
COMPLEX NUMBERS
c© 2018 - Diana Bahri-Nunziante

These lecture notes are distributed for the exclusive use of instruc-
tors and students of Calculus II for the Mathematical and Physical
Sciences at Rutgers University, New Brunswick.

Real solutions x of the equation

x2 + 1 = 0 (1)

do not exist, because there is no real number x such that x2 = −1.

If we assume the existence of a new number i (obviously not a real one),
called the imaginary unit, which is defined by the property

i · i = i2 = −1 (2)

we can state that the equation (1) is solved by ±i.

1 Arithmetic of Complex Numbers

1.1 Definition

Definition 1 - A complex number z is defined as

z = x+ iy (3)

where x and y are real numbers and i is the imaginary unit.The real numbers x
and y are called respectively the real part and the imaginary part of z, and
are denoted by the symbols

Re(z) = x and Im(z) = y (4)

The expression (3) is called rectangular form of the complex number z.

Any complex number is hence expressed as z = Re(z) + iIm(z).
The set of real numbers is denoted by R, and the set of complex numbers by C.

From (3) it follows that real numbers are complex numbers with a zero imag-
inary part, namely x = x + 0i. In particular 0 is the complex number having
both real and imaginary parts equal to zero.
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Throughout these notes, we will use the notations x+ iy and x+yi interchange-
ably.

Example 1 - Find the real and imaginary parts of (a) − 3
4 i, (b) −2 + 3i, and

(c) 5.

Solution - (a) Re(− 3
4 i) = 0 and Im(− 3

4 i) = − 3
4 ; (b) Re(−2 + 3i) = −2 and

Im(−2 + 3i) = 3; (c) Re(5) = 5 and Im(5) = 0.

1.1 EXERCISES

In Exercises 1-6, Find (a) Re(z) and (b) Im(z) for the given complex numbers

1. z = 2− 2i 2. z = −1

2
+ i

3. z = 1 4. z = i

5. z = −i 6. z = 0

In Exercises 7-12, write the rectangular form of the complex number z with the
given Re(z) and Im(z)

7. Re(z) = 2, Im(z) = 1 8. Re(z) =
1

2
, Im(z) = −1

9. Re(z) =
3

2
, Im(z) = 0 10. Re(z) = −

√
2, Im(z) = 1

11. Re(z) = −5

3
, Im(z) = −2

3
12. Re(z) = 0, Im(z) = −

√
3

2

1.2 Addition, Subtraction, and Scalar Multiplication

In this section we show how to add and subtract complex numbers, and how to
multiply a complex number by a scalar (i.e. a real number) using the common
operations of addition, subtraction, and multiplication already in use for real
numbers, along with their commutative, associative, and distributive (aka foil
rule) properties.
In particular, we will use the distributive property of the imaginary unit, ac-
cording to which for any two real numbers r and s, i(r + s) = ir + is.

The addition of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is
completed by adding their real parts and imaginary parts separately, and by
using the distributive property of the imaginary unit i:

(x1 + iy1) + (x2 + iy2) = x1 + iy1 + x2 + iy2

= x1 + x2 + iy1 + iy2 = (x1 + x2) + i(y1 + y2) (5)
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Similarly, for the subtraction

(x1 + iy1)− (x2 + iy2) = x1 + iy1 − x2 − iy2
= x1 − x2 + iy1 − iy2 = (x1 − x2) + i(y1 − y2) (6)

Moreover, the multiplication of a complex number z by a real number r is
called scalar multiplication, and it is defined by the following rule

r · z = r(x+ iy) = rx+ iry

In conclusion

Re(z1 ± z2) = Re(z1)±Re(z2) Im(z1 ± z2) = Im(z1)± Im(z2) (7)

Re(r · z) = r ·Re(z) Im(r · z) = r · Im(z) (8)

Example 2 - Given the complex numbers z1 = −2 + i, z2 = 3− 2i, and z3 = i,
find the rectangular form of

(a) 2z1 + z2 (b) 3z2 + 4z3 (c) 3z1 + 2z2 (d) 3z1 + 2z2 + z3

Solution -
(a) From (8), since Re(z1) = −2, Im(z1) = 1, then Re(2z1) = −4, Im(2z1) = 2.
Because Re(z2) = 3 and Im(z2) = −2 , therefore, from (7) we derive that

Re(2z1+z2) = −4+3 = −1, and Im(2z1+z2) = 2−2 = 0, so 2z1+z2 = −1.
But the same result can be found directly and in an easier way with the usual
properties of addition, subtraction and scalar multiplication, as follows:

(a) 2z1 + z2 = 2(−2 + i) + (3− 2i) = (−4 + 2i) + (3− 2i) = −4 + 2i+ 3− 2i

= (−4 + 3) + (2− 2)i = −1.

