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� Introduction

This paper applies methods from harmonic analysis to prove some general theorems on boolean
functions� The result that is easiest to describe says that �Boolean functions always have small
dominant sets of variables�� The exact de�nitions will be given shortly� but let us be more
speci�c� Let f be an n�variable boolean function taking the value zero for half of the �n

variable assignments� Then there is a set of o	n
 variables such that almost surely the value of
f is undetermined as long as these variables are not assigned values� This proves some of the
conjectures made in �BL��

These new connections with harmonic analysis are very promising� Besides the results on
boolean functions they enable us to prove new theorems on the rapid mixing of the random
walk on the cube� as well as new theorems in the extremal theory of �nite sets�

We begin by reviewing some de�nitions from �BL�� Let f be a boolean function on n vari

ables� and let S be some set of variables� The in�uence of S over f� denoted by If 	S
 is
de�ned as follows� Assign values to the variables not in S at random� that is� variables are
set independently of each other and the probability of a zero assignment is one half� This
partial assignment may already su�ce to set the value of f � The probability that f remains
undetermined is de�ned as the in�uence of S over f �

For concreteness let us temporarily restrict ourselves to functions f for which Pr	f � �
 �
���� 	The probability space consists of all binary n�strings with uniform distribution�
 It was
observed in �BL� that the average in�uence of a single variable over f is at least ��n� This is a
consequence of a standard fact in combinatorics� the edge isoperimetric inequality for the cube�
	e�g� �Bo� Theorem �����
� One also notices that for the function f	x�� ���� xn
 � x� the in�uence
of x� is one while all the other xi have zero in�uence� So in this case the average is indeed as
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small as ��n� However in all the examples that were examined in that paper there was at least
one variable whose in�uence was as big as ��logn�n�� In fact� Ben	Or and Linial construct
a function f for which each variable has in�uence 
�logn�n�� This prompted the conjecture
that for every f with Pr�f � �� � ��
 there is a variable whose in�uence is ��logn�n�� This
conjecture is proved in the present article� Moreover we show that the sum of squares of the
individual in�uences is ��log� n�n��

What can be said about the in�uence of larger sets of variables� We should �rst point out
that in dealing with the in�uence of a set of variables there are several di�erent quantities to
be considered� We have already encountered one of them� viz�� If �S�� Besides this� there is
the in�uence of S towards zero which we now de�ne� and the in�uence towards one� which is
de�ned analogously� Let p �� Pr�f � ��� Assign values to the variables outside S at random�
and denote by p� the probability that given the values assigned to the variables not in S� it is
possible to assign values to the variables in S so as to make f equal to zero� The di�erence p�

�p
is de�ned to be I�f �S�� the in�uence of S toward zero� The question then arises of the existence
of small sets of variables with large in�uence� where the meaning of the question depends� of
course� on the notion of in�uence intended� It is worth mentioning �and easy to check� that for
all f and S �

If�S� � I�f �S� � I�f �S��

In the case we are most interested in� when Pr�f � �� � ��
� it is clear that in�uence
towards either zero or one cannot exceed ��
� We look for sets which get close to this bound�
Now in the above mentioned construction from �BL� a set of variables whose in�uence towards
zero is �

�
� o��� must have cardinality ��n� logn�� This was conjectured �ibid�� to be best

possible� We prove a slightly weaker result showing that there always is a set of O�n��n�� logn�
variables whose in�uence towards zero is �

�
� o���� where ��n� is any function which tends to

in�nity with n� Clearly the same holds with zero replaced by one� Let us mention the following
closely related problem� There is a construction �again from �BL�� of a function f where sets
of o�n�� variables have o��� in�uence both towards zero and towards one� � � log 
� log � �
���� � � �� It may well be that there is a constant � � � such that there is always a set of O�n��
variables where at least one of I�f �S�� I

�

f�S� is
�

�
� o����We are unable to settle this question at

the time of writing�

Let us also remark that our results extend beyond the case where Pr�f � �� � ��
� We
have stated all of our results in this case� since it is the most interesting one for computer
science applications and to avoid more technical statements�

