Fγ and/or F ∗.)
Our choice of ∆ (for which see the beginning of this section) implies, via

Lemma 4.5 and (26), that

|p
T ′ (A|X)− p′γ(A|X)| ≤ ζ2λγ(A)

|p
T∗ (A|X

∗)− p∗(A|X∗)| ≤ ζ2λγ(A),

where we again retain the redundant specifications of X, X∗ for clarity. (Here we
used the fact that if x =ε y, then |x− y| ≤ εmax{x, y}.)

Thus (82) is implied by

Pr(|p
T∗ (A|X

∗)− p
T ′ (A|X)| > (ζ1 − 2ζ2)λγ(A)) < ζ1, (85)

for which we will again use Corollary 4.7.
Set ∆∗ = V (T ′)∆∗V (T ∗). By Corollary 4.7 we know that

|p
T∗ (A|X

∗)− p
T ′ (A|X)| ≤ ρλγ(A), (86)

where
ρ = ρ(X,X∗) =

∑
{ψ(x) : x ∈ ∆∗}.

We will show
E[ρ] ≤ ζ1(ζ1 − 2ζ2), (87)

whence, by Markov’s inequality,

Pr(ρ > ζ1 − 2ζ2) < ζ1,

which with (86) gives (85).

Proof of (87). For each B ∈ E(T∆) \ {A}, let the ends of B be yB and zB, with yB
the end nearer A, and for x ∈ V (T∆), let Bx be the edge nearest A containing x.

We will show that for any x ∈ V (T∆) not satisfying

π(Bx) ∈Mγ , (88)

we have
Pr(x ∈ ∆∗) < 8ξ. (89)

This gives (87) as follows. For x satisfying (88) we have

ψ(x) = λγ(Bx)ψ(yBx ) ≤ K

D
ψ(yBx ),
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and so, since each y is yBx for at most one such x,

∑
{ψ(x) : π(Bx) ∈Mγ} ≤

K

D

∑
{ψ(y) : y ∈ V (T∆)} < K∆+2/D.

(For the second inequality we used (14) and (15), which give
∑
ψ(y) ≤ 2

∑∆
i=0K

i <
K∆+1.)

Thus (89) implies

E[ρ] ≤ K∆+2D−1 +
∑
{Pr(x ∈ ∆∗)ψ(x) : π(Bx) 6∈Mγ}

≤ (K/D + 8ξ)K∆+1 < ζ1(ζ1 − 2ζ2)

(using (70) for the last inequality).

2

Proof of (89). Set H1 = G′γ , H2 = G∗, V (Hi) = Vi and E(Hi) = Ei. Notice that

V1∆V2 = V ({Ai ∈Mγ : X∗i 6= Xi}), (90)

while
{A′ ∈ E1∆E2 : A′ ∩ (V1∆V2) = ∅}

⊆ {Ai : X∗i 6= Xi} ∪ {Ai ∈Mγ : X∗i = Xi = 0}. (91)

(The last term turns out to be irrelevant.)
Now x ∈ V (T∆) can only belong to ∆∗ if either

π(x) ∈ V1∆V2 (92)

or
Ai := π(Bx) ∈ E1∆E2 and Ai ∩ (V1∆V2) = ∅. (93)

But according to (90), (92) is only possible if there is a B 3 x with Ai :=
π(B) ∈ Mγ (note there is at most one such B since Mγ is a matching) and,
moreover, X∗i 6= Xi.

Similarly, because we assume x does not satisfy (88), (91) says that (93) re-
quires X∗i 6= Xi.

Thus, in view of (84), (83) implies that each of (92), (93) occurs with proba-
bility at most 4ξ (for any given x). So we have (89).

2
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8 Epilogue: another approach

In this section we briefly discuss an alternate approach to Theorem 1.1. Our
primary interest here—since we really prefer the procedure used above—is in the
rather intriguing possibility that a process like that we now describe might be
susceptible of analysis.

Context
The parallel construction of matchings used above was suggested by the col-

oring procedure of [27]. (A basic step of that procedure consisted of tentatively
assigning each as yet uncolored A a random element, τ(A), from its list of still-legal
colors, and then making this assignment permanent if no edge meeting A was also
(tentatively) assigned τ(A). This idea had further striking consequences in [34],
[24].)

In contrast, the randomized procedures for ordinary coloring used in [49], [30]
are sequential. Here, for coloring edges with about T colors—i.e. covering with
about T matchings—a basic step consists of choosing, for appropriate small con-
stant ϑ, about ϑT of the matchings randomly and independently, and then deleting
their union from the hypergraph or multigraph under consideration. (The defini-
tion of random matching is not too important for the moment; [49] uses some
version of “random greedy” and [30] uses hard-core distributions.)

The requirement that we choose many matchings simultaneously—this is the
“Rödl nibble”—is crucial here, roughly because it makes local behavior of one
step of the procedure (e.g. the number of edges used at any given vertex) highly
predictable, and this allows use of the Local Lemma to keep the process on track.
On the other hand, a little reflection should convince the reader that there is no
sensible generalization to list-colorings that involves choosing matchings in groups.
What we would like to propose here is a procedure for choosing only one matching
at a time.