We proceed in the same direct way to solve the remaining problems in this
Example

(b) 3z2 + 4z3 = 3(3− 2i) + 4i = (9− 6i) + 4i = 9− 6i+ 4i

= 9 + (−6 + 4)i = 9− 2i

(c) 3z1 + 2z2 = 3(−2 + i) + 2(3− 2i) = (−6 + 3i) + (6− 4i) = −6 + 3i+ 6− 4i

= (−6 + 6) + (3− 4)i = −i
(d) 3z1 + 2z2 + z3 = 3(−2 + i) + 2(3− 2i) + i = (−6 + 3i) + (6− 4i) + i

= −6 + 3i+ 6− 4i+ i = (−6 + 6) + (3− 4 + 1)i = 0
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1.2 EXERCISES

In Exercises 1-6, given z1 and z2, find the rectangular form of (a) z1 + z2 and
(b) z1 − z2

1. z1 = 2− 2i, z2 = 3 + 2i 2. z1 = 1−
√

3i, z2 = −1 +
√

3i

3. z1 =
√

2, z2 = −3
√

2 + i 4. z1 =
3

2
+

1

2
i, z2 = −3

2
5. z1 = 2− 5i, z2 = −3 + i 6. z1 = 2 + 2i, z2 = 3− 3i

In Exercises 7-12, given the complex numbers z1 = 2− 4i and z2 = 2 + i, find

7. 3z1 8. − 2

3
z2

9. z1 + 2z2 10.
1

2
z1 + 3z2

11.
3

2
z1 − z2 + 2i 12. 1− πz2

1.3 Multiplication of Complex Numbers

The multiplication of two complex numbers is performed using all properties
(commutative, associative, distributive) in use for the addition and multiplica-
tion of real numbers, and the fact that i2 = −1.

Given two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2, their product
is obtained as follows:

(x1 + iy1) · (x2 + iy2) = x1 · x2 + x1 · (iy2) + (iy1) · x2 + (iy1) · (iy2)+

x1 ·x2+i(x1 ·y2)+i(x2 ·y1)+i2(y1 ·y2) = (x1 ·x2−y1 ·y2)+i(x1 ·y2+x2 ·y1) (9)

In conclusion

Re(z1 · z2) = x1 · x2 − y1 · y2 and Im(z1 · z2) = x1 · y2 + x2 · y1

It can be easily seen that z1 · z2 = z2 · z1. Moreover, we can multiply any
three complex numbers z1, z2, z3 by performing successive multiplications of two
complex numbers at a time, in any order, that is z1 · (z2 · z3) = (z1 · z2) · z3 =
(z1 ·z3)·z2. Obviously, this can be extended to any number of complex numbers.
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In particular, for any natural number n, the power zn is obtained through
multiplication of z by itself n times.

In the applications below, instead of using formula (9) we multiply any two
complex numbers directly, using in each problem the common properties of
addition and multiplication.

Example 3 - If z1 = 1− i, z2 = −3 + 2i, find the rectangular form of

(a) z1 · z2, (b) z21 , (c) z31

Solution -
(a) Using the distributive property, the fact that i2 = −1, and the associative
property, we have that z1 · z2 = (1− i) · (−3 + 2i) = −3 + 2i+ 3i− 2(i)2 =
(−3 + 2) + i(2 + 3) = −1 + 5i
(b) Similarly, z1

2 = (1− i) · (1− i) = 1− 2i+ i2 = −2i
(c) Using the result in part (b), z1

3 = (1 − i) · (1 − i)2 = (1 − i) · (−2i) =
−2i− 2.

It is useful to notice that

i0 = 1, i1 = i, i2 = −1, i3 = i · i2 = −i,

i4 = i · i3 = −i2 = 1, i5 = i, i6 = −1 ....

and all the subsequent powers of i repeat these same numbers again and again,
so we can conclude that in, for n = 0, 1, 2, ..., is equal to one of the numbers
1, i,−1,−i. In particular, for n ≥ 4, if q and r are the quotient and the remainder
in the division by 4, namely n = q · 4 + r, then

in = iq·4+r = (i4)q · ir = 1q · ir = ir (10)

because i4 = 1.
For example, i95 = i4·23+3 = i3 = −i.
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1.3 EXERCISES

Find the rectangular form of the given complex numbers

1. (1 + i) · (
√

3− 2i) 2. (1 + i) · i
3. (−1 + i)2 4. (2 + 2i)2 · (1− i)
5. i26 6. (−i)49 · (−1 + i)3

7. (1 + i) · (1− i) 8.
(√3

2
+

1

2
i
)
·
(√3

2
− 1

2
i
)

9.
(√3

2
+

1

2
i
)2
·
(√3

2
− 1

2
i
)

10.
(√3

2
+

1

2
i
)
·
(√3

2
− 1

2
i
)2

1.4 Complex Conjugate and Division

Definition 2 - The complex conjugate of z = x + iy is defined as z =
x+ iy = x − iy. The modulus of z = x + iy is defined as |z| =

√
x2 + y2 =√(

Re(z)
)2

+
(
Im(z)

)2
.

From this definition, it follows that a complex number and its conjugate
have the same real part and opposite imaginary parts

Re(z) = Re(z) and Im(z) = −Im(z)

We also have that |z| ≥ 0.

Note that if Im(z) = 0, so that z is a real number, then |z| reduces to the
absolute value of z.

Example 4 - Find the complex conjugate and the modulus of

(a) − 1 +
3

4
i, (b) − 1, (c) − i, (d) 3 + 2i

Solution -

(a) −1 + 3
4 = −1− 3

4 , and | − 1 + 3
4 | =

√
1 + 9

16 =
√

25
16 = 5

4 .

(b) −1 = −1, and | − 1| = 1.
(c) −i = i, and | − i| = 1.
(d) 3 + 2i = 3− 2i, and |3 + 2i| =

√
13.
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Properties of the Complex Conjugate and the Modulus - Given any complex
numbers z, z1, and z2, we have

1. z = z

2. z1 + z2 = z1 + z2

3. z1 · z2 = z1 · z2

4. z · z = |z|2

5. |z1 · z2| = |z1| · |z2|

6. |Re(z)| ≤ |z| and |Im(z)| ≤ |z|.

Proof. Throughout this proof, z = x+ iy, z1 = x1 + iy1, and z2 = x2 + iy2

1. This property is true because if z = x+ iy, then z = x− iy = x+ iy = z.

2. By adding z1 and z2, we find z1 + z2 = (x1 +x2) + i(y1 + y2), so z1 + z2 =
(x1 + x2) − i(y1 + y2) = (x1 − iy2) + (x2 − iy2) = z1 + z2, which proves
Property 2.

3. From (9) we have z1 · z2 = (x1 + iy1) · (x2 + iy2) = (x1 · x2 − y1 · y2) −
i(x1 · y2 + x2 · y1) = (x1 · x2 − (−y1) · (−y2)) + i(x1 · (−y2) + x2 · (−y1)) =
(x1 − iy1) · (x2 − iy2) = (x1 + iy1) · (x2 + iy2) = z1 · z2.

4. From the definition of conjugate complex number z ·z = (x+iy)·(x−iy) =
x2 − (iy)2 = x2 + y2.

5. To prove this property it is enough to show that |z1 · z2|2 = |z1|2 · |z2|2.
Using Property 4. we have
|z1 · z2|2 = (z1 · z2) · (z1 · z2) = z1 · z2 · z1 · z2 = z1 · z1 · z2 · z2 = |z1|2 · |z2|2,
which implies the wanted result.

6. This property is a consequence of the following inequalities |Re(z)| = |x| =√
x2 ≤

√
x2 + y2 = |z| and |Im(z)| = |y| =

√
y2 ≤

√
x2 + y2 = |z|.

As with the real numbers, the reciprocal of a complex number z 6= 0,
denoted by 1

z or z−1, is the complex number such that z · 1z = 1.
We now give a way to find the rectangular form of 1

z in terms of the real and
imaginary parts of z using Property 4.

Multiplying and dividing 1
z by z, the complex conjugate of z, we obtain

1

z
=

1

x+ iy
=

x+ iy

(x+ iy) · (x+ iy)
=

x− iy
x2 + y2

=
x

x2 + y2
− i y

x2 + y2
=

z

|z|2
(11)
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and the general formulae for the real and imaginary parts are

Re
(1

z

)
=
Re(z)

|z|2
=

Re(z)

Re(z)2 + Im(z)2
, Im

(1

z

)
= −Im(z)

|z|2
= − Im(z)

Re(z)2 + Im(z)2

therefore

1

z
=
Re(z)

|z|2
− i Im(z)

|z|2
=

Re(z)

Re(z)2 + Im(z)2
− i Im(z)

Re(z)2 + Im(z)2

Example 5 - Find the rectangular form of

(a)
1

i
, (b)

1

1− i
, (c)

1

−2 + 3i

Solution -
(a) From (11), because i = −i, and |i| = 1, then multiplying and dividing 1

i by
−i, we obtain 1

i = −i
(b) Given that, 1− i = 1 + i, |1− i| =

√
2, then 1

1−i = 1+i
2 = 1

2 + i 12
(c) −2 + 3i = −2− 3i, | − 2 + 3i|2 = 13, so 1

−2+3i = −2
13 − i

3
13

We now define the quotient of two complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2 6= 0 as the product of z1 and z2

−1. The result is denoted by z1
z2

z1
z2

= z1 · z2−1 = z1 ·
z2
|z2|2

=
x1x2 + y1y2
x22 + y22

− ix1y2 − x2y1
x22 + y22

(12)

Cancellations can be made like with real numbers.

Example 6 - Find the rectangular form of 2−6i
−1+i

Solution -

2− 6i

−1 + i
= (2− 6i) · (−1 + i)−1 = (2− 6i) · (−1− i)

| − 1 + i|2

= (2− 6i) · (−1

2
− i1

2
) = −4 + 2i

1.4 EXERCISES

In Exercises 1-6, find (a) the conjugate and (b) the modulus of the given complex
numbers

1. 2− 2i 2. 1 + i

3. − 3 + 2i 4.
3

2
+

1

2
i

5. (2− 5i)(−3 + i) 6. (1− 2i)(1 + 2i)

8



In Exercises 7-12, for each one of the given complex numbers, (a) find its rect-
angular form, (b) find its conjugate, and (b) find its modulus

7.
2√

2−
√

2i
8. − 1

3i

9.
1

(1− i)2
10.

1

2
z1 + 3z2

11.
1− i
2 + 2i

12.
1 + i

1− i

2 The Geometry of Complex Numbers

2.1 Rectangular Coordinates and points in the Plane

The function that maps complex numbers z to the ordered pairs (Re(z), Im(z))
is one-to-one. Hence, by setting x = Re(z) and y = Im(z) we establish a
one-to-one map between complex numbers z and points (x, y) in the x,y-plane,
which enables us to speak of complex numbers as of points in the plane, and
represent the set of complex numbers C with the entire x,y-plane, called now
the complex plane.

Because of this geometric interpretation, we can plot each complex number
z with the point (x, y) = (Re(z), Im(z)) in the x,y-plane (see Figure 1), and
Re(z) and Im(z) will be called rectangular coordinates of z.

Figure 1: Complex numbers as points in the plane
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The plots of complex numbers in the x,y-plane are called Argand Diagrams
(see Figure 2 (a)). In such diagrams, the x-axis is called real axis, and the y-axis
is called imaginary axis.

Figure 2: (a) Argand Diagram; (b) Modulus of Complex Numbers

The real numbers (complex numbers with a zero imaginary part) are plotted
with points on the real axis, in particular z = 1 is plotted with (1, 0). Imaginary
numbers (complex numbers with a zero real part) are represented by points on
the imaginary axis, in particular the imaginary unit z = i is plotted with (0, 1).

In the complex plane, the modulus of a complex number z = x+ iy, defined
as |z| =

√
x2 + y2, is therefore the distance of the point (x, y) from the origin

(0, 0), which we call the distance between z and 0 (see Figure 2 (b)).
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2.1 EXERCISES

In Exercises 1-8, find the rectangular coordinates of the given complex numbers
and plot them on the x,y-plane

1. − 1 2. i

3. 2− 2i 4. 1 + i

5. (2− 5i)(−3 + i) 6. (1− 2i)(1 + 2i)

7. (−1 + 2i)2 8.
20i

3 + i

2.2 Complex Numbers in Polar Coordinates

In this section and in the next one we will use and often refer to the material
covered by the sections 10.7 and 11.3 in the Rogawski textbook.

A point P = (x, y) in the x,y-plane has polar coordinates (r, θ), where r
(radial coordinate) is the distance to the origin and θ (angular coordinate) is
the angle between the positive x-axis and the segment OP measured in the
counterclockwise direction.
Therefore, we can assign to a complex number z = x+ iy the polar coordinates
of P = (x, y), and conversely, we can assign to a pair of polar coordinates (r, θ)
the complex number z = x+ iy, via the point P = (x, y).

Figure 3: Polar Coordinates

Here we place the restriction r > 0. The angles θ are measured in radians.
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The equations that allow to find the polar coordinates of a complex number
z from its rectangular coordinates (x, y) are given below (see section 11.3, Ro-
gawski).

If z = x+ iy 6= 0, we set

r = |z| =
√
x2 + y2 (13)

θ =


tan−1 yx , if x > 0

tan−1 yx + π, if x < 0

±π2 , if x = 0

(14)

If z = 0, then r = 0 and θ can be any angle.

As (13) shows, the radial coordinate of a complex number is its modulus.

Example 7 - Find the polar coordinates of z = −2
√

2 + 2
√

2i.

Solution - From (13), we derive that |z| =
√

(2
√

2)2 + (2
√

2)2 = 4, and because

Re(z) < 0 from (14) it follows that θ = tan−1(−1) + π = −π4 + π = 3π
4 , so the

polar coordinates are (4, 3π4 ) (see Figure 4 below).

Figure 4: Polar coordinates of −2
√

2 + 2
√

2i. To reflect its negative real part the
angle θ is obtained adding π to tan−1(−1) = −π

4
.

As with a point in the x,y-plane, the polar coordinates of a complex number
are not unique. In fact, if (r, θ) are polar coordinates of z, also (r, θ + 2kπ), for
any k = 0,±1,±2,±3, ..., are polar coordinates of z. Because of that, we will

12



be concerned with finding one only pair of polar coordinates, and with an abuse
of language we will refer to it as the polar coordinates of z.

Example 8 - Find the polar coordinates of

(a) −1, (b) 2i, (c) − 3
√
3

2 + 3
2 i, (d) −1 + i.

Solution -
(a) −1 is plotted with the point (−1, 0), which is located on the negative part
of the x-axis at a distance 1 from the origin, so its polar coordinates are (1, π).
(b) The complex number 2i is plotted with the point (0, 2) located on the
positive part of the imaginary axis at a distance 2 from the origin, so its polar
coordinates are (2, π2 ).
(c) Referring to Example 1 from section 11.3 of the Rogawski textbook, the

complex number − 3
√
3

2 + 3
2 i is represented by the point (− 3

√
3

2 , 32 ), so it has

polar coordinates (3, 5π6 ).
(d) Because −1 + i is plotted with the point (−1, 1), then from Example 3,
section 11.3 of the Rogawski textbook, it follows that its polar coordinates are
(
√

2,−π4 )

As a consequence of (11) and the fact that the conjugate z of a complex
number z is its reflection in the x-axis, if z has polar coordinates (r, θ), then
z has polar coordinates (r,−θ). For instance, using the example 8(c), one can

state that polar coordinates of − 3
√
3

2 −
3
2 i are (3,− 5π

6 ).

2.2 EXERCISES

Find the polar coordinates of the given complex number

1. 5π 2. − πi

3.
√

3− i 4. −
√

2

2
+

√
2

2
i

5. − 2 + 2
√

3 i 6. − 1− i

2.3 The Exponential Notation - Euler’s Formula

The equations that allow to pass from the polar coordinates (r, θ) to the rectan-
gular coordinates (x, y) of a complex number z are (see section 11.3, Rogawski)

x = r cos θ = |z| cos θ y = r sin θ = |z| sin θ (15)

For a complex number that has rectangular form z = x + iy, using (15) we
derive the so called polar form of z

z = r(cos θ + i sin θ) = |z|(cos θ + i sin θ) (16)
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Like the polar coordinates, the polar form of a complex number is not unique.

Example 9 - Find the polar form of

(a) − 2
√

2 + 2
√

2i, (b) 3i, (c) 2
√

3− 2i, (d) − 2

Solution -
(a) From Example 7 it follows that the polar coordinates of −2

√
2 + 2

√
2i are

(4, 3π4 ), and from (16) we have that −2
√

2 + 2
√

2i = 4(cos 3π
4 + i sