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ABSTRACT

For a simple graph G, let ξG be the size of a matching drawn uniformly at
random from the set of all matchings of G. Motivated by work of C. Godsil
[11], we give, for a sequence {Gn} and ξn = ξGn , several necessary and sufficient
conditions for asymptotic normality of the distribution of ξn, for instance

{Pr(ξn = k)}k≥0 is asymptotically normal iff νn − µn →∞

(where µn = Eξn and νn is the size of a largest matching in Gn). In particular this
gives asymptotic normality for any sequence of regular graphs (of positive degree)
or graphs with perfect matchings.

The material presented here suggests numerous related questions, some of
which are discussed in the last section of the paper.

1 Introduction

Given a graph G = (V, E), we write M(G) for the set of matchings of G. In
this paper we are concerned with the behavior of the random variable ξG =
|M |, where M is drawn uniformly from M(G). We set pk(G) = Pr(ξG = k),
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and let µ(G) and σ(G) denote the mean and standard deviation of ξG. (Our
notation here mainly follows [34, p.341].)

In what follows we often deal with sequences {Gn} of (simple) graphs.
Given such a sequence, we abbreviate ξGn , µ(Gn) and σ(Gn) to ξn, µn and σn,
and in addition set ∆(Gn) = ∆n, δ(Gn) = δn (where ∆, δ denote maximum
and minimum degrees), |V (Gn)| = vn, |E(Gn)| = en, and ν(Gn) = νn,
τ(Gn) = τn, α(Gn) = αn, where, as usual, ν, τ and α are matching, vertex
cover and independence numbers. (For graph theory background see e.g. [3]
or [34].) To avoid trivialities we always assume

vn →∞ (n →∞) and δn ≥ 1. (1)

The sequence of distributions {pk(Gn)}k≥0 is said to be asymptotically
normal if for each x ∈ R

Pr(
ξn − µn

σn

< x) → 1√
2π

∫ x

−∞
e−t2/2dt (n →∞).

In 1981, following earlier work of Harper [16] (see below), C. Godsil [11]
gave necessary and sufficient conditions for asymptotic normality of the dis-
tributions {pk(Gn)}:
Theorem 1.1 The distribution {pk(Gn)}k≥0 is asymptotically normal if and
only if

σn →∞ (n →∞). (2)

Necessity of the condition is obvious; Godsil’s proof of sufficiency is sketched
below.

Given Theorem 1.1, one is left with the problem of understanding when
the variance of ξ is large. This turns out to be surprisingly difficult and is the
primary concern of the present paper. Our main results—Theorems 1.6 and
1.10—characterize asymptotic normality in terms of several graph statistics
which, as indicated in Proposition 1.8, are more manageable than the vari-
ance. In fact the content of the paper is wholly combinatorial: the connection
with normality being established by Theorem 1.1, the task here is to develop
a sort of rough statistical minimax theory, saying that each of our statistics
is large if and only if all are large.

Before stating these results, we slightly elaborate on [11] and earlier work.
For a more thorough discussion see [34, Chapter 8].
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Let p(G, x) denote the probability generating function of the sequence
{pk(G)},

p(G, x) =
ν(G)∑

k=0

pk(G)xk.

A fundamental discovery of Heilmann and Lieb ([17], [18]; see also [29]) says
that for every G,

p(G, x) has real roots. (3)

(Note that the roots are then necessarily negative. When G is bipartite,
p(G, x) is, up to scaling by |M(G)|, the “rook polynomial” associated with
G [28], [40]. For this case (3) was conjectured (some years after [17], [18],
[29]) in [13], and a proof was provided in [37]. For more in related directions,
see [48] and the references cited there.)

The proof of Theorem 1.1 is modeled on Harper’s proof [16] of asymptotic
normality of the sequence {S(n, k)/Bn}k≥1, with S(n, k) the Stirling number
of the second kind and Bn the Bell number. Harper’s basic observation is
that, if (3) holds, then (2) is necessary and sufficient for asymptotic normality
of {pk(Gn)}k≥0. Indeed, if the roots of p(G, x) are −λi, then we must have
p(G, x) =

∏ x+λi

1+λi
, so that

ξ =
ν∑

i=1

ξi,

where the ξi are independent Bernoulli random variables with

Pr(ξi = 0) =
λi

1 + λi

, Pr(ξi = 1) =
1

1 + λi

. (4)

(This observation, rediscovered by Harper, is due to P. Lévy [31], [32].) The
sufficiency of (2) for asymptotic normality of {pk(Gn)} is then given by,
for example, either Ljapunov’s or Lindeberg’s version of the Central Limit
Theorem (e.g. [8]).

Actually, as Godsil shows, one has a bit more than asymptotic normality;
namely, for fixed x ∈ R, if (kn − µn)/σn → x, then

σnpk(Gn) → 1√
2π

e−x2/2 (n →∞).

This is called asymptotic local normality in [34]. See also [38] for a survey
of probabilistic consequences of probability generating functions with real
roots.
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Godsil used Theorem 1.1 to give one fairly general sufficient condition for
asymptotic normality:

Theorem 1.2 If en/∆
2
n →∞ then σn →∞ (and so {pk(Gn)}k≥0 is asymp-

totically normal).

Ruciński [41] then showed that the same conclusion holds under a weaker
hypothesis:

Theorem 1.3 If νn/∆n →∞ then σn →∞.

(This implies Theorem 1.2 because en ≤ 2νn∆n.)
As Godsil observed, Theorem 1.2 gives asymptotic normality for sequences

of regular graphs, provided the degrees are not too large:

Corollary 1.4 If Gn is regular of degree dn with vn/en →∞, then {pk(Gn)}k≥0

is asymptotically normal.

The proofs of (2) under the hypotheses of Theorems 1.2 and 1.3 are based
on the fact, shown in [18], that

if p(G, x0) = 0, then −x0 ≥ 1/(4(∆(G)− 1)).

Godsil also proved asymptotic normality for {pk(Kn)}k≥0 and went on to
conjecture two further sufficient conditions, viz.

(a) νn = Ω(vn), and

(b) en = Ω(v2
n).

As it turns out, both these conjectures are false:

Example 1.5 Fix ε > 0 and take Gn = Kn,b(1+ε)nc, with the parts of the
bipartition denoted X and Y (say with |X| = n) for future reference. Then
(a) and (b) hold, but σn = O(1).

Nonetheless, it seems clear that something more general than Godsil’s (or
Ruciński’s) results should be true, and his conjectures appear to have been
made in this spirit. (He describes the first conjecture as “offered more in the
hope of provoking an answer than from a confident belief in its truth.”)
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For example, neither of Theorems 1.2, 1.3 applies to sequences of regular
graphs in which degree grows in proportion to the number of vertices (though
Godsil’s conjectures would have covered, and were perhaps motivated by, this
case). That one does have asymptotic normality for such sequences is one
consequence of our first result, the “normal law” of the title:

Theorem 1.6 The distribution {pk(Gn)}k≥0 is asymptotically normal if and
only if

νn − µn →∞ (n →∞). (5)

Equivalently,
σn →∞ iff νn − µn →∞. (6)

Notice that, with notation as in (4),

σ2(G) =
ν∑

i=1

λi

(1 + λi)2
≤ min{µ(G), ν(G)− µ(G)}, (7)

which in particular gives the necessity of (5), though this, like the necessity
of (2), is clear on more general grounds. Of course µn →∞ is also necessary,
but we do not need to assume it here, since µ is in fact always of the same
order of magnitude as ν. This was discovered by L. Babai (see [11]), who
showed µ(G) ≥ ν(G)/3 for all G. Here we give an exact result:

Proposition 1.7 For every multigraph G, µ(G) ≥ ν(G)/2.

This is sharp, for example, when G is a matching or a path of length 3, and
also in various other cases. While we don’t really need Proposition 1.7 in
what follows (we do use it in the proof of Theorem 1.3 given in Section 5),
we include it as it seems natural and not quite obvious. The easy proof is
given at the end of Section 2.

Let us again stress that Theorem 1.6 is by no means a matter of replac-
ing one unverifiable condition by another. This is illustrated by the next
Proposition, which is proved in Section 3. (Recall we assume (1).)

Proposition 1.8 Each of the following implies (5):

(a) νn > (1− o(1))vn/2;

(b) νn/∆n →∞;

(c) δn = ω(∆2
n/vn);

(d) δn = (1− o(1))∆n.
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In particular we recover (via (b)) Theorems 1.2 and 1.3. (Of course Theo-
rem 1.3 also implies that (b) gives (5).) Note that since νn > en/(2∆n) ≥
vnδn/(4∆n), condition (c) implies condition (b), so implies (5) provided (b)
does. We include (c) because it together with (d) characterizes those se-
quences {(vn, δn, ∆n)} which guarantee (5). (That is, we have (5) for all
{Gn} with {(vn, δn, ∆n)} iff at least one of (c), (d) is satisfied. For instance,
to see necessity when (δn+∆n)|vn, take Gn to consist of vn/(δn+∆n) copies of
Kδn,∆n .) Of course (d) shows in particular that we have asymptotic normality
for sequences of regular graphs.

Note also that (a) gives asymptotic normality whenever the Gn have
perfect matchings. This includes, for example, Godsil’s asymptotic normality
of {pk(Kn)} (as does (d)). It also includes Harper’s asymptotic normality of
{S(n, k)/Bn} (see [11] or [40, p.213] for the connection). Interestingly, (a) is
best possible: for positive constant ε, the assumption νn > (1− ε)vn/2 does
not imply (5), as shown by Example 1.5 above.

As indicated above, Theorem 1.6 provides the first proof of (2) for se-
quences of regular graphs. In fact, as shown even more recently in [27], the
values of µ and σ2 for a regular graph are remarkably well determined just
by degree and number of vertices. For x ∈ V (G), we write p(x) for the
probability that x is not covered by the random matching M .

Theorem 1.9 ([27]) For any d-regular simple graph G,

(a) p(x) ∼ d−1/2 ∀x ∈ V (G), so that v(G)− 2µ(G) ∼ v(G)/
√

d,

(b) σ2(G) ∼ v(G)/(4
√

d)

(with limits taken as d →∞, so e.g. the convergence in (a) of p(x)d1/2 to 1
is uniform in G, x).

Theorems 1.6 and 1.9 and Proposition 1.8 were announced in [21], [22].

The next result expands Theorem 1.6 to include a few more equivalent
conditions. We need two additional parameters, which may be of independent
interest. The first, which we may call the cover defect (name suggested by
L. Babai), is

κ(G) = min{∑

y∈Y

p(y) : Y a vertex cover of G}

= min{E[|Y \ ∪A∈MA|] : Y a vertex cover of G}.
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Write FM for the set of edges not meeting any edges of M . Our second new
parameter—call it the residual matching number—is

λ(G) = E[ν(FM)].

As in other cases, we set κ(Gn) = κn, λ(Gn) = λn. We state our condi-
tions now in the negative, the form in which we shall usually treat them in
what follows. (As usual, τ denotes vertex cover number.)

Theorem 1.10 The following are equivalent:

(a) σn = O(1);

(b) νn − µn = O(1);

(c) τn − µn = O(1);

(d) κn = O(1);

(e) λn = O(1).

The equivalence of (a) and (b) is just Theorem 1.6. As noted above, (b) ⇒
(a) follows from (7). That (c) implies (b) is trivial. Note this also shows
that τn − νn →∞ is sufficient for asymptotic normality; it is not necessary,
however (take Gn = Kn,n). Other easy implications are (b) ⇒ (e) and (d)
⇒ (e). Condition (d) is central in that the proof that (a) ⇒ (b) (that is,
Theorem 1.6) goes via (a) ⇒ (d) ⇒ ((c) ⇒) (b). The hardest part of this is
(a) ⇒ (d), which is shown in Section 8. The other, easier implications are
given in Section 7.

Of course, Theorem 1.10 simply says that each of the quantities σ(G),
ν(G)−µ(G) etc. appearing in (a)-(e) can be bounded in terms of the others.
Though the bounds in the implications we prove directly are all quite tight,
most of the implied bounds should be improvable. For example, we show,
provided σ(G) = Ω(1), that ν(G)−µ(G) = O(κ2(G)) and κ(G) = O(σ4(G)),
whence ν(G)− µ(G) = O(σ8(G)). But while the first two bounds are sharp
(except for the constants), the third probably is not: we conjecture that

if σ(G) = Ω(1), then ν(G)− µ(G) = O(σ6(G)). (8)

This would be best possible; see Example 7.2. (The rather strange fact that
ν−µ can be so much larger than σ2 suggests that it may not be easy to find
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a very simple proof of Theorem 1.6. When σ(G) is small then we do get the
right bound here, namely ν(G)− µ(G) = O(σ2(G)). See Section 7 for more
on what we know and would like to know in this vein.)

We record one more sufficient condition, also proved in Section 7.

Proposition 1.11 If
τn > (1− o(1))vn/2, (9)

then {pk(Gn)} is asymptotically normal.

Note (9) is weaker than (a) of Proposition 1.8, and is equivalent to

αn < (1 + o(1))vn/2

(with α as usual denoting independence number). It was initially thought
that an argument similar to those needed for Proposition 1.8 would suffice
for Proposition 1.11, but we do not see this at the moment. (Of course, (9)
is also not so easy to check as the conditions of Proposition 1.8.)

In connection with an earlier version of this paper, Anant Godbole [10]
asked me whether one could prove a Poisson limit for ξn in case σn or νn−µn

tends to a constant rather than infinity. A partial answer is given by the
next theorem, in which we write p(A) for the probability that A ∈ E(Gn)
belongs to M drawn uniformly from M(Gn).

Theorem 1.12 Let c be a positive constant, and suppose νn−µn → c. Then
the distribution of νn − ξn converges to Po(c) (that is, Pr(νn − ξn = k) →
e−cck/k! for each k) provided max{p(A) : A ∈ E(Gn)} → 0.

In fact this may be a full answer: it seems likely that the condition max{p(A) :
A ∈ E(Gn)} → 0 is also necessary for the Poisson limit, though showing this
seems less straightforward than one might expect.

Before closing this section, we just sketch a few points from the proof of
Theorem 1.10.

For M ∈M we again write FM for the set of edges of G not met by any
edges of M , and define the random variable ψ on M by

ψ(M) = |FM |.
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Notice—see (11) below—that E[ψ] = µ. More generally, for any F ⊆ E, we
define

ψF (M) = |FM ∩ F |,
the number of edges of F not met by any edges of M .

The central idea of the proof is that there is a tradeoff between concen-
tration of ξ and concentration of ψ: if the variance of ψ is small relative
to µ2, then σ2 = σ2

ξ must be large (see Lemma 6.1). The original proof of
asymptotic normality for regular graphs (which was the first step in the di-
rection of the present work) is a direct application of this idea, and is given
following Lemma 6.1.

In general, however, ξ and ψ can both fail to be concentrated. For in-
stance, we may take Gn to be the union of two graphs, one with large σ and
the other with large σψ. A more interesting example is obtained from Exam-
ple 1.5 by adding bεnc new vertices to X, and joining them by a matching
N to some bεnc vertices of Y .

Such examples suggest that σ may be mostly attributable to some F ⊆ E,
and that we should try to identify such an F and derive a lower bound on
σ from concentration of ψF . (In the second example, most of σ comes from
|M ∩ N | (the variance of |M \ N | is O(1)), and ψN is concentrated. (The
distribution of |M ∩ N | is close to the binomial distribution B(bγnc, 1/2),
with γ = ε2/(1 + ε).))

As it turns out, we can show (Lemma 6.5) that σ → ∞ if some ψF has
small variance, but have not so far been able to complete a proof based
entirely on this fact. What we can do instead is to extract enough structural
information from the lack of concentration of appropriate ψF ’s to finish in a
simpler way, based on the observation (Lemma 5.1) that if σ is small, then no
matching N can have large E[|M∩N |]. (Section 5 also includes a surprisingly
simple proof of Theorem 1.3 based on this observation.)

Crucial to many of our arguments is the fact that there is considerable ap-
proximate independence in the probability spaces in question. For example,
conditioning on some particular x ∈ V being covered by M has little effect
on the expected size of M , or, for most other vertices y, on the probability
that y is also covered. Results in this vein, based on a simple but surprisingly
powerful observation from [25], are given in Section 4.

The rest of the paper is organized as follows. Section 2 contains notation,
a few easy identities, and the proof of Proposition 1.7. Section 3 contains
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the proof of Proposition 1.8.
The main part of the paper consists of Sections 4-8. The first three of

these are devoted to the various Lemmas mentioned above. In Section 7,
we prove Proposition 1.11 and the easier parts of Theorem 1.10, and in
Section 8 we complete the proofs of Theorems 1.6 and 1.10 by showing that
(a) of Theorem 1.10 implies (d).

Section 9 supplies the proof of Theorem 1.12, which is mainly an appli-
cation of some of the earlier arguments.

Finally, Section 10 discusses some of the many questions suggested by the
present work.

2 Preliminaries

Throughout the paper we take “graph” to mean simple graph. In what
follows, we deal with a fixed graph G = (V,E), and write M = M(G),
ξ = ξG and so on. For M ∈M and x ∈ V , we write x ≺ M if x is contained
in some edge of M . As already mentioned, we write FM for the set of edges
not met by any edges of M , i.e.

FM = {A ∈ E \M : M ∪ {A} ∈ M},

and set ψ = ψ(M) = |FM |, and ψ
F
(M) = |FM ∩ F | if F ⊆ E.

A natural generalization of uniform distribution on M is the distribution
p = pα derived from some α : E → R+ according to

w(M) =
∏

A∈M

αA,

p(M) = w(M)/
∑

M ′∈M
w(M ′).

We will call pα the hard-core distribution associated with α. The name is
from statistical physics (e.g. [2]), where the weights αA are sometimes called
activities. (“Monomer-dimer system” and “exclusion model” are also used;
see e.g. [17], [18], [29].) Other recent, rather diverse contexts in which hard-
core distributions have proved important include [33], [39], [30] (see also [7]
for an exposition of [30]). They are called “normal populations” in [39],
and in [30], are not thought of as probability distributions at all, but as
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“canonical” convex representations of points in Rn. See also [26], [23], [24]
for applications of hard-core distributions to combinatorial problems. (The
last two references are more recent than the present work, but were written
a little more quickly.)

Of course α ≡ 1 gives uniform distribution, and, more generally, if α :
E → N, then pα corresponds to uniform distribution on M(G(α)), where
the multigraph G(α) is obtained from G by taking αA copies of A for each
A ∈ E.

Though we deal with hard-core distributions only in passing, it would
be very interesting to understand how our results might generalize to this
setting; see Section 10. (We introduce the distributions here rather than in
Section 10 because they appear briefly in Section 4.)

For p a probability distribution on M, M ∈ M chosen according to p,
xi ∈ V and A = {x, y} ∈ E, set

p(x1, . . . , xt) = Pr(x1, . . . , xt ≺ M),

p(x1, . . . , xt) = Pr(x1, . . . , xt 6≺ M),

and
p(A) = p(xy) = Pr(A ∈ M).

(Note that p(xy) is not the same as p(x, y); but we will make no use of the
latter, so hopefully this will not cause any confusion.) We also extend this
notation to conditional probabilities—e.g. p(x|y)—in the obvious way.

From now on, except where stated otherwise, we confine ourselves to
uniform distribution on M(G) with G simple.

For A = {x, y} ∈ E we have the trivial but important identity

p(A) = p(x, y), (10)

which implies in particular
E[ψ] = µ. (11)

Another quantity which plays an important role in what follows is

ϕ(x) :=
∑
y∼x

p(y). (12)

As will appear below (see Section 4), ϕ(x) is usually about the same as
p(x)−1. This is made at least plausible by the basic identity
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p(x) = [1 +
∑
y∼x

p(y|x)]−1 (13)

Proof. By (10),

1− p(x) = p(x) =
∑

x∈A∈E

p(A) =
∑
y∼x

p(x, y).

Dividing by p(x) and rearranging gives (13).

2

Let us mention another identity in the same vein. We do not need this for
our main argument, but will use it later (see Section 6) to give a relatively
simple proof of asymptotic normality for regular graphs. (We use d(x) for
the degree of x.)

p(x) =
1

d(x) + 1
[1 +

∑{p(x, y, z) : x ∼ y ∼ z 6= x}] (14)

Proof. Multiplying by (d(x) + 1)/p(x) and using (13), we find that (14) is
equivalent to

1 +
∑
y∼x

[p(y|x) +
∑{p(y, z|x) : x 6= z ∼ y}] = d(x) + 1.

But the term in square brackets is easily seen (use (10) in G−x) to be equal
to 1 for each y.

2

We close this Section with the promised

Proof of Proposition 1.7. (Recall p here is uniform distribution on M(G)
with G = (V, E) a multigraph.) We use induction on |E|. If G is a matching
then µ = ν/2. If not, choose A ∈ E with ends x, y such that some maximum
matching of G does not contain A. Set p(A) = p. Let G′ = G − x − y,
G′′ = G − A, and let M ′, M ′′ be random matchings of G′, G′′ respectively.
Then

ν(G′) ≥ ν − 2
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and (by choice of A)
ν(G′′) = ν.

So by induction we have

µ = pE[|M ||A ∈ M ] + (1− p)E[|M ||A 6∈ M ]

= p(E[|M ′|] + 1) + (1− p)E[|M ′′|]
≥ p(ν(G′)/2 + 1) + (1− p)ν(G′′)/2

≥ ν/2.

2

3 Sufficient conditions

In this section we prove Proposition 1.8. The proof is based on some con-
sideration of the random variable ψ(M). As mentioned earlier, ψ and the
related random variables ψ

F
will again play a central role in the proofs of

our main results.
We have already noted that (c) ⇒ (b). For the implication (d) ⇒ (5), we

mainly appeal to work of Bollobás and Eldridge [4] which says in particular
that if ∆n = ω(1) and (d) holds then (a) holds as well. (Bollobás and Eldridge
actually give the minimum possible ν for any specified values of δ, ∆ and
v, but of course nothing so precise is needed here.) If ∆n = O(1) then (d)
does not imply (a), but instead (trivially, by (1)) implies (b). (Of course
it is enough to prove (d) ⇒ (5) under each of the assumptions ∆n = ω(1),
∆n = O(1).)

Thus we really only need to derive (5) from (a) and (b). We now dispense
with the sequence notation of Section 1 and work with a fixed G (taking v,
ν etc. to be parameters of G), our task then being to show that ν − µ is
bounded below by appropriate functions of the quantities in (a) and (b) (see
(19), (21)).

We use the fact that if the (arbitrary) probability distribution {pi}ν
i=0

satisfies, for some k,
pk ≥ pk+1 ≥ · · · ≥ pν ,

then for its mean µ we have µ ≤ (ν + k)/2, and so

ν − µ ≥ (ν − k)/2. (15)
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Let Mi = Mi(G) denote the set of i-matchings (matchings of size i) of
G, and set mi = |Mi| and m = |M| = ∑

mi. Thus pi := pi(G) = mi/m.
Let k be the largest index for which

pk < pk+1. (16)

For i = 1, . . . , ν form the natural bipartite graph Bi on Mi−1 ∪ Mi;
namely, for M ∈Mi−1, M ′ ∈Mi,

M ∼Bi
M ′ ⇐⇒ M ⊆ M ′.

Thus for degrees in Bi we have

d
Bi

(M) =

{
ψ(M) if M ∈Mi−1

|M | (= i) if M ∈Mi.

Let ψi denote the average of ψ on Mi:

ψi =
1

mi

∑

M∈Mi

ψ(M).

Then
mkψk = |E(Bk+1)| = mk+1(k + 1),

so (16) is the same as
ψk > k + 1. (17)

Note that for any M ∈ Mk the ψ(M) edges of FM have matching number
at most ν − k, so can be covered by at most 2(ν − k) vertices; that is,

τ(FM) ≤ 2(ν − k). (18)

For (a) ⇒ (5) we show

ν − µ = Ω

(
ν

max{v − 2ν,
√

v}

)
. (19)

(Note this is sharp for any G = Kν,v−ν .) To see this, note that by (18) we
have

ψ(M) < 2(ν − k)(v − 2k)
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for any M ∈Mk, so also, using (17),

k < ψk < 2(ν − k)(v − 2k). (20)

Using (15) and the equivalent

k ≥ 2µ− ν =
1

2
[v − (v − 2ν)− 4(ν − µ)],

and setting x = 4(ν−µ), y = v−2ν, we have from (20), v−(y+x) ≤ 2x(x+y),
which implies

x ≥ 1

4
[−(2y + 1) +

√
(2y + 1)2 − 8(y − v) ]

=
4ν

2y + 1 +
√

(2y − 1)2 + 8v
.

This gives (19).

2

For the derivation of (5) from Ruciński’s condition (b), we again use (18)
and (15), which imply

ν − 2(ν − µ) ≤ k < ψk ≤ 2(ν − k)∆ ≤ 4(ν − µ)∆

and
ν − µ ≥ ν/(4∆ + 2). (21)

Note this is again about right; for example, ν − µ = ν/(∆ + 1) if G is a
disjoint union of ∆-stars.

4 Approximate independence

A guiding idea in the present work is that, while we usually cannot expect
exact independence of events of interest, we do have considerable approximate
independence. The following simple lemma, essentially from [25], is the basis
for the results we need in this direction. Though we will mostly be concerned
with uniform distribution in what follows, the lemma is true for all hard-core
distributions; thus p should be understood as any pα.
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For W ⊆ V we set

µ(W ) = µG(W ) =
∑

w∈W

p(w),

and extend this notation to conditional situations—e.g. µ(W |w), µ(W |w)—
in the obvious way. (So for example µ(W |w) = µG−w(W \ {w}).)

Lemma 4.1

(a) If w ∈ W , then

0 ≤ µ(W )− µ(W |w) ≤ 2p(w).

(b) If w ∈ V \W then

−p(w) ≤ µ(W )− µ(W |w) ≤ p(w).

Remarks
1. In particular this says that deleting a vertex cannot increase the ex-

pected size of our random matching. The same is not true for edge deletions
(exercise). Also, somewhat curiously in view of the limited effect of vertex
deletions on any µ(W ), there is no constant bound on |E[|M ∩F |]−E[|M ∩
F ||v]| for general F ⊆ E. For example, take G to be a tree of depth D
rooted at v, with vertices at depth i < D having degree, say, (D − i)2, and
let F consist of edges at odd depth (where those containing v are at depth
0). Then it’s not hard to see that E[|M ∩ F ||v]− E[|M ∩ F |] = Ω(D). (For
multigraphs, a path of length D with initial vertex v and ith edge having
multiplicity (D − i + 1)2 achieves the same effect.)

2. The cases of equality in Lemma 4.1 are easily extracted from the proof:
equality holds in the lower bounds iff w is an isolated vertex, and in the upper
bounds iff the component of G containing w is a star (possibly singleton) with
center w and all other vertices contained in W . Relaxing the bounds in the
Lemma by replacing p(w) by (say) 1 would not make any serious difference
in the applications below.

Proof of Lemma 4.1. We proceed by induction on |V (G)|; base cases are easily
verified. Notice that (a) with W = X is the same as (b) with W = X \ {w},
so it’s enough to prove (a).

16



Write N(w) for the neighborhood of (set of vertices adjacent to) w, and
set

N(w) ∩W = {w1, . . . , wa}, N(w) \W = {v1, . . . , vb}.
Then

µ(W )− µ(W |w) = p(w)µ(W |w) +
∑

i

p(wwi)[2 + µ(W |w, wi)]

+
∑

j

p(wvj)[1 + µ(W |w, vj)]− µ(W |w)

=
∑

i

p(wwi)[2 + µ(W |w, wi)− µ(W |w)]

+
∑

j

p(wvj)[1 + µ(W |w, vj)− µ(W |w)] (22)

Each of the terms in square brackets in (22) is between 0 and 2, because, by
induction,

−2 ≤ µ(W |w, wi)− µ(W |w) ≤ 0,

−1 ≤ µ(W |w, vj)− µ(W |w) ≤ 1.

The bounds of (a) follow, since
∑

x∼w p(wx) = p(w).

2

We record a number of consequences, now confining ourselves to uniform
distribution. (Proofs will follow.) Neither Lemma 4.1 nor the corollaries
below are the last word on this subject, but they are more than sufficient for
our purposes.

Corollary 4.2 Fix W ⊆ V and define the random variable ζ = ζ
W

by

ζ(M) = |{w ∈ W : w 6≺ M}|.
Then (denoting the mean and variance of ζ by µζ, σ2

ζ )

σ2
ζ ≤ 2

∑

x∈W

p(x)p(x) ≤ 2µζ .

Corollary 4.3 For all distinct x, y ∈ V ,

1

1 + p(x)
≤ p(x, y)

p(x)p(y)
≤ min

{
1

p(x)
, 2

}
.

17



Corollary 4.4 For all distinct x, y ∈ V ,

|p(x)− p(x|y)| ≤ 2p(x)2.

Corollary 4.5 For any x ∈ V

p(x) max{p(x), 1/2} ≤ p(x)ϕ(x) ≤ 1.

(See (12) for ϕ.)
For X, Y ⊆ V , set E(X) = {{x, y} ∈ E : x, y ∈ X} and E(X, Y ) =

{{x, y} ∈ E : x ∈ X, y ∈ Y }.
Corollary 4.6 Let W ⊆ V , x ∈ V and suppose F ⊆ E(W ) ∪ E(W,V \W )
contains no edges containing x. Then

| ∑

A∈F

(p(A|x)− p(A))| ≤ 4
∑

w∈W

p(w). (23)

Corollary 4.7 Suppose W ⊆ V satisfies

p(x) ≥ α ∀x ∈ W

and
E[|M ∩N |] ≤ C for every matching N ⊆ E(W ).

Then there exists a cover X of E(W) satisfying
∑

x∈X

p(x) ≤ 4Cα−1.

We proceed to the proofs.

Proof of Corollary 4.2. (Notice that only the first inequality requires proof.)
For x ∈ W let ζx be the indicator of the event {x 6≺ M}. Then ζ =

∑
x∈W ζx,

and (using Lemma 4.1 for the inequality)

σ2
ζ =

∑

x∈W

∑

y∈W

(p(x, y)− p(x)p(y))

=
∑

x∈W

p(x)
∑

y∈W

(p(y|x)− p(y))

≤ 2
∑

x∈W

p(x)p(x).

18



2

(When W = V the bound σ2
ζ ≤ 2µζ follows from (7), since in this case

µζ = v − 2µ ≥ 2(ν − µ), implying

σ2
ζ = 4σ2

ξ ≤ 4(ν − µ) ≤ 2µζ .)

For the proofs of Corollaries 4.3-4.5, let

A =
∑
z∼x

p(z|x), B =
∑{p(z|x, y) : y 6= z ∼ x},

so that
p(x) = (1 + A)−1, p(x|y) = (1 + B)−1

and
p(x, y)

p(x)p(y)
=

1 + A

1 + B
. (24)

We assert that
−p(y|x) ≤ A−B ≤ 1. (25)

If y 6∼ x this is immediate from Lemma 4.1 (applied to G− x; here we could
replace the upper bound in (25) by p(y|x)).

If y ∼ x then

A−B =
∑{p(z|x)− p(z|x, y) : y 6= z ∼ x}+ p(y|x).

The sum again has absolute value at most p(y|x), so we again have (25) (and
could increase the lower bound to −p(y|x) + p(y|x)).

Proof of Corollary 4.3. In view of (24), the first inequality of (25) gives

p(x, y)

p(x)p(y)
≥ 1 + A

1 + A + p(y|x)
=

1

1 + p(x, y)
≥ 1

1 + p(x)
,

while the second gives (noting B ≥ 0)

p(x, y)

p(x)p(y)
≤ min

{
1 + A

A
,
2 + B

1 + B

}
≤ min

{
1

p(x)
, 2

}
.

2
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Both the upper bounds of Corollary 4.3 are sharp when {x, y} is an iso-
lated edge of G. The lower bound can be improved, as indicated above, to
[1 + p(x, y)]−1 when x 6∼ y (this is sharp if G is a path of length 2 with ends
x, y), and to [1 + p(x)− 2p(x, y)]−1 when x ∼ y (this is sharp whenever x is
the unique neighbor of y).

Proof of Corollary 4.4.

|p(x)− p(x|y)| = |(1 + A)−1 − (1 + B)−1|
= |B − A|p(x)p(x|y)

≤ p(x)p(x|y)

≤ 2p(x)2

(the first inequality by (25), and the second by Corollary 4.3).

2

Proof of Corollary 4.5. The upper bound follows from ϕ(x) ≤ A + 1, a
consequence of Lemma 4.1. For the lower bound we use Corollary 4.3 to
obtain

ϕ(x) =
∑
z∼x

p(z) ≥ max{p(x), 1/2}A,

and

p(x)ϕ(x) ≥ p(x) max{p(x), 1/2}[p(x)−1 − 1] = p(x) max{p(x), 1/2}.
2

Proof of Corollary 4.6. We may assume x 6∈ W . For each A ∈ F , choose
an end w(A) ∈ W of A. In what follows, w ranges over W , and, given w, z
ranges over vertices joined to w by edges A of F with w(A) = w. The left
hand side of (23) is then

|∑
w

∑
z

(p(w, z|x)− p(w, z))| = |∑
w

∑
z

{p(w|x)(p(z|x, w)− p(z|w))

+ p(z|w)(p(w|x)− p(w))}|
≤ ∑

w

{p(w|x)|∑
z

(p(z|x, w)− p(z|w))|

+ 2p(w)2
∑
z

p(z|w)}

≤ 2
∑
w

p(w)(1 + p(w)) ≤ 4
∑

p(w)
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(using Corollary 4.4 for the first inequality and Lemma 4.1, Corollary 4.3
and (13) for the second).

2

The bound here, while sufficient for our purposes, seems far from the truth,
and ought to be improvable (though, as noted in Remark 1 following the
statement of Lemma 4.1, it cannot be improved to O(1)).

Proof of Corollary 4.7. Let N = {{xi, yi} : i ∈ I} be a maximal matching of
E(W ). Then by Corollary 4.3 and the assumptions on W ,

C ≥ E[|M ∩N |]
=

∑

i∈I

p(xi, yi)

≥ (1/2)
∑

i∈I

p(xi)p(yi)

≥ (α/4)
∑

i∈I

(p(xi) + p(yi)).

Since ∪i∈I{xi, yi} covers E(W ), this gives Corollary 4.7.

2

5 Few edges per matching

Lemma 5.1 For any matching N ⊆ E,

E[|M ∩N |] ≤ 2σ2. (26)

Proof. Let Y = M \N , and define β(Y ) to be the number of edges of N not
meeting any edge of Y . Then V ar[ξ|Y ] = β(Y )/4, so

σ2 = V ar[ξ] ≥ E{V ar[ξ|Y ]} =
1

4
E[β(Y )]. (27)

On the other hand, E[|M ∩N ||Y ] = β(Y )/2, so

E[|M ∩N |] = E{E[|M ∩N ||Y ]} =
1

2
E[β(Y )],

and this with (27) gives (26).
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Corollary 5.2 σ2 ≥ 1
2

∑
A∈E p(A)2

Proof. Since
E[

∑

A∈M

p(A)] =
∑

A∈E

p(A)2, (28)

there exists a matching N (namely one for which
∑

A∈N p(A) is at least the
left hand side of (28)) with

E[|M ∩N |] =
∑

A∈N

p(A) ≥ ∑

A∈E

p(A)2.

The Corollary now follows from Lemma 5.1.

2

We can use Lemma 5.1 to give a very simple proof of Theorem 1.3 (so
also Theorem 1.2), as follows.

Given G (simple) of maximum degree ∆, let N1∪· · ·∪N∆+1 be a partition
of E(G) into matchings (this exists by Vizing’s Theorem [47]). Then by
Lemma 5.1 (for the first inequality) and Proposition 1.7 (for the third), we
have

σ2 ≥ 1

2
max

i
E[|M ∩Ni|] ≥ µ

2(∆ + 1)
≥ ν

4(∆ + 1)
.

2

(Note this gives σ2 ≥ |E|/(4(∆ + 1)2), since ν ≥ |E|/(∆ + 1), e.g. by Viz-
ing’s Theorem. The original Godsil and Ruciński bounds for Theorems 1.2,
1.3 are σ2 > |E|/(16∆2) and σ2 > ν/(36∆), the latter improvable to σ2 >
ν/(16∆) by substitution of Proposition 1.7 for Babai’s µ ≥ ν/3. The pre-
ceding argument does a little better than these, even if—to make “very sim-
ple” unexceptionable—we replace Vizing’s Theorem by the trivial χ′(G) ≤
2∆− 1.)
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6 ξ vs. ψ

As mentioned in the Introduction, the next lemma, a sort of uncertainty prin-
ciple for ξ and its “transform” ψ, is at the heart of our proofs of Theorems 1.6
and 1.10. That something of this nature should be true is not surprising, but
it’s interesting that, at least at present, such a circuitous approach to the
variance of ξ seems the most effective.

Lemma 6.1 There are positive constants A, B such that either

σ2 ≥ µ/A

or
σ2

ψσ2 ≥ µ2/B.

Lemma 6.1 is valid as a purely numerical statement, as follows. Suppose
X is a random variable taking values in {0, . . . , ν} (ν just some natural
number), with

pk := Pr(X = k) > 0 0 ≤ k ≤ ν.

Set

ψk =

{
(k + 1)pk+1/pk if 0 ≤ k ≤ ν − 1
0 if k = ν,

and define the random variable ψ by Pr(ψ = ψk) = pk. Notice that if X = ξ
as in our situation, then ψ has the same distribution as the conditional
expectation E[ψ|ξ], so σ2

ψ ≥ σ2
ψ

.

(Of course this applies to any finite collection of sets M closed under
taking subsets, with

Mk := {M ∈M : |M | = k} 6= ∅ iff 0 ≤ k ≤ ν,

ψ(M) = |{M ′ ∈Mk+1 : M ′ ⊃ M}| for M ∈Mk,

and X the size of M chosen uniformly from M. Combinatorially this seems
the natural level of generality for the present discussion.)

Thus, with µ := E[X] = E[ψ], Lemma 6.1 is contained in
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Lemma 6.2 With notation as above, there are positive constants A, B such
that either

σ2
X ≥ µ/A (29)

or
σ2

ψ
σ2

X ≥ µ2/B. (30)

This is, of course, more generality than we need, and in particular the
special case of small µ is not relevant for us; but for completeness’ sake we
say the few extra words needed to prove the Lemma as stated.

It should be noted that the option (29) cannot be excluded. For example,
if X has the binomial distribution B(ν, p), then, with q = 1 − p, we have
µ = νp, σ2

X = νpq and σ2
ψ

= (p/q)2νpq, so (30) fails for small p. We don’t

know whether (29) is still needed when X = ξ(G), but suspect it is not. (See
also Conjecture 6.3 below.)

Proof of Lemma 6.2. We prove the Lemma with A = 1000 and B = 4000.
These values are by no means optimal, but for present purposes there seems
little point in trying to improve them.

Write σ for σX . We first show that we may assume σ is not too small.
Suppose σ ≤ 1/4. We may also suppose

µ ≥ 1/2,

since it’s easy to see that otherwise σ2 ≥ µ/2.
Now since

1/16 ≥ σ2 ≥ ∑{pk/4 : |k − µ| ≥ 1/2}, (31)

there is a (unique) integer k0 with |k0 − µ| < 1/2, and, clearly,

k0 > 2µ/3. (32)

Let k = k0 − 1. By (31),

pk0 ≥ 1− 4σ2 ≥ 3/4 and pk ≤ 4σ2 ≤ 1/4. (33)

Combining (32), (33), we have ψk = k0pk0/pk ≥ 2µ and

σ2
ψ
≥ pk

(
k0pk0

pk

− µ

)2

≥ pk

(
1

2

k0pk0

pk

)2

=
(k0pk0)

2

4pk

>
(µ/2)2

4 · 4σ2
=

µ2

64σ2
.
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(So we have (30).)

We may thus suppose that

σ > 1/4. (34)

Assume also that (29) and (30) fail; that is, that

σ2 < µ/A and σ2
ψ
σ2 < µ2/B, (35)

with A and B as above.
Notice first of all that there is some

b ≥ µ− 2σ (36)

with

pb ≥ 1

8σ + 1
, (37)

since otherwise (using (34)),

σ2 ≥ (2σ)2 Pr(|X − µ| ≥ 2σ) ≥ (2σ)2(1− 4σ + 1

8σ + 1
) > σ2.

Let us choose such a b with pb as large as possible.
Suppose

pk ≥ pb/2 for a ≤ k ≤ b,

pa−1 < pb/2.

Then, noting that the variance of uniform distribution on {a, . . . , b} is (b −
a + 2)(b − a)/12, and that we can partition our probability space as Q ∪ R
with Pr(Q) = (b− a + 1)pb/2 and X|Q uniform on {a, . . . , b}, we have

σ2 ≥ (b− a + 2)(b− a + 1)(b− a)pb/24,

whence

(b− a)3 < 24(8σ + 1)σ2 < 24 · 12σ3

(using (37) for the first inequality and (34) for the second). Thus

b− a < C ′σ (38)
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and (by (36))
µ− a < Cσ, (39)

where C ′ = 3
√

288 and C = C ′ + 2 < 9.
Set γ = Cσ/µ, and note that (by (34) and (35))

γ < 36/A. (40)

Define δk by
pk+1 = (1 + δk)pk.

(We think of δk as positive, though it will not always be so.)
Using (39), we have, for k ≥ a− 1,

ψk = (k + 1)pk+1/pk > (1− γ)µ(1 + δk)

= (1 + (δk − γ − γδk))µ =: (1 + ζk)µ. (41)

Suppose first that
δa−1 ≥ 1/2.

Then

ζa−1 = (1− γ)pa/pa−1 − 1 ≥ (
1

3
− γ)

pa

pa−1

and

µ2

Bσ2
> σ2

ψ
≥ pa−1ζ

2
a−1µ

2 ≥ (
1

3
− γ)2p2

aµ
2

pa−1

≥ (
1

3
− γ)2 3

2
paµ

2 ≥ (
1

3
− γ)2 3µ2

4(8σ + 1)
,

contradicting (34) or (40).
We may therefore suppose that

δa−1 < 1/2.

Then by our choice of a, b,

2 <
b−1∏

k=a−1

(1 + δk) <
3

2

b−1∏

k=a

(1 + δk),
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whence
b−1∑

k=a

δk > ln(4/3)

and (using (38), (40) and (35))

b−1∑

k=a

ζ+
k ≥ (1− γ)

b−1∑

k=a

δk − (b− a)γ

> ln(4/3)− γ(ln(4/3) + C ′σ)

> ln(4/3)− (36 ln(4/3) + C ′C)/A =: X.

But then, finally (again using (41), (38) and (34)),

σ2
ψ

=
∑

pk(ψk − µ)2

≥
b−1∑

k=a

pk(ζ
+
k )2µ2

≥ µ2

2(8σ + 1)

b−1∑

k=a

(ζ+
k )2

≥ µ2

2(8σ + 1)

1

b− a
(
b−1∑

k=a

ζ+
k )2

≥ µ2X2

2(8σ + 1)C ′σ

≥ µ2/(Bσ2).

2

Though Lemma 6.2 is adequate for our purposes, it would be nice to have
a more definitive version—for example under the additional assumption that
the roots of

∑
pkx

k are real—since the question the Lemma addresses seems
a natural one. We mention one possibility in this direction, which would be
of some interest for the case of regular graphs, as discussed below.

Conjecture 6.3 Let X, ψ be as in Lemma 6.2, and suppose that the roots
of

∑ν
k=0 pkx

k are real. Then σ2
ψ
σ2

X ≥ µ4ν−2.

27



This is sharp when X has the binomial distribution B(ν, p). (Note ξG is
binomial if G is a disjoint union of triangles or of stars of a fixed size.) As far
as we know, Conjecture 6.3 might even be true under the weaker assumption

that {pk

(
ν
k

)−1} is log concave, though we are inclined to doubt this.

As mentioned earlier, we will also need to consider more general ψ
F
’s.

Before doing so, let us show that Lemma 6.1 is already enough to establish
asymptotic normality, and even the correct order of magnitude of σ2, for se-
quences of regular graphs. Namely, we show that there are positive constants
a1, a2 such that for d-regular G,

a1vd−1/2 < σ2 < a2vd−1/2 . (42)

We will use (the upper bound from) the following rough version of The-
orem 1.9(a).

Proposition 6.4 There are positive constants c1, c2 such that for any d-
regular G and x ∈ V (G),

c1d
−1/2 < p(x) < c2d

−1/2. (43)

Of course we could just use Theorem 1.9(a) here, but want to emphasize
that (42) can be proved relatively simply. (The arguments of [27] are as of
now not very simple.) We are also inclined to record the proof of (42) in its
original form.

Proof of Proposition 6.4 (sketch). With the pair G, v we associate the tree
T = T (G, v) whose vertices are the self-avoiding walks beginning at v, with
the natural adjacencies (see [12]). In particular we may regard v itself as a
vertex of T , and take it to be the root. It’s then easy to see that pT (v) = pG(v)
(= p(v)).

Writing T (x) for the subtree rooted at x, we compute p(x)’s recursively
(beginning at the leaves) via (13), which in the present context becomes

p
T (x)

(x) = [1 +
∑{p

T (y)
(y) : y a child of x}]−1 .

The proof of (43) is then an easy calculation which requires of T only the
trivial inequalities

d− i ≤ dT (x)(x) ≤ d− 1

for any x at depth i ≥ 1.
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2

The proofs of (both parts of) Theorem 1.9 are again based on T , but
require more precise information on degrees in T—this is established using
martingales—as well as considerably more delicate calculations.

Proof of (42). Of course the upper bound (with a2 = c2/2) is immediate from
(43) and (7).

Let E = {{xi, yi} : i ∈ I}, set Xi = 1{xi,yi 6≺M}, and, for i, j ∈ I, write

i 6∼ j if |{xi, yi, xj, yj}| = 4,

i ∼ j if |{xi, yi, xj, yj}| = 3.

Then

E[ψ2] =
∑

i

∑

j

E[XiXj]

=
∑

i

E[Xi] +
∑

i∼j

E[XiXj] +
∑

i 6∼j

E[XiXj]. (44)

Here the first term is E[ψ] = µ. The second term is the interesting one. We
may bound it using (14) and Proposition 6.4:

∑

i∼j

E[XiXj] =
∑
x

∑
y∼x

∑

y∼z 6=x

p(x, y, z)

=
∑
x

[(d + 1)p(x)− 1]

< c2v
√

d,

where x, y, z range over V .
For the third term in (44) we first observe that, for any fixed i, if we set

W = V \ {xi, yi}, then Lemma 4.1 implies

∑

j 6∼i

p(xj, yj|xi, yi) =
∑

j 6∼i

p(xjyj|xi, yi)

= µ(W |xi, yi)/2

≤ (µ(W ) + 2)/2 ≤ µ + 1.
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This gives
∑

i

∑

j 6∼i

E[XiXj] =
∑

i

p(xi, yi)
∑

j 6∼i

p(xj, yj|xi, yi)

≤ ∑

i

p(xi, yi)(µ + 1) = µ2 + µ.

Combining the above bounds gives

σ2
ψ < c2v

√
d + 2µ. (45)

But then, noting that Proposition 1.7 implies µ = Ω(v) for regular graphs,
we may apply Lemma 6.1 to obtain

σ2 = Ω(vd−1/2),

completing the proof of (42).

2

Remark If we replace Proposition 6.4 by Theorem 1.9(a), then (45) becomes
σ2

ψ
<∼ v

√
d, which with Conjecture 6.3 would give σ2 >∼ v/(4

√
d). This is the

lower bound in Theorem 1.9(b). (Part (b) of Theorem 1.9 is quite a bit
harder than part (a), so this derivation would be of some interest. Note that
part (a) with (7) gives σ2 <∼ v/(2

√
d).)

We now extend Lemma 6.1 to ψ
F
’s. We write µF for E[|M ∩F |] = E[ψF ].

Lemma 6.5 For A, B as in Lemma 6.1 and any F ⊆ E, either

σ2 ≥ µF /(8A)

or

σ2
ψ

F
≥ 1

16
µ2

F min{ 1

Bσ2
, 1}.

The second alternative here could almost certainly be replaced by

σ2
ψF

σ2 = Ω(µ2
F ). (46)

In fact it’s probably also true that the first alternative is unnecessary, and
that (46) is always true. This possibility was already mentioned for Lemma 6.1
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(the case F = E; see the remark following the statement of Lemma 6.2). We
can at least show that such a strengthening of Lemma 6.1 implies (46) in
general. Of course Lemma 6.2 gives the generalization of Lemma 6.1 ob-
tained by replacing ξ by ξF := |M ∩ F | (and ψ by ψF , µ by µF and σ2 by
σ2

F := V ar[ξF ]); but note this doesn’t imply Lemma 6.5, since σF can be
much larger than σ.

It would be interesting to decide whether one can base a proof of The-
orem 1.6 entirely on Lemma 6.5. In other words, is it true that if ν − µ is
large, then there must be some F ⊆ E for which µ2

F σ−2
ψF

is also large?

Proof of Lemma 6.5. We condition on N := M \ F , and write µF |N for
E[|M ∩ F ||N ] = E[ψF |N ]. Define events

Q = {µF |N < µF /2},
R = Q ∧ {V ar[ξ|N ] ≥ µF |N/A},
S = Q ∧R.

Then
σ2

ψ
F
≥ Pr(Q)µ2

F /4

and
σ2 ≥ Pr(R)µF /(2A).

On the other hand, if N ∈ S, then Lemma 6.1 (applied to the graph consisting
of edges of F not met by edges of N) implies

V ar[ψ
F
|N ]V ar[ξ|N ] ≥ µ2

F |N/B ≥ µ2
F /(4B),

whence (by Hölder’s inequality)

V ar[ψ
F
|S]V ar[ξ|S] ≥ E{V ar[ψF |N ]|S}E{V ar[ξ|N ]|S} ≥ µ2

F /(4B), (47)

and
σ2

ψF
σ2 ≥ (Pr(S))2µ2

F /(4B).

So for example,

σ2
ψ

F
≥ µ2

F /16 if Pr(Q) ≥ 1/4,

σ2 ≥ µF /(8A) if Pr(R) ≥ 1/4,

σ2
ψ

F
σ2 ≥ µ2

F /(16B) if Pr(S) ≥ 1/2.

Since one of these must occur, we have Lemma 6.5.

2
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7 Easier implications

(Here and in the next section, items (a)-(e) are those in Theorem 1.10.)
In this section we give the easier parts of the proof of Theorem 1.10, and

also prove Proposition 1.11, by showing that (b) implies (e), (e) implies (d),
and (d) implies both (c) and the “negation” of (9), namely,

(f) τn < (1− Ω(1))vn/2.

Recall (c) trivially implies (b). In the next section we show that (a) implies
(d), which will complete the proof of Theorem 1.10, since we already know
that (b) implies (a).

As in Section 3, we may dispense with the sequence notation: to prove
Theorem 1.10 it’s enough to show that each of the quantities in (a)-(e) is
bounded in terms of the others; while (d) ⇒ (f) will follow from

v − 2τ > Ω((κ + 1)−1)v −O(κ2 + κ). (48)

Thus we continue to work with a fixed G.
We first mention two examples which will help put our bounds in per-

spective.

Example 7.1 Let V (G) = {x1, . . . , xn, y1, . . . , yn} and

E(G) = {{xi, xj} : 1 ≤ i < j ≤ n} ∪ {{xi, yi} : 1 ≤ i ≤ n}.

Then ν − µ = n/2, σ2 =
√

n/2 − 1/2 + O(n−1/2) and λ = κ =
√

n − 1 +
O(n−1/2).

(Briefly because: For ν − µ just observe that p(xi) + p(yi) = 1. For the
other values set pn = p(xi). Then (13) gives pn = [(n− 1)pn−1 + 2]−1 which
inductively gives, e.g.,

(
√

n + 1 + 1)−1 < pn ≤ (
√

n + 1)−1

so in particular pn = n−1/2 − n−1 + O(n−3/2). This gives λ, κ, σ2 as above:
λ = κ = npn and (due to some cancellation of covariances) σ2 = npn/2.)

Example 7.2 Let V (G) = X ∪ Y ∪ Z with X,Y,Z pairwise disjoint and
|X| = |Z| = n, |Y | = n + n2/3, and let E(G) consist of all edges joining X
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and Y, together with a perfect matching on Y and a perfect matching of X and
Z. (We think of this as Example 1.5 with ε = n−1/3, augmented by the two
matchings.) Then σ2 and λ are θ(n1/3), while κ = θ(n2/3) and ν − µ = θ(n).
(If we delete Z, then ν−µ drops to θ(n2/3), but the other values are not much
affected.)

The bounds we establish for Theorem 1.10 are given in (52), (54), (56)
and (85). They imply in particular

σ2

λ

}
≤ ν − µ ≤ τ − µ ≤ κ2/2 + O(κ) (49)

and

κ ≤
{

O(σ4 + σ2)
O(λ2 + λ).

(50)

These are all tight up to the implied constants. To see this, first note that
for any disjoint union of stars, we actually have

ν − µ = τ − µ = κ = λ, (51)

with σ2 = m(ν−µ)/(m+1) for m-stars. This shows that all bounds but the
last in (49) are tight (except that σ2 cannot be equal to ν−µ), and that all of
the bounds in (49) and (50) are tight if any of the parameters in (51) is O(1).
Accuracy of the remaining inequalities is given by Example 7.1 for the last
inequality in (49)—actually for the implied inequality ν−µ ≤ κ2/2+O(κ)—
and by Example 7.2 for the inequalities in (50).

As mentioned in Section 1, most of the remaining inequalities implied
by (49) and (50) appear not to be tight, and it would be interesting to
understand these relations more precisely. Some of these are probably not
hard, though at the moment the only tight bound we know other than those
above is the rather trivial κ ≤ τ − µ. (For example, we don’t even know,
though we expect, that κ = O(ν−µ).) Perhaps most interesting among these
several questions are the conjecture (8) (note we have instead ν−µ = O(σ8)),
and

Question 7.3 How closely related are σ2 and λ? In particular, is it true
that λ = Θ(σ2) (that is, are there bounds on the ratios λ/σ2 and σ2/λ)?
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We now turn to the proofs. The implications given in this section are
based on the results of Section 4. It is only in Section 8 that we require the
lemmas of Sections 5 and 6.

Proof of (b) ⇒ (e). Recalling that FM is the set of edges not met by edges
of M , and noticing that ν(FM) ≤ ν − |M |, we have

λ ≤ E[ν − |M |] = ν − µ. (52)

2

Proof of (d) ⇒ (c). Suppose Y is a vertex cover of G with

∑

x∈Y

p(x) = κ. (53)

We show
τ − µ < (κ2 + 3κ)/2. (54)

Let
TM = |{x ∈ Y : x 6≺ M}|,

QM = |M ∩ E(Y )|.
(Recall E(Y ) is the set of edges contained in Y .) Then |M | = |Y |−(TM+QM)
and

τ − µ ≤ |Y | − E[|M |] = E[TM ] + E[QM ] = κ + E[QM ].

But

E[QM ] =
1

2

∑

x∈Y

∑

x∼y∈Y

p(x, y)

=
1

2
[
∑

x∈Y

p(x)(
∑

x∼y∈Y

(p(y|x)− p(y)) +
∑

x∼y∈Y

p(y))]

<
1

2
[
∑

x∈Y

p(x) + (
∑

x∈Y

p(x))2]

= (κ + κ2)/2, (55)

so we have (54). (We used Lemma 4.1 for the inequality. The slightly worse
bound τ−µ < κ2+κ could be gotten a little more easily using Corollary 4.3.)
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2

Proof of (d) ⇒ (f). Again suppose Y is a cover with (53). Let Z = V \ Y .
Then for each z ∈ Z, by Lemma 4.1,

p(z) = [1 +
∑
y∼z

p(y|z)]−1 ≥ [2 +
∑
y∼z

p(y)]−1 ≥ (κ + 2)−1.

Combining this with (54) and (55), we have

κ + 1

κ + 2
|Z| ≥ ∑

z∈Z

p(z) = µ− E[QM ] > τ − (κ2 + 2κ)

and

v − 2τ ≥ v − 2µ− (κ2 + 3κ)

≥ ∑

z∈Z

p(z)− (κ2 + 3κ)

≥ (κ + 2)−1|Z| − (κ2 + 3κ)

≥ 1

κ + 1
(τ − (κ2 + 2κ))− (κ2 + 3κ),

which implies (48).

2

When τ = ω(κ3) the bound here is essentially v − 2τ > τ/κ, which is
about right, e.g. for the complete bipartite graphs of Example 1.5. We
haven’t worked out what the truth is when τ is smaller relative to κ.

Proof of (e) ⇒ (d). We will find a vertex cover Y with
∑

x∈Y

p(x) = O(λ2 + λ). (56)

Set ε = [max{8λ + 1, 129}]−1 and let

W = {x : p(x) ≥ ε}.
Then for any matching N ⊆ E(W ),

λ ≥ E[ν(FM ∩ E(W ))] ≥ E[|M ∩N |].
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So by Corollary 4.7, there is a cover Z of E(W ) with

∑

x∈Z

p(x) ≤ 4λ/ε. (57)

Set X = V \W = {x : p(x) < ε}, and suppose

∑

x∈X

p(x) = T.

We will show that
T ≤ 16λ, (58)

which with (57) gives (56) for Y = Z ∪X.

Proof of (58). Assume (58) is false, and set η = (1 − ε)/ε = max{8λ, 128}.
For x ∈ X define the random variable

ζx = |{y ∼ x : y 6≺ M}|,

and let
ηx = E[ζx|x] =

∑
y∼x

p(y|x) = p(x)−1 − 1 > η

(see (13)). By Corollary 4.2, V ar[ζx|x] ≤ 2ηx, so Chebyshev’s inequality
gives, for any δ > 0,

Pr(ζx < (1− δ)η|x) ≤ Pr(ζx < (1− δ)ηx|x) <
2

δ2ηx

<
2

δ2η
,

and

Pr(x 6≺ M , ζx ≥ (1− δ)η) > p(x)(1− 2

δ2η
).

Thus, (taking δ = 1/2 and) setting

R = RM = |{x ∈ X : x 6≺ M, ζx ≥ η/2}|

and β = 8/η, we have

µR >
∑

x∈X

p(x)(1− β) = (1− β)T. (59)
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Notice that matching vertices of X greedily in FM shows that

ν(FM) ≥ 1

2
min{R, η/2}. (60)

But λ, the expected value of ν(FM), is much less than η/4. So if R is
reasonably concentrated then µR/2 ≈ T/2 should be close to a lower bound
on λ.

To make this idea concrete, set Q = |{x ∈ X : x 6≺ M}|. Then Q ≥ R,
E[Q] = T ,

µQ−R < βT (61)

(by (59)), and, again using Corollary 4.2,

σ2
Q ≤ 2T. (62)

Suppose first that
T ≥ η (63)

and set T − η/2 = Y . By (60),

λ ≥ Pr(R ≥ η/2)η/4. (64)

On the other hand, using (62) and (61) (in conjunction with Chebyshev’s
and Markov’s inequalities) and the fact that Y ≥ T/2, we have

Pr(R < η/2) = Pr(T −R > Y )

≤ Pr(T −Q > Y/2) + Pr(Q−R > Y/2)

<
2T

(Y/2)2
+

2βT

Y

≤ 32/T + 32/η ≤ 64/η.

Combining this with (64) leads to the contradiction λ > (1− 64/η)η/4 ≥ λ.
Thus we cannot have (63) (note this already gives (58) when λ ≥ 16) and

may suppose instead that
T < η. (65)

Set

A = Pr(R ≤ 2η)E[R|R ≤ 2η]

B = Pr(R > 2η)E[R|R > 2η].
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Now (60) implies ν(FM) ≥ R/8 whenever R ≤ 2η, so that

λ = E[ν(FM)] ≥ A/8. (66)

On the other hand, by (59),

(1− β)T < µR = A + B, (67)

so an upper bound on B gives a lower bound on A. We may derive such an
upper bound from (62): Notice that (65) gives Q ≤ (2/η)(Q− T )2 whenever
Q ≥ 2η. Thus (recalling that Q ≥ R and µQ = T )

B ≤ Pr(R > 2η)E[Q|R > 2η]

≤ Pr(R > 2η)
2

η
E[(Q− T )2|R > 2η]

≤ 2

η
σ2

Q ≤ 4T

η
.

Finally, combining this with (66) and (67) gives

λ ≥ (1− 8/η − 4/η)T/8 ≥ T/16,

so we have (58).

2

8 (a) ⇒ (d)

In this section we complete the proof of Theorem 1.10 (and of Theorem 1.6)
by showing that (a) implies (d). The proof produces a vertex cover Y with∑

y∈Y p(y) = O(σ4) unless σ is small (say σ < 1), in which case
∑

y∈Y p(y) =
O(σ2). As noted in Section 7, both these bounds are essentially best possible.

Set αi = 2i/v for i ≥ 0, and for i ≥ 1,

Si = {x ∈ V : αi−1 ≤ p(x) < αi}.

(Note ∪Si = V , e.g. by (13).) Denote by Ei the set of edges meeting Si, and
set ψi = ψEi

, µi = µEi
= E[|M ∩ Ei|] = E[ψi], and σ2

i = V ar(ψi).
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Notice that
µi ≤ |Si|, (68)

and

µi ≥ 1

2

∑

x∈Si

p(x) ≥ (1− αi)|Si|/2. (69)

Let

ε = min
{

1

16Bσ2
,

1

16

}
.

(We retain the constants A, B from Lemma 6.1.) We first show that if

αi < ε/100, (70)

then
|Si| ≤ 16ε−1α−1

i , (71)

and consequently, ∑

x∈Si

p(x) < 16ε−1. (72)

The proof of this is based on some analysis of σ2
i . We first deduce from

Lemma 6.5 that, except in easy cases, σ2
i is at least about ε|Si|2. We then

proceed roughly as we did in the regular case (Section 6) to show that σ2
i =

O(|Si|α−1
i ).

By Lemma 6.5 we know that either

σ2 ≥ µi/(8A) (73)

or

σ2
i ≥ 1

16
µ2

i min
{

1

Bσ2
, 1

}
= εµ2

i . (74)

Since (73) gives (71) immediately (because of (69)), we may assume we have
(74).

Suppose
Ei = {{xj, yj} : j ∈ J},

let Xj = 1{xj ,yj 6≺M}, and write

j 6∼ k if |{xj, yj, xk, yk}| = 4

j ∼ k if |{xj, yj, xk, yk}| = 3.
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Then
E[ψ2

i ] =
∑

j

E[Xj] +
∑

j∼k

E[XjXk] +
∑

j 6∼k

E[XjXk].

The first term here is just µi, and we will show that the third term is not
much more than µ2

i . The quantity of interest is the second term: σ2
i cannot

satisfy (74) unless the second term is at least about εµ2
i . (The reader might

find it helpful to check that in Example 1.5, the second term in the analogous
expansion of E[ψ2] is indeed on the order of µ2.)

For the third term we use Corollary 4.6 (twice), as well as Lemma 4.1,
both with W = Wj := Si \ {xj, yj} in the jth summand:

∑

j 6∼k

E[XjXk]− µ2
i ≤ ∑

j

p(xj, yj)
∑

k 6∼j

(p(xk, yk|xj, yj)− p(xk, yk))

=
∑

j

p(xj, yj)
∑

k 6∼j

[(p(xk, yk|xj, yj)− p(xk, yk|xj))

+ (p(xk, yk|xj)− p(xk, yk))]

≤ ∑

j

p(xj, yj) · 4
∑

w∈Wj

(p(w|xj) + p(w))

≤ ∑

j

p(xj, yj)(8
∑

w∈Wj

p(w) + 4)

≤ µi(8|Si|αi + 4)

≤ 8|Si|2αi + 4|Si|.
Thus the burden falls on the second term:

∑

j∼k

E[XjXk] ≥ εµ2
i − µi − 8|Si|2αi − 4|Si|. (75)

Now
∑

j∼k

E[XjXk] =
∑{p(x, y, z) : x, y, z distinct, xy, yz ∈ Ei}. (76)

We show that most of this must come from terms with y ∈ Si. To see this,
note that the right hand side of (76) is at most Σ1 + Σ2, where

Σ1 =
∑{p(x, y, z) : y ∈ Si, x ∼ y ∼ z},

Σ2 =
∑{p(x, y, z) : x, z ∈ Si, y ∼ x}.
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(We could also require y ∼ z here.)
As mentioned above, Σ2 is not very big:

Σ2 =
∑

x∈Si

∑
y∼x

p(x, y)
∑

z∈Si

p(z|x, y)

=
∑

x∈Si

∑
y∼x

p(x, y)
∑

z∈Si

(p(z) + (p(z|x, y)− p(z)))

≤ ∑

x∈Si

p(x)(
∑

z∈Si

p(z) + 4)

≤ |Si|(|Si|αi + 4). (77)

Here we used Lemma 4.1 for the first inequality.
Combining (77) with (75) we have

Σ1 ≥ εµ2
i − (µi + 9|Si|2αi + 8|Si|). (78)

On the other hand (again using Lemma 4.1, together with (13)),

Σ1 =
∑

y∈Si

∑
x∼y

p(x, y)
∑
z∼y

(p(z|y) + (p(z|x, y)− p(z|y)))

≤ ∑

y∈Si

∑
x∼y

p(x, y)(
∑
z∼y

p(z|y) + 2)

=
∑

y∈Si

p(y)(p(y)−1 + 1)

< 2|Si|α−1
i . (79)

Combining this with (78) and using (68), (69), (70) yields, after a little
rearranging,

|Si| < (ε(1− αi)
2/4− 9αi)

−1(2α−1
i + 9) < 16ε−1α−1

i ,

so we have (71).

2

Let t be the largest index i for which αi < ε/100, or t = 0 if α0 ≥ ε/100,
and set Z = V \ ∪t

i=1Si. In addition, set

i0 = min{i :
∑

j<i

∑

x∈Sj

p(x) > 1/(3αi)},
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or i0 = ∞ if the set in question is empty, and s = min{i0 − 1, t}.
The precise reason for these definitions will appear below. Roughly, the

parameters are chosen so that for any x ∈ S1, . . . , Ss, a substantial part
of ϕ(x) will be contributed by vertices of Z. (Recall—see (12)—ϕ(x) =∑

y∼x p(y).)
We show that for i ≤ s and x ∈ Si,

∑{p(z) : x ∼ z ∈ Z} > 1/(3p(x)). (80)

Proof. By Corollary 4.5,
∑
y∼x

p(y) = ϕ(x) ≥ p(x)/p(x)− 1.

On the other hand,
∑

x∼y 6∈Z

p(y) =
∑{p(y) : y ∈ S1 ∪ · · · ∪ Si−1}+

∑{p(y) : y ∈ Si ∪ · · · ∪ St}

≤ 1/(3αi) + (t− i + 1)16ε−1,

using i < i0 for the first term and (72) for the second. Now t − i + 1 =
log(2αt/αi) ≤ log(ε/(50αi)), and a little calculation, using i ≤ t, shows that

∑

x∼z∈Z

p(z) ≥ p(x)/p(x)− 1− 1/(3αi)− 16ε−1 log(ε/(50αi))

> 1/(3p(x)),

as promised.

2

Set S∗ = S1 ∪ · · · ∪ Ss. For x ∈ S∗ and summations running over z ∈
NZ(x) := {z ∈ Z : x ∼ z}, it follows from (80) and Corollary 4.3 that

∑
p(xz)2 =

∑
p(x, z)2

= p(x)2
∑

p(z|x)2

≥ (1/4)p(x)2
∑

p(z)2

≥ (1/4)p(x)2(
∑

p(z))2/|NZ(x)|
≥ 1/(36|NZ(x)|). (81)
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But since z ∈ Z implies p(z) ≥ ε/200, we may bound |NZ(x)| (using
Corollary 4.5) via

1 ≥ p(x)ϕ(x) ≥ p(x)
∑

z∈NZ(x)

p(z) ≥ p(x)(ε/200)|NZ(x)|.

Inserting this in (81) we have

∑

z∈NZ(x)

p(xz)2 ≥ εp(x)/(7200)

and ∑

x∈S∗

∑

z∈NZ(x)

p(xz)2 ≥ ε/(7200)
∑

x∈S∗
p(x),

which by Corollary 5.2 implies

∑

x∈S∗
p(x) ≤ 7200ε−1 · 2σ2 =: Dσ2ε−1. (82)

This is our main inequality. It says in particular that we can afford to take
our cover Y to contain all of S∗.

In fact when s = i0 − 1 < t, we may take Y to contain V \ Z \ S∗ =
Ss+1 ∪ · · · ∪ St as well. For in this case, (82) gives

ε/(100) > αs+1 > (1/3)[
∑

x∈S∗
p(x)]−1 ≥ ε/(3Dσ2), (83)

and then (again using (72))

∑{p(y) : y ∈ ∪t
i=s+1Si} ≤ 16ε−1(t− s)

= 16ε−1 log(αt/αs)

≤ 16ε−1 log

(
ε

100

6Dσ2

ε

)
. (84)

This is O(σ2 log σ) if σ > 2 (say), and O(σ2) otherwise (the latter since (83)
implies σ = Ω(1)).

It remains to cover the edges contained in Z, which turns out to be easy:
since

p(x) ≥ ε/200 for all x ∈ Z,
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Lemma 5.1 allows us to apply Corollary 4.7 with W = Z, α = ε/200 and
C = 2σ2 to conclude that there is a cover X of Z with

∑

x∈X

p(x) ≤ 1600σ2ε−1.

So, finally, setting Y = (V \ Z) ∪X, we have

∑

y∈Y

p(y) =

{
O(σ4) if σ ≥ 1
O(σ2) if σ < 1,

(85)

and in particular (a) ⇒ (d).

2

9 Asymptotically Poisson

Here we prove Theorem 1.12. Set µ = ν−µ and α = maxA∈E p(A). According
to formula (1.23) of [1],

∑

k

|pk − e−µ µk/k!| < (1− e−µ)
µ− σ2

µ
.

So for Theorem 1.12 it is enough to show, assuming C−1 < µ < C for some
positive constant C, that

µ− σ2 → 0 as α → ∅.

Note first that, setting δ =
√

2α, Corollary 4.3 gives for any A = {x, y} ∈
E,

α ≥ p(A) = p(x, y) ≥ 1

2
p(x)p(y).

Thus Y := {x ∈ V : p(x) ≤ δ} is a cover. Moreover, we have shown in
Section 8 that for small enough δ

∑

x∈Y

p(x) = O(1). (86)
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(Namely, with the parameters of Section 8, (82) and (84) give, provided
δ < ε/(200),

∑

x∈Y

p(x) ≤ ∑{p(x) : p(x) < ε/200} < O(σ4 + σ2). (87)

This gives (86), since σ2 ≤ µ = O(1) implies that ε = Ω(1) and that the
right hand side of (87) is O(1).)

For distinct x, y ∈ V , set

ζx = 1{x≺M}, ζxy = 1{xy∈M}.

Then since Y is a cover we have

ξ = |Y | − (
∑

x∈Y

ζx +
∑

xy∈E(Y )

ζxy), (88)

whence
µ ≤ |Y | − µ =

∑

x∈Y

p(x) +
∑

xy∈E(Y )

p(xy) =: K.

Thus, since σ2 ≤ µ, it is enough to show

K − σ2 → 0 as α (or δ) → 0. (89)

Now by (88), σ2 = Σ1 + Σ2 + Σ3, where

Σ1 =
∑

x∈Y

∑

y∈Y

(p(x, y)− p(x)p(y)),

Σ2 =
∑

x∈Y

∑

yz∈E(Y )

(p(x, yz)− p(x)p(yz)),

Σ3 =
∑

xy∈E(Y )

∑

zw∈E(Y )

(p(xy, zw)− p(xy)p(zw)),

and we should show that each of Σ1 − ∑
x∈Y p(x), Σ2, and Σ3 − ∑{p(xy) :

xy ∈ E(Y )} tends to 0 as α → ∞. We will actually show that the absolute
value of each is O(δ).

These calculations should be fairly routine by now, and we will run
through them fairly quickly. We make repeated use of (86) without further
notice.
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First,

Σ1 =
∑

x∈Y

p(x)[(1− p(x)) +
∑

y∈Y \{x}
(p(y|x)− p(y))],

so that by Corollary 4.4 and the definition of Y ,

|Σ1 −
∑

x∈Y

p(x)| <
∑

x∈Y

p(x)[δ + 2
∑

y∈Y

p2(y)]

< δ
∑

x∈Y

p(x)(1 + 2
∑

y∈Y

p(y)) = O(δ).

Next,

Σ2 =
∑

x∈Y

p(x)[
∑

yz∈E(Y \{x})
(p(yz|x)− p(yz))− ∑

y∈Y \{x}
p(xy)].

The first of the inner sums is at most

1

2

∑

y∈Y \{x}

∑

z∈Y \{x,y}
(p(y, z|x)− p(y, z)) =

1

2

∑

y∈Y \{x}

∑

z∈Y \{x,y}
[(p(y|x)−p(y))p(z|x, y)+p(y)(p(z|x, y)−p(z|y))],

which by Corollaries 4.3 and 4.4 is at most

1

2

∑

y∈Y \{x}

∑

z∈Y \{x,y}
(2p2(y) · 4p(z) + p(y) · 8p2(z)) ≤ 8δ(

∑

y∈Y

p(y))2 = O(δ).

The second inner sum is (again using Corollary 4.3)

∑

y∈Y \{x}
p(x, y) ≤ 2p(x)

∑

y∈Y

p(y) = O(δ).

So we have Σ2 = O(δ).
For Σ3 we set E(Y ) = {{xj, yj} : j ∈ J} and, as earlier, write

j 6∼ k if |{xj, yj, xk, yk}| = 4

j ∼ k if |{xj, yj, xk, yk}| = 3.
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Then

Σ3 =
∑

j

p(xj, yj)[1−p(xj, yj)+
∑

k 6∼j

(p(xk, yk|xj, yj)−p(xk, yk))−
∑

k∼j

p(xk, yk)].

Here we need to observe that (86) implies, via Corollary 4.3, that

∑

j

p(xj, yj) ≤ 2(
∑

x∈Y

p(x))2 = O(1).

The proof that |Σ3 −∑
j p(xj, yj)| = O(δ) then parallels the preceding cases

and is left to the reader.

10 Concluding remarks

In this section we briefly explore a few of the many possibilities suggested by
the present work. Our main theme—though we will manage some digressions—
is that it should be possible to prove central limit theorems in some extremely
general combinatorial situations (more or less) analogous to that of Theo-
rems 1.6, 1.10. I should warn the reader that many of these questions have
not been thought about very seriously, so there may be some silly ones. Al-
most all do seem quite interesting if one conditions on their being sensible.

Before beginning, let us just recall that there are a number of unresolved
issues from the main part of the paper, notably relations between our various
parameters (see (8) and Section 7; it would also be of interest to identify other
parameters which are similarly tied to the present ones); some questions from
Section 6, especially Conjecture 6.3 and the question preceding the proof of
Lemma 6.5; and necessity of the condition of Theorem 1.12. It would also
be nice to find a simpler proof of Theorem 1.6: I very much doubt that the
present one is optimal, though, as mentioned earlier, the fact that ν − µ can
be much larger than σ2 suggests some lower bound on the difficulty of the
problem. Of course one may also ask about analogues of Theorem 1.12, but
we will not go into this here.

It should be noted immediately that in most of the situations described
here, we lose (3), and with it the easy derivation of asymptotic normality
from large variance. So we must hope to establish asymptotic normality
by other means, the most obvious candidates being Stein’s method [45] and
martingales (e.g. [15]; see the discussion preceding Problem 10.10).
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In what follows, ξ will always be an N-valued random variable. We write
r = r

ξ
for max ξ—the rank of ξ—and, as earlier, µ and σ2 for mean and

variance of ξ. We now use pk(ξ), in place of pk(G), for Pr(ξ = k). For a
sequence {ξn} we again use rn etc. in the natural way.

The possibilities here seem nearly endless. For instance, one could con-
sider almost any special case of the following broad generalization of Theo-
rem 1.6, formulated with Vera Sós. Let G be a fixed finite set of connected
graphs such that any connected subgraph of a graph in G is also in G. For
a graph G, let MG(G) be the set of subgraphs of G having all components
in G, and let ξG(G) be the size (meaning number of edges, though one could
also consider, e.g., the number of components) of a uniformly chosen member
of MG(G).

Conjecture 10.1 For any G, sequence {Gn} of graphs and ξn = ξG(Gn),
asymptotic normality of {pk(ξn)} is equivalent to each of the conditions σn →
∞, rn − µn →∞.

Hard-core distributions on matchings in graphs
Let G = (V,E) be a weighted graph (that is, with a weight function

α : E → R+), and let ξ = |M |, with M drawn from the associated hard-core
distribution (h.c.d.) on M(G) (see Section 2).

As (3) remains valid for h.c.d.’s (it is given in this generality in [18], [29]),
we again have asymptotic normality of ξ as σ →∞. On the other hand, it’s
easy to see that none of the conditions ν − µ → ∞, κ → ∞, λ → ∞ could
reasonably be expected to imply asymptotic normality (For instance, let Gn

consist of n copies of a path of length 3 in which the middle edge has weight
n and the others weight 1. Then νn − µn = n and σ2

n ≈ 2.) At this writing
we have no plausible substitute for any of these parameters, though we hope
that at least for bipartite graphs, ν − µ may be replaced by

γ(G) := min
E′⊆E

{ν(E ′)− E[|M ∩ E ′|] + E[|M \ E ′|]}. (90)

Conjecture 10.2 With notation as above and Gn bipartite, {pk(ξn)} is asymp-
totically normal as γn →∞.

(It is not hard to see that σn → ∞ implies γn → ∞ for general weighted
graphs. For a (nonbipartite) counterexample to the converse, let Gn consist
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of n disjoint copies of the graph with vertices x1, x2, x3, y1, y2, y3, edges xixj

and xiyi, and weights α(xixj) = n3, α(xiyi) = n.)
Incidentally, Theorems 1.2 and 1.3 are valid for multigraphs, as are their

proofs in [11], [41] and Section 5 (except that for the latter we should replace
Vizing’s Theorem by Shannon’s χ′ ≤ 3∆/2 [43] or, again, just χ′ ≤ 2∆− 1).

Hypergraphs
Recall that a hypergraph is a collection, say H, of subsets (called edges)

of some finite (vertex) set V . It is simple if |A∩B| ≤ 1 for distinct A,B ∈ H
and k-uniform (k-bounded) if each of its edges has size k (at most k). For
further hypergraph background see e.g. [9].

Here we fix k (thought of as at least 3) and, unless otherwise stated, take
all hypergraphs H to be k-uniform and simple, usually with large degrees.
In the background here is the idea that, in contrast to the well-known in-
tractibility of general hypergraph problems, such hypergraphs tend to behave
quite nicely in asymptotic senses. (See e.g. [20] or, again, [9] for overviews
of developments in this vein.)

We now take ξ to be the size of M drawn uniformly from the set M =
M(H) of matchings of H. (For non-uniform H we get a slightly different
set of questions if we instead let ξ be, say, the number of vertices missed by
M ; but this seems unlikely to make much difference, and anyway not worth
worrying about for the present.)

Our best guess at an analogue of Theorem 1.6 is (recall δ is minimum
degree)

Conjecture 10.3 For a sequence Hn of simple, k-bounded hypergraphs with
δn →∞, {pl(ξn)} is asymptotically normal as σn →∞.

In contrast to the situation for graphs, this is not true if δn 6→ ∞. In
fact, for low degree H with large σ, the distribution of ξ need not even be
unimodal. (This strange phenomenon has something to do with expanders,
but we will not go into details.)

Furthermore, νn − µn → ∞ does not imply σn → ∞ (even assuming
δn →∞). So it may be that the whole business should be viewed with some
suspicion; nonetheless we will hazard one more:

Conjecture 10.4 If Hn is simple, k-uniform and dn-regular with dn → ∞,
then {pl(ξn)} is asymptotically normal.
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(The natural analogue of Theorem 1.9 for hypergraphs as in Conjecture 10.3
is also a possibility; see [27, Conjecture 1.4].)

These conjectures, which may (again) be thought of as expressions of
approximate independence in M(H), seem to require (at least) an under-
standing of some questions close to those concerning phase transition in the
“exclusion” or “hard-core lattice gas” model of statistical physics (see e.g. [2]
for a start; h.c.d.’s on matchings are special cases of this model); for instance:

It can be shown that for a simple graph G with uniform matching M and
A,B ∈ E(G)

Pr(A, B ∈ M) ∼ Pr(A ∈ M) Pr(B ∈ M) as ∆(A,B) →∞, (91)

where ∆ denotes distance. But (91) is not true for (simple, k-uniform) hy-
pergraphs in general; and though it seems likely to be true when degrees are
large, we do not yet see how to prove it:

Conjecture 10.5 For simple, k-bounded H, A,B ∈ H and M uniform from
M(H),

Pr(A, B ∈ M) ∼ Pr(A ∈ M) Pr(B ∈ M) as δ(H) →∞, ∆(A,B) →∞.

This looks considerably more delicate—possibly a euphemism for “less true”—
than (91). For instance, in a graph (or even multigraph), the event {A ∈ M}
can be shown to be nearly independent of the entire restriction of M to edges
far from A, where “far from” now depends on maximum degree (results in
this vein for h.c.d.’s are central to [26], [23], [24]); but this is not true for
hypergraphs. Roughly, (91) is true (for graphs) because there is almost no
interaction between the events {A ∈ M}, {B ∈ M}; but for hypergraphs
there is, in general, substantial interaction, so that Conjecture 10.5 requires
a balance of positive and negative effects (see e.g. [2, Theorem 5.4]).

Matroids
For our purposes it’s convenient to regard a matroid on set E as its ideal

I ⊆ 2E of independent sets. (Recall that I ⊆ 2E is an ideal if A ⊆ B ∈ I ⇒
A ∈ I, and is the ideal of independent sets of a matroid if for any A ⊆ E,
any two maximal independent subsets of A have the same cardinality. For
matroid background see e.g. [49]).
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Notice that the notion of a hard-core distribution extends to ideals (ac-
tually to arbitrary set systems and more): the h.c.d. p associated with
α : E → R+ is given by

w(I) =
∏

e∈I

αe, p(I) = w(I)/
∑

I′∈I
w(I ′).

(We again speak of the weighted set E and, if E = E(G), of the weighted
graph G.)

We are interested in the behavior of ξ, the size of a set drawn uniformly,
or, more generally, according to some h.c.d., from I.

Suppose for example that I = F = F(G), the collection of forests of
some multigraph G. Then (recalling that r is rank) we expect:

Conjecture 10.6 For a sequence {Gn} of (unweighted) multigraphs, the fol-
lowing are equivalent:

(a) {pk(ξn)} is asymptotically normal;

(b) σn →∞;

(c) rn − µn →∞.

Here we again lose (3) and so the easy equivalence of (a) and (b). Also—
in contrast with questions and results mentioned above—membership in F
is not a “local” property (a formal definition of which seems unnecessary
here). Nonetheless, the conjecture suggests that forests are actually nicer
than matchings, in that we get the described equivalences even for multi-
graphs (equivalently integer-weighted graphs).

For arbitrary h.c.d.’s, r−µ is again fairly meaningless, but we expect that
the natural analogue of γ as in (90) (that is, with ν replaced by r and M by a
random forest) is the proper substitute. Moreover, here we have a seemingly
reasonable replacement for the λ of Theorem 1.10, as follows. For weighted G,
let F be chosen from the associated h.c.d. on F = F(G), and let F ′ be chosen
from the natural (induced) h.c.d. on F(G/F ) (G/F the usual contraction).
Our replacement for λ is then λ′(G) = E[|F ′|]. (So very roughly, λ′ is large if
our first random choice, F , tends to leave substantial uncertainty about the
value of the 2-stage random forest F ∪ F ′. For unweighted matroids, λ′ and
λ are easily seen to differ by at most a factor of 2, so are equivalent for our
purposes.)
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Conjecture 10.7 For a sequence {Gn} of weighted graphs, asymptotic nor-
mality of {pk(ξn)} is equivalent to each of the conditions σn →∞, γn →∞,
λ′n →∞.

Conjecture 10.6 is not true for general matroids: for, say, the uniform
matroids Un

2n—those with |E| = 2n and I consisting of all sets of size at most
n—we have (b), (c), but not (a). It may be, however, that the conjecture
is true for matroids representable over a fixed GF (q), or, more generally,
excluding a fixed minor U2

k .
On the other hand, with regard to (b) vs. (c) we have the following

curious situation. Anders Johansson [19] discovered a neat proof, suggested
by the proof of Lemma 5.1, that for general matroids we have σ2 ≥ (r−µ)/2.
So in particular (c) ⇒ (b), which is the analogue of what we considered the
central result of the present paper. But at this writing I don’t know how to
show the reverse implication (the trivial one if we had (3), and also an easy
consequence of Conjecture 10.8 below), even for forests.

There is also the very intriguing possibility that all of the conditions
σ →∞, γ →∞, λ′ →∞ (with the definitions of γ, λ extended in the obvious
way) are equivalent for hard-core distributions on matroids in general. (This
would actually characterize matroids in the sense that, for a family F of
ideals closed under minors and direct sums—see below—neither of σ → ∞,
γ →∞ can imply λ′ →∞ unless F is a family of matroids.)

Log-concavity
It is worth recalling here that the numbers pk = pk(ξ) are the subject of

the well-known log-concavity conjectures of Mason [35], the weakest of which
is

Conjecture 10.8 For any matroid I, the sequence {pk}r
k=0 is log-concave.

(The strongest says that even {pk/
(

n
k

)
}, where n = |E|, is log-concave.) We

may think of Conjecture 10.6 as a “global” counterpart of Mason’s “local”
conjecture for forests. Wandering a bit further, could (something like) the
following be true?

Conjecture 10.9 For each k there exists D such that if H is a simple k-
uniform hypergraph with δ(H) > D and ξ the size of a uniform matching of
H, then the distribution of ξ is log-concave.
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Small perturbations
A natural way to begin attacking some of the problems just mentioned

is to look for analogues of Lemma 4.1. In addition to being nice indica-
tors of approximate independence, such results would—again, in the absence
of (3)—be concrete first steps in the direction of asymptotic normality, as
follows.

Suppose again that G is a graph and ξ the size of M drawn from some
h.c.d. on M(G). Let E(G) = {A1, . . . , Am} and set ωi = 1{Ai∈M}, ξi =
E[ξ|ω1, . . . , ωi]. Then {ξi}m

i=0 is a martingale. Moreover, it follows from
Lemma 4.1 that the differences ξi − ξi−1 are small (|ξi − ξi−1| ≤ 2, though
the precise bound isn’t important). In such a situation we may hope to show
asymptotic normality by proving suitable concentration for the conditional
variance

∑
E[ξ2

i |ω1, . . . , ωi−1] or sum of squares
∑

ξ2
i ; see e.g. [15, Section 3.2].

(This does not seem easy, however, and even a ((3)-free) proof of Theorem 1.6
(even, say, for regular graphs) along these lines would be quite interesting.)

For matroids there is no constant upper or lower bound on E[ξ|e]−E[ξ],
but it may be that there are bounds which are small compared to the rank
of the matroid (this would still be enough for the proposed application).

Problem 10.10 Estimate f(r) := sup |E[ξ|e] − E[ξ]| as I ranges over ma-
troids of rank r and e over elements of I. In particular, is it true that
f(r) = O(log r)?

(One can give examples to show that both E[ξ|e] − E[ξ] and E[ξ] − E[ξ|e]
can be Ω(log r).)

For forests there is still no constant lower bound, but we expect E[ξ|e]−
E[ξ] ≤ 1− p(e) and, more precisely,

Conjecture 10.11 For graphic I and e, f distinct elements of E, p(f |e) ≤
p(f).

The analogous statement for a random spanning tree is an old result of Tutte
[46], based on ideas from electric networks (e.g. [5]).

It may also be that there are rough versions of Lemma 4.1 for, e.g.,
hypergraphs as in Conjecture 10.3, but we have not really thought about
concrete possibilities for this.

Ideals
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Most of the above questions can be formulated at the level of general
ideals. All the parameters r, µ, σ, γ, λ′ make sense for the size, ξ, of I
chosen according to some h.c.d. from ideal I. For meaningful conjectures
we should then restrict to In drawn from some family of ideals (matchings
in graphs, matroid ideals...), where, for example, one might take “family” to
imply closure under minors (meaning ideals (I \B)/A := {X ⊆ E \ (A∪B) :
A ∪ X ∈ I}, with A,B disjoint subsets of E and A ∈ I) and direct sums
(obvious definition). (Note, though, that hypergraphs as in Conjecture 10.3
will have low-degree hypergraphs as minors.) It would be extremely nice if
there were general conditions on a family of ideals sufficient for conclusions
like those conjectured above.

One (perhaps far-fetched) possibility: could there be some connection
between our desired conclusions and some kind of nice behavior of the poly-
topes

K(I) = conv{1A : A ∈ I} ⊆ RE ?

For multigraph matchings and matroids these much-studied polytopes are
indeed nice in various ways; see e.g. [14].

(Note that each of the conditions (b)-(e) of Theorem 1.10 says that some
linear objective function on K(I) has average (over vertices) close to its
maximum. It was this observation that originally suggested looking at K(I)
in the present context.)

We just mention one suggestive connection: The truth of conclusions like
those of Conjectures 10.6-10.8 for some ideal I would seem to be a reflection
of something like expansion in some underlying graph Γ on I, e.g. that with

I ∼Γ I ′ iff |I \ I ′| = |I ′ \ I| = 1 or |I∆I ′| = 1.

But for a matroid I, this graph is precisely the 1-skeleton of K(I), good
expansion of which is a special case of the well-known “Polytope Conjecture”
of M. Mihail and U. Vazirani. (See [36]. The conjecture is actually for general
0-1 polytopes, so in particular applies to any K(I); but for general I the 1-
skeleton of K(I) need not have much to do with the combinatorics of I.)
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[41] A. Ruciński, The behaviour of
(

n
k,,...,,k,n−ik

)
ci/i! is asymptotically normal,

Discrete Math. 49 (1984), 287-290.

[42] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chich-
ester, 1986.

[43] C.E. Shannon, A theorem on coloring the lines of a network, J. Math.
Phys. 28 (1949), 148-151.

[44] J. Spencer, Lecture notes, M.I.T., 1987.

[45] C. Stein, Approximate Computation of Expectations, IMS, Hayward CA,
1986.

[46] W.T. Tutte, A problem on spanning trees, Quart. J. Math. Oxford 25
(1974), 253-255.

[47] V.G. Vizing, On an estimate of the chromatic class of a p-graph (in
Russian), Diskret. Analiz 3 (1964), 25-30.

[48] D.G. Wagner, The partition polynomial of a finite set system, J. Com-
binatorial Th. (A) 56 (1991), 138-159.

[49] D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.

58