Something analogous happens in [56], which analyzes the natural random
greedy procedure for choosing large matchings in regular hypergraphs of fixed edge
size, large degree and small “codegrees” ([51], [14], [48], [49], [27] deal with such
hypergraphs). But the difficulties associated with colorings are more formidable
than those for matchings. (A crucial difference is that for matchings it’s enough
that each vertex do well on average (that is, be likely to be covered), whereas
for colorings we cannot afford to do badly anywhere.) So it would, I think, be
extremely interesting if analysis of what we propose here could actually be carried
out. (Though we will not do so, it is not hard to formulate an analogous proposal
for an alternate proof of the main result of [27].)
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Preprocessing
We are (again) trying to show that for any fixed δ > 0, we have χ′

l
(G) <

(1 + δ)χ′∗(G) whenever χ′∗(G) is sufficiently large. For the present approach it’s
convenient to make arrangements for the greedy phase beforehand. (The device
employed here could also be used in [27] and in the preceding proof of Theorem 1.1.)

We assert that it is enough to show that for each positive ε and η, if |S(A)| =
(1 + ε)T for all A ∈ E, and T := χ′∗(G) is sufficiently large, then there is a partial
coloring which colors all but at most ηT of the edges at each vertex; that is, there
are Y ⊆ E and a proper σ : E \ Y → Γ such that

dY (v) < ηT ∀v ∈ V (94)

and
σ(A) ∈ S(A) ∀A ∈ E \ Y. (95)

For suppose this is true and suppose we are given lists S(A) ⊆ Γ of size (1+δ)T
(with δ > 0 fixed and T large). Fix ε, η > 0 with ε < δ/4 and

η < ε2/2. (96)

Using the Local Lemma we can choose, for each v ∈ V , Γ0(v) ⊆ Γ so that, with

S0(A) = S(A) ∩ Γ0(v) ∩ Γ0(w),

S∗(A) = S(A) \ (Γ0(v) ∪ Γ0(w))

whenever A ∈ E has ends v, w, we have

|S0(A)| = (1 + o(1))ε2|S(A)|,
|S∗(A)| = (1 + o(1))(1− ε)2|S(A)| (> (1 + ε)T )

for all A ∈ E. (Just choose the Γ0(v) independently from Γ according to Pr(γ ∈
Γ0(v)) = ε independently for all γ ∈ Γ, and apply the Local Lemma.)

Then, by assumption, we can find Y , σ satisfying (94) and (95) with S∗ in place
of S; and a greedy coloring of Y using the lists S0—this exists by (96)—completes
σ to a full coloring, since σ cannot use a color from S0(A) at any edge meeting A.

2

Procedure
We need one little observation which limits the constraints we have to check

in verifying that our procedure stays on track:
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Proposition 8.1 If f ∈ RE satisfies f ≥ 0,∑
v∈A∈E

f(A) ≤ (1− ε)2 ∀v ∈ V, and

∑
W⊇A∈E

f(A) ≤ 1− ε ∀W ⊆ V with |W | ≤ ε−1 and G[W ] connected,

then f ∈ (1− ε)MP (G).

(Here, finally, it seems we should state Edmonds’ Theorem: it says that a non-
negative f ∈ RE is in MP (G) if and only if

∑
A3v f(A) ≤ 1 for all v ∈ V and∑

A⊆W f(A) ≤ b|W |/2c for all W ⊆ V .)
We omit the easy proof of Proposition 8.1. (It is about the same as the proof

of Proposition 4.1 in [30].)

2

Now suppose we are given lists S(A) of size (1 + ε)T (T = χ′∗
l

(G) large), and
want to produce Y , σ satisfying (94), (95).

We need a little notation. Let Γ = {γ1, . . . , γm} and Ei = {A ∈ E : γi ∈ S(A)}.
Set (a crucial quantity)

si(A) = |S(A) ∩ {γj : j ≥ i}|.

Let W be the set of W ’s appearing in Proposition 8.1:

W = {W ⊆ V : |W | ≤ ε−1, G[W ] connected}.

Finally, to avoid introducing another parameter, suppose (1 + η)2 < 1 + ε.
Now set E′1 = E1, Y0 = ∅, and for i = 1, . . . do:

I. Set (for each A)

f i(A) =
1

si(A)
1{A∈E′i}.

If there exists v ∈ V with ∑
A3v

f i(A) > (1 + η)−2

or
|E(v) ∩ (

⋃
j<i

Yj)| ≥ ηT
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(where E(v) = {A ∈ E : A 3 v}), then say the event Tv has occurred and terminate
the procedure.

Similarly, if there exists W ∈ W with∑
A⊆W

f i(A) > (1 + η)−1b|W |/2c,

then say TW has occurred and terminate. (So we allow several of the events Tv,
TW to occur simultaneously.)

II. Otherwise, by Proposition 8.1, we have f i ∈ (1 + η)−1MP (E′i) (with MP (E′i)
and, in the next sentence, M(E′i) defined in the obvious ways). Let pi be the
hard-core distribution on M(E′i) with marginals f i. Choose Mi according to pi

and set
Yi = {A ∈ E \

⋃
j<i

(Mj ∪ Yj) \Mi : si(A) < ηT},

E′i+1 = Ei+1 \
⋃
j≤i

(Mj ∪ Yj).

Rationale
If none of the events Tv, TW occurs, then clearly we do get the desired Y

(= ∪Yi) and σ. We assert, moreover, that each Tv, TW occurs with probability
exp[−Ω(T )]. To see this (in outline), let

Ei = E \
⋃
j<i

(Mj ∪ Yj),

and for A ∈ E,

qi(A) =
1

si(A)
1{A∈Ei}.

(So qi extends f i to all edges which survive to stage i. We should really modify
these definitions and the following discussion to cover the possibility that we ter-
minate at or before stage i; but just about any sensible convention will take care
of this, and we won’t worry about it here.)

Now for A ∈ E′i we have

E[qi+1(A)] ≤ (1− f i(A))
1

si+1(A)
= (1− 1

si(A)
)

1

si(A)− 1

=
1

si(A)
= qi(A)
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(the inequality derives from the possibility that A is put in Yi), and for A ∈ Ei\E′i,

E[qi+1(A)] =
1

si+1(A)
=

1

si(A)
= qi(A).

Thus, for any given v ∈ V , {Xi :=
∑
A3v q

i(A)}i≥1 is a supermartingale
(E[Xi+1|Xi] ≤ Xi); so in particular

E[Xi] ≤ X1 =
dG(v)

(1 + ε)T
≤ (1 + ε)−1,

and one can show, using the results of Section 5 (and recalling that (1+η)2 < 1+ε)

Pr(∃i Xi > (1 + η)−2) < exp[−Ω(T )]. (97)

In addition we have, for any A, Pr(A ∈ Y ) < η/(1 + ε), whence

E[dY (v)] <
ηT

1 + ε
,

and we can again use martingales to show

Pr(dY (v) > ηT ) < exp[−Ω(T )].

This together with (97) gives Pr(Tv) < exp[−Ω(T )], and Pr(TW ) < exp[−Ω(T )] is
shown similarly (more easily, since we don’t have to worry about Y ).

2

So we would like to conjecture that one can use the Local Lemma—or at least
something in the same spirit—applied to the events Tv, TW , to show

Pr(
∧
v∈V

T v ∧
∧

W∈W
TW ) > 0. (98)

(And of course we could strengthen this to say that the probability in (98) is at
least exp[−nO(1)e−Ω(T )], again expressing the idea that we have something like
independence.)

The problem, of course, is independence. We would like to say that for suffi-
ciently large (relative to ε, η) constant ∆, the probability of Tv (or TW ) cannot
be much increased by any conditioning on events T v′ , TW ′ with v′, W ′ at dis-
tance greater than ∆ from v (or W ). (Actually we only need ∆ = o(T/(log T )),
though I doubt that this helps. Notice that the restriction W ∈ W imposes bounds
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TO(∆) on degrees in the graph Σ used in the Local Lemma; this is the reason for
Proposition 8.1.)

We have at least arranged that if no Tv, TW occurs through stage i, then,
using Corollary 4.3 and Lemma 4.4, we do have good independence behavior in
pi. Effects between i’s are presumably more subtle; nonetheless, I believe they too
are small, and can eventually be understood well enough to allow completion of a
proof of Theorem 1.1 along the lines suggested here.
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[1] M. Ajtai, J. Komlós and E. Szemerédi, A dense infinite Sidon sequence, Europ.
J. Combinatorics 2 (1981), 1-11.

[2] N. Alon, Restricted colorings of graphs, pp.1-33 in Surveys in Combinatorics,
1993 (Proc. 14th British Combinatorial Conf.), Cambridge Univ. Press, Cam-
bridge, 1993.

[3] N. Alon and J.H. Spencer, The Probabilistic Method, Wiley, New York, 1992.

[4] N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica
12 (1992), 125-134.

[5] L.D. Andersen, On edge-colourings of graphs, Math. Scand. 40 (1977), 161-
175.

[6] J. van den Berg and J.E. Steif, Percolation and the hard-core lattice gas
model, Stochastic Processes and Appl. 49 (1994), 179-197.

[7] B. Bollobás, Martingales, isoperimetric inequalities and random graphs, in
Combinatorics, A. Hajnal, L. Lovász and V.T. Sós Eds., Colloq. Math. Soc.
János Bolyai 52, North Holland, 1988.

[8] B. Bollobás and A.J. Harris, List-colourings of graphs, Graphs and Combina-
torics 1 (1985), 115-127.

[9] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res.
Nat. Bureau of Standards (B) 69 (1965), 125-130.
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[12] P. Erdős, A. Rubin and H. Taylor, Choosability in graphs, Congressus Nu-
merantium 26 (1979), 125-157.
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