A word is in order now about our methods� We use ideas from harmonic analysis� This circle
of problems turns out to be best viewed in terms of the Fourier analysis of the n�dimensional
cube� thought of as the abelian group Zn

�
� We assume familiarity with the most basic facts

of harmonic analysis which can be found in essentially any text in the area� �For example
Dym and McKean �DM� is an excellent introduction to the subject which contains numerous
interesting applications�� We need only the most basic notions of this theory viz�� characters�
dual group� and Fourier transform� The only fact we use is Parseval�s identity� The harmonic
analysis of Zn

�
� will be reviewed as needed� We make substantial use of Beckner�s �B� elegant

inequalities in �classical� Fourier analysis�






Our method enables us to prove new results on the rapid mixing of the random walk on
the cube� While many of the properties of this walk are well studied and the speed at which it
converges to the �uniform� limit distribution is known� not so much is known if we start from a
distribution which is not concentrated at one point� In particular what if the initial distribution
is uniform on a set of vertices of a given size� We are able to give estimates for this problem
which turn out to be asymptotically correct for a large range of sizes� However� the problem in
general is still far from solved�

Although it is tempting to conjecture that in worst ��slowest� case the initial distribution is
supported on some simple set such as a Hamming ball or a subcube such an exact result seems
well beyond the reach of present methods� In fact� the present analytic methods seem� for the
most part� ill�suited to exact results� while combinatorial techniques which have proved quite
powerful for extremal problems with more obvious candidates for extrema have to date been
surprisingly ine	ective for problems of the type we are considering� There are many natural
problems in this area for which exact determination of extrema seems unlikely� and it may
be that the correct approach to some of these involves blending combinatorial and analytic
methods�

There is a close connection between the problems we mentioned on in
uence and some
aspects of the following very general question� Let F be a family of m binary n�vectors� What
can be said about the distribution of Hamming distances between the vectors in F � At this
level of generality this question is completely hopeless� In particular it contains all of the theory
of error correcting codes� On the other hand� many special cases of this problem which may be
tractable are very far from being understood� Our methods allow us to derive some new results
on the following� narrower class of problems� How densely packed may F be� For example�
given n� jF j and an integer b � n� what is the largest possible number of pairs of vectors in F
whose Hamming distance is at most b �

For b � � this is answered by the edge isoperimetric inequality for the cube� mentioned
before� The answer is basically that subcubes of the cube are the best families� Already for
b � 
 this is not true� There seems to be a more complicated dependency on the relationship
between jF j and n� Our methods allow us to get estimates for this �dense packing� problem�
which in certain cases are exact� and in other ranges can be shown to be fairly tight�

It is interesting to compare the outcomes of this method with what can be achieved using
eigenvalues� Many of the questions addressed in this paper can be formulated as dealing with
the expansion factors of various graphs� It is often possible to derive some estimates for the
expansion factor from eigenvalues� However� this method is known to break down completely
when applied to small sets of vertices� Our method succeeds in getting nontrivial estimates
in some cases where the eigenvalue method fails� If this phenomenon can be extended to
other graphs as well there could be extremely interesting consequences in theoretical computer
science� but we were so far unable to make much further progress in this direction�

One more word about the literature� Many of the questions we consider here come from
�BL�� an earlier version of which is �BL��� A survey of this area including the connection with
various problems in computer science� can be found in �BLS��
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� Harmonic Analysis of Zn

�
and in�uences�

Assuming some familiarity with basic harmonic analysis� we can explain its connection with
the problems on in�uence described above� The group we deal with is Zn

�
� As a set this is

just the n�dimensional cube Cn and the group structure allows us to make use of the tools of
harmonic analysis� We think of the elements in this group in a number of equivalent ways� as
group elements� as binary vectors or as characteristic vectors of sets which we also identify with
the sets themselves� All these terminologies will be used throughout� First we need to �nd all
the characters� This is well known and easy to check� so we state this fact without proof�

Proposition ���� Associate with every A � �n�� a real function u 	 uA de�ned on Zn
�
by�

uA
B� 	 
���jA
T
Bj�

Then uA is a character for Zn
�
and moreover all irreducible characters of Cn are obtained in

this way�


Here and throughout �n� stands for f�� ���� ng��

Note that the isomorphism between Zn
�
and its dual is explicitly given by this proposition�

We think of A both as an element of Cn and as the character associated with it� Throughout
this paper we will deal with functions f de�ned on Cn� typically expanded as

P
A �AuA� Note

that the �
s are the usual Fourier transform of f and are preferred to the traditional �f only for
typographic convenience� We also think of Cn as a probability space with uniform distribution�
This allows us to take inner products of functions on the cube�

� f� g ��	
X

A

f
A�g
A���n�

The Fourier coe�cients for f are given by�

�A 	� f� uA �	
X

B


���jA
T
Bjf
B��

We need the following fact from �BL� which is an easy consequence of the shifting technique of
the extremal theory of �nite sets 
e�g� �F���

Proposition ���� For any boolean function f there exists a monotone boolean function g on

the same set of variables such that


i�Pr
f 	 �� 	 Pr
g 	 ���


ii��A � �n�� If
A� � Ig
A��

Inequality 
ii� holds also for in�uences towards zero and one�
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A consequence of this proposition is that there is no loss of generality in assuming that f is
monotone� Now for a monotone f and any variable xi the in�uence of xi on f is easily seen to
be given by�

��n
X

i ��S

f�S
�
fig�� f�S�

But this is exactly the same as �fig� This fact creates the link between our problems and
harmonic analysis� We are looking for bounds on the Fourier coe�cients of certain real functions
de	ned on Cn� Our 	rst di�culty is how to exploit the condition that our functions take only
the values 
� �� which is not particularly natural from the standpoint of mathematical analysis�
Roughly� this is accomplished as follows� Some initial combinatorial manipulations reduce
the problem to another� similar problem involving functions taking values 
� ����� but having
relatively small support� In this case it is not so much the precise range of the functions as the
fact that we have good control of their various norms which becomes useful� and we are able to
complete the proof using some inequalities of Beckner 
B� relating the norms of a function and
those of its images under certain linear operators�

First we prove our main new theorems on boolean functions and then we go on to sketch
some sample new results on random walks on the cube and in the extremal theory of 	nite sets�

� Lower bounds on in�uences�

We begin with a statement of our result on the in�uence of single variables� The result is
given now in its more general form and not only for the case where f is equally often zero and
one� This more general form can then be applied repeatedly to derive the lower bounds on the
in�uence of sets of variables� Let us recall that Cn� the n�dimensional cube is equipped with
the uniform probability distribution� so we can speak� for example of the probability that f is
zero�

Theorem ���� Let f be a boolean function on n variables� which equals one with probability p
and assume p � ���� Then X

�If�xi��
� � Cp� log� n�n

where C is an absolute positive constant� �for example C � ��� su�ces�� Consequently there
exists at least one variable whose in�uence is at least Cp logn�n� These bounds are tight except
for the value of C�
Also�

X
�If �xi�� � p log

�

p
�

This bound is tight�

So these are the best lower bounds for the vector of in�uences of the individual variables in eu�
clidean �L�� norm� max �L�� norm and sum �L�� norm� The L� estimate is� of course� an easy
consequence of the L� estimate� In fact with a little more care we can get essentially the same
bound even for much smaller norms� For example� let p � ���� and set � �� C log logn� logn�
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and q � ��� ��� Then the Lq�norm of the vector of in�uences is 	� �C��� logn
n � which is particu�

lar in 	� lognn � if C�� is greater than some positive constant
 This is very nearly best possible�

since for C � � the upper bound of �approximately� logC n�n obtained from the half�cube is
o�logn�n�� It does seem reasonable to conjecture that for every q the correct answer is the
minimum of logn�n and the value obtained from the half�cube


The L� estimate mentioned in the theorem is nothing but a restatement of the edge isoperi�
metric inequality for the cube
 It is quoted here only for completeness� sake
 In the case p � ��

it implies the existence of a variable with an in�uence of at least ��n� as noted already in �BL�

Some improvements on this latter bound were made by Noga Alon �A� who� with eigenvalue
arguments increased the bound to �
� ���n� and by B
 Chor and M
 Gereb �CG� who proved
��� ���n� It is interesting that the three approaches �all arrived at independently� have essen�
tially the same point of departure �though not all in the same language�
 To date no bound
better than the rather trivial ��n has been obtained by what could be considered a purely
combinatorial argument
 We should also mention here that for very small p �up to 
�n��� the
best possible results on the max norm are available
 Frankl �Fr� solved the problem using the
Kruskal�Katona Theorem
 We do not see how to extend this to larger p� For the more restricted
class of f �s corresponding to intersecting families of subsets �in the language of game theory�
symmetric games�� an equivalent version of the problem of minimizing the maximum in�uence
had been raised earlier �as the �rst case of a more general question� by Daykin and Frankl �DF��
who also observed the ��n lower bound


We now turn to the proof


First we de�ne a set of n functions on Cn whose range is f��� �� �g
 The i�th of those
�� � i � n� is denoted by f i and is de�ned by

f i�T � �� f�T �� f�T � fig�

where � stands for symmetric di�erence� or equivalently in terms of binary vectors the mod 

sum which is the same� of course
 The shorthand T � i is used below


Return to the Fourier expansion of f �

f �
X

S

�SuS �

The expansion of f i is written as�
f i �

X

S

�iSuS �

To evaluate the �iS we write�

�iS �� f i� uS �� 
�n
X

T

f i�T �uS�T � �


�n
X

�f�T �� f�T � i������jS
T

T j �


�n
X

f�T ������jS
T

T j � ����jS
T

�T�i�j��

�



Now if i �� S� the expression in the last brackets vanishes� and so does �i
S � On the other

hand if i � S� then the term in the brackets becomes �����jS
T

T j and �i
S � ��S �

Parseval	s Theorem now gives the euclidean norm of f i�

kf ik�
�
� 

X

i�S

��

S �

Now we want to relate this to in�uence� Let �i denote the in�uence of the i�th variable�
From the de�nition it follows that this is the same as the fraction of sets S not containing i

for which f�S� �� f�S
S
fig�� Whenever this happens both f i�S� and f i�S

S
i� are in f��� �g�

Consequently �i � kf ik�
�
� In other words

�i � If �xi� � 

X

i�S

��

S �

Summing this over all � � i � n we obtain


X
�i � 


X
jSj��

S

These equations suggest the following approach� Assume for a contradiction� that the �i
are small� Since X

��

S � kfk�
�
� p

is given this can only happen if
P

��

S comes mainly from sets S of small cardinality� Our
goal is to show this is impossible� This is achieved by proving such a result for the functions
f i� The point� to some extent� is that the f i are assumed to have relatively small support�
which should prevent their Fourier transforms from being concentrated on very small sets� The
implementation of this idea is based on some elegant inequalities of Beckner �B� which we now
describe�

As we have already indicated� an important feature of Beckner	s method is the use of
estimates for f in various Lp norms� The two point space X consists of the two real numbers
��� � and is equipped with the uniform probability distribution� Notice that Cn � Xn both as
sets and as probability spaces� Consider the linear space of real functions de�ned on X � Every
function on X is the restriction of a linear function� say� h�x� � a � bx�

Introduce the linear operator T� which maps h�x� into the function a� �bx� It may appear
mysterious at this time that such an operator should be relevant� but this will hopefully be
clari�ed later on� We think of T� as operating on Lp functions and carrying them to L�

functions�

Lemma ���� The operator T� from Lp to L� has norm �� for p � � � ���

The second of Beckner	s lemmas deals with the product of operators of the type considered
in the previous lemma�

�



Lemma ���� For i � �� � let �Xi� �i� and �Yi� �i� be normed measure spaces and let Ti be an

operator from Lp�Xi� to Lq�Yi� which is an integral operator de�ned by a kernel� i�e��

Tif�y� �

Z
X

f�x�K�x� y�d�i�x��

Now let T be the product of these operators� mapping Lp�X� �X�� to Lq�Y� � Y��� If both T�
and T� have norm at most �� then so does T �

This last lemma can clearly be applied also to products of more than two spaces� In particular�
multiplying the two point space by itself n times we arrive at the space Cn� Let us evaluate
the product T of n copies of the one�dimensional operators T��

Since the characters on C
n span the space of real functions on C

n it clearly is enough to
determine their images under T � It is not hard to see that uS is carried to �jSjuS � So one nice
feature of the operator T is that the characters of Cn form a complete set of its eigenfunctions
and moreover we know the corresponding eigenvalues�

Now we are in a position to �partly� demystify the connection between Beckner	s work and
our problems� As we explained before� our goal would be reached if we could prove theorems
saying that it is impossible for most of the L� norm of � to be concentrated on those �S with
small jSj� In other words we look for upper bounds on sums such as

X
jSj�b

��

S

for some bound b�

Unfortunately� sums of this kind are not too convenient to work with� Alternatively� one
may try and look at sums of the form

X
wS�

�

S �

where w is an appropriately chosen weight function� Ideally� w should be � on sets S of cardi�
nality at most b and 
 on larger sets� However� even a weight function which only approximates
this behavior may enable us to obtain some interesting estimates� For f �

P
�SuS we know

that Tf is given by�
Tf �

X
�jSj�SuS �

Denoting �� by � we have�
kTfk�

�
�
X

�jSj��

S �

This yields an estimate for sums as discussed earlier� with weight function wS � �jSj�

The other nice feature �for us� of Beckner	s results is that since we are dealing with functions
into f��� 
� �g� it is very easy to calculate their Lp norms exactly�

We apply Beckner	s lemmas to our problem and arrive at the following fact which is a key
to all that follows�

�



Lemma ��� � Let g be a function from C
n into f��� �� �g �for example the characteristic

function of a set�� Let t be the probability that g �� � and let

g �
X

�SuS

be the Fourier expansion of g� Then�

t
�

��� �
X

�jSj��

S

for every � � � � ��

We apply this Lemma with g � f i� The probability that f i �� � is exacly �i� and so

�
�

���

i
�
X

�jSj��iS�
��

Summing this over � � i � n� we have

X
�

�

���

i �
X

�jSjjSj��

S�

Now ignoring the portion of the sum contributed by the sets S of cardinality exceeding b �a
parameter which we shortly select�� we obtain�

X
�

�

���

i
� �b

X

jSj�b

jSj��

S�

We also keep in mind that
p �
X

��

S � ��

which comes from �� �� f� u� � and the fact that u� is identically one� So also

X
�

�

���

i
� �b�

X

jSj�b

��

S � p���

At the same time� since X
�i � 	

X
jSj��

S

we also have X
�i � b

X

jSj�b

��

S �

Now we combine these inequalities to obtain�

��b
X

�
�

���

i 
 b��
X

�i �
X

��

S � p�

���	��� � p� p� � p	��

Denote
P

��i by 
�	n where we assume

���	��� 
 �
p logn

	�
�






�From Cauchy�Schwartz we have� X
�i � ��

Since �
���

� � we can use the monotonicity of r�th power averages �e�g� �HLP p� ��	
 to
estimate� X

�
�

���

i
� �

�

��� n�
���

��� �

Choose b to be ���p� The second term in �����

 cannot exceed p�� and so we remain with�

�
� ��

p �
�

���n�
���
��� �

p

�
�

It is now a routine matter to check that for � � 
��� � as in ������
� any p � 
�� and for large
enough n� this inequality fails� This contradiction proves our theorem�

By repeated use of this theorem we arrive at the existence of a small set of variables which
dominates the function f �

Corollary ���� Let f be a boolean function on n variables� let p � ��

 be the probability

that f � 
 and let � � ��n
 be any function tending to in�nity with n� Then there is a set of
n

logn��n
 � o�n
 variables S whose in�uence towards one is p�o�

� This bound is tight� except

for the � term�

� Consequences for random walk on the cube�

The present method provides new information on the speed of convergence of random walks
on the cube� We just give some indication of what we can say in this vein� leaving details and
more comprehensive statements to the full paper� For simplicity �mainly to ensure ergodicity

we consider walks which on a given step move to any of the n neighbors of the current vertex
v with probability 
��n and otherwise remain at v� Write f �t� for the distribution after t steps
of such a walk with initial distribution f � f ���� and U for the limiting �uniform
 distribution�

We will be interested in convergence in the sense of L�� rather than the more usual L�� That
is� we would like to know how slowly kf �t�� Uk� can tend to zero given various restrictions on
the initial distribution f � f ���� �Of course� kf �Uk�� � kfk��� ���n� and we often �nd it more
convenient to deal with kfk���


When f � fF is the uniform distribution on some F � Cn� this question is very close to
the considerations of section �� For example� if the Fourier coe�cients of �F are 	S � then it is
easily seen that

kf �t�k�� � jF j��
X

�
�
jSj

n

�t	�

S �

implying X

jSj�k

	�
S � �
� k�n
��tjF j�kf �t�k���

Thus upper bounds on kf �t�k� give upper bounds on �initial segments� of
P

	�
S
as needed

earlier� This� in fact� was our starting point� though as it turned out the results on random
walks were eventually obtained only through the above attack on the Fourier coe�cients�


�



The most natural problem for such �semiuniform� distributions fF is to estimate how slowly
a function t � t�n�m� can grow if it satis�es

����� kf
�t�
F k� � �� 	 o����
�n

for every m�subset F of Cn� Intuitively� this convergence should be slower the more concen�
trated F is� and it is natural to expect the worst F �for given m� to be something like a ball or
subcube
 For example� letting B�n�m� �resp
 C�n�m�� denote the �rst m binary n�vectors in
the lexicographic �resp
 reverse lexicographic� order �i
e
� identifying a set with its characteristic
vector� S �L T if jSj � jT j or �jSj � jT j and max�S � T � � T �� while S �RL T if jSj � jT j or
�jSj � jT j and min�S � T � � S��� we have

Theorem ���� Suppose m � m�n� is at least 
n�d� with d � o��n� logn������ and let g � g���

be the uniform distribution on C�n�m�� Suppose further that t � t�m� is such that

kg�t�k� � �� 	 o����
�n�

Then the same is true with g replaced by fF for any F of size m� and in fact for any such F�

f
�t�
F � 
�n

g�t�� 
�n
� �� 	 o���� ln ��

Remark ���� Theorem �
� holds for any initial f satisfying kfk� � �m�
n���� �i
e
 the L��norm
of fF when jF j � m��

Remark ���� For m as in the Theorem� the condition on t amounts to t � ��� 	 ���
�n lnd
with � � �� �

logd��

Again considering f � fF we have the following natural interpretation for kf �t�k��� Denote
by �s�F � the probability that a walk starting from a randomly �uniformly� chosen point of F
is again in F after the s�th step


Proposition ���� For F and f as above�

kf �t�k�� � ��t�F ���

njF j��

Given n�m and s� one may ask for �but surely not receive� the maximum of �s�F � as F ranges
over m�subsets F of Cn� More realistically� one may hope to give bounds on this maximum
which are of the correct order of magnitude
 �Note that these questions are more general than
that of the rate of growth of t for ��
��
� As above� one expects that balls and subcubes �the
usual suspects� should come close to maximizing �s� For example� it might be true that for
every F of size m

�s�F � � O�maxf�s�B�n�m����s�C�n�m��g��

We can in fact show this for various ranges of the parameters �some of which� for example� will
be evident from Theorem �
��� but are apparently far from showing it in general
 Although it
is probably too much to expect that one of these two values always is the maximum� this is at
least true at the outset�

��



Proposition ���� For s � �� � and for every n and m

maxf�s�F � � jF j � m�F � Cng � �s�C�n�m���

�For s � � this is essentially the edge�isoperimetric inequality	 For s � � it is a little harder

but still elementary	� It is not true that C�n�m� is best for all s� �It�s instructive to consider

for instance
 the comparison between B�n� n��� and C�n� n��� as s grows	� What does seem
possible �though for now this is little more than a guess� is that for a given n and m� C�n�m� is
�roughly
� optimal for s up to a certain point
 after which something like B�n�m� takes over	

� Distribution of Hamming distances

A fundamental problem in Discrete Mathematics is� Given a family of binary n�vectors F of
a given cardinality
 what can be said about the distribution of Hamming distances between
pairs of vectors in F
 In such generality the question is
 of course
 quite hopeless �The whole
theory of error correcting codes revolves around the more limited question of how large can the
minimum distance be made	� Still
 one may fruitfully study portions of the problem	

The observation which connects this problem with harmonic analysis is that if f � �F � the
characteristic function of the family F 
 then the distribution of distances in F can be easily
determined from f � f 
 the convolution of f with itself	 Letting g �� f � f 
 the frequency with
which the vector S appears as the mod � sum of pairs of vectors in F is given by g�S�	 �The
information encoded in the convolution g� is of course far more detailed then the distribution
of distances	� This is a good point of view for a number of results in error correcting codes �see
�MS�
 the standard text in this �eld�
 for instance MacWillams� formula for weight distributions
of dual codes
 or the inequalities underlying the Linear Programming bound	 This issue will be
elaborated on in the later version of this article	

We denote by dj � dj�F �
 the number of ordered pairs of vectors ��sets� in F whose
Hamming distance ��size of their symmetric di�erence� equals j	 As we mentioned above this
is the same as the sum of g�S� over all sets S of cardinality j	 We also de�ne �dj as the number
of ordered pairs X � F� Y �� F whose distance is j� and set d�b ��

P
j�b dj � and

�d�b �
P

j�b
�dj �

Obviously�

dj�F � � �dj�F � �

�
n

j

�
jF j�

We are interested in a question which is at the other extreme from that studied in coding
theory� namely we want to understand how densely packed F can be� Speci	cally� given the
dimension n� the cardinality m � jF j and a bound b � n we want to determine �or estimate�

D�m�n� b� �� max d�b�F ��

where� again� the maximum is over all families F of m binary n�vectors� The case b � 
 is
again covered by the edge isoperimetric inequality� but even for b � � the question is open and
an exact solution appears to be hard� Parts of this section deal with D while in others we study
�D�m�n� b� �� min �d�b� This may seem strange� as the exact determination of D and �D are


�



equivalent questions �since their sum is known�� However� in most ranges of the parameters we
only aim at asymptotic results� which are only of interest for the smaller of the two quantities�

We give here only a partial account of our results on this problem� It is a problem which
for di�erent ranges of the �three� parameters exhibits di�erent optimal behavior� The results
described here have been chosen to convey� according to our current understanding� some of
the characteristic behavior of the quantity D�m�n� b��

A large portion of the extremal theory of �nite sets is devoted to proving various inequal�
ities for which the extreme cases are well�de�ned� Most typically one shows the extremity of
families such as cubes �e�g� for the edge isoperimetric problem�� Hamming balls �for the vertex
isoperimetric problem�� Projective Spaces and various substructures of them� This is the case
with many of the fundamental theorems in this area� for instance the Erd	os
Ko
Rado and
Kruskal
Katona Theorems� �Good sources for this subject are �Bo� and �Fra��� It has often
proved more di
cult to obtain good estimates in cases where there do not appear to be natural
guesses as to extreme cases� We consider one of the more appealing aspects of the present work
to be the fact that we do have some success in this direction�

We start with the following easy observations on D�m�n� b� �

� For �xed n and b� and m small enough the optimum for D is attained by making F a subset
of a Hamming ball of the least possible radius�

� When jF j � �n��� the optimum is attained by a subcube of dimension n � �� Uniqueness
depends on the parity of b � for odd b the cube is the only optimum� while for even b the
set of all vectors of even Hamming weight is also optimal�

� It clearly su
ces to consider the rangem � �n���We show an upper bound onD � D�m�n� b��
which is close to optimal when m is close enough to this upper bound�

In other words� for �xed n and b if m is small enough the optimal family is a ball in which
no distance exceeds b� When m is at its maximum �n�� the cube is the best family� and near
the upper bound cubes are known to be at least close to optimal�

Remark ���� The near optimality just mentioned is established by comparing our lower bound
with the corresponding quantity for F a cube of the appropriate dimension� The question again
arises as to which are the optimal families� It would be very interesting to decide whether there
exist extreme families which are essentially di�erent from both cubes and Hamming balls� At
this stage we cannot even show that the optimal family is always a �weighted majority� family
�i�e�� the intersection of the cube and a halfspace�� See �HLL� for a case where such a result is
�easily� established in a closely related situation� A standard combinatorial argument implies
that there is no loss of generality in assuming F to be a shifted ideal� �See �F� for a survey of
shifting��

The more substantial result of this section is a lower bound for �D when n� b are �xed and m
is large enough� This lower bound is shown to be near�optimal by a comparison with the case

��



where F is a cube� This is more interesting than the third of the previously mentioned results�
as in this range �D � o�D��

Our �rst observation is that a result of Kleitman 	K
 settles the problem for small m � jF j�

Proposition ���� If

m �
X
j� b

�

�
n

j

�

then

D�m�n� b� �

�
jF j

�

�

and F is optimal i� it is contained in a Hamming ball of radius b���

To proceed with our next two results we �rst develop a formula for dk � dk�F � in terms of
the Fourier coe�cients of f � �F � Let f �

P
�SuS � then


dk�F � � �n
X

��SPk�jSj�

where Pk is the k�th Kraouchuk polynomial� �e�g� 	MS
� given by


Pk�x� �
X
j

����j
�
x

j

��
n� x

k � j

�
�

This formula readily supplies an answer to our problem when jF j � �n��� Sum the expression
for dk over k � b to derive a formula for d�b of the form

P
wjSj�

�

S � But
P

S ��� �
�

S equals p� p�

�where p � jF j��n� by Parseval� Given p �and hence ���� the maximum of d�b �
P

j�b dj is
attained by making all the �S vanish except when wjSj is maximal� It turns out that wk is
largest only for k � � if b is odd� and for k � �� n when b is even�

Theorem ����

D��n��� n� b� � �n��
X
j�b

�
n� �

j

�

For odd b this is attained only by the �n� ���dimensional cube� For even b the same holds also

for the set of vectors of even Hamming weight�

The third observation is quanti�ed as


Proposition ���� Let p 
� m��n� If

b log
�

p
� o�n��

then�

D�m�n� b� � ��� o����m
X
j�b

�
n

j

�

��



A more interesting result is that in the range considered in the previous proposition the
cube is within a constant factor away of a lower bound for �D� Following are some remarks on
the proof �which is omitted�� The previous expression for �dj may be summed to yield

�d�b �
X
S

��
SQb�jSj��

Where Qb�x� is a polynomial of degree b� By analyzing its behavior and employing Lemma ���
much in the same way it was used to prove Theorem ��	 we derive

�d�b � 
��log
	

p
�

�
n

b� 	

�
p��

Where the 
 expression refers to some speci�c absolute constant� for example 	�
� Even values
of b turn out to create some extra complication� Standard estimates for F a cube prove the
complementary inequality in

Theorem ���� Under the assumptions of the previous proposition

�D�m�n� b� � ��m�

�
n

b

�
�
�
logm

b

�
���

The existence of densely packed families of sets can also be studied using the eigenvalue
method� Consider the graph whose vertices are all binary strings of length n where two strings
are adjacent� if their Hamming distance does not exceed b� We are studying the edge isoperi�
metric inequality for this graph� Again the eigenvalues of this graph may be computed using
Kraouchuk Polynomials �see �MS���

While the eigenvalue technique is in some cases quite powerful� it yields most of the time
estimates much inferior to those given by the present approach� To give just one concrete
example� suppose jF j � 
n�n and b � n�	�
 � 	� logn�� �Appearances notwithstanding� this
choice is not at all arbitrary� any �decent� upper bound on d�b�F � for such values would give
the results on in�uence described earlier�� In this case the trivial upper bound

d�b�F � � jF j
X
k�b

�
n

k

�

and the actual value for a subcube� viz� jF jPk�b

�log jF j
k

�
� di�er by a factor of about n� The

bound given by the eigenvalue method di�ers from the trivial bound by a factor of about log� n
�this is not �decent��� whereas our approach gets about half way to the cube� beating the trivial
bound by a factor of about

p
n� �We still don�t know the answer in this range� but believe the

lower bound to be close to� if not equal to� the truth��
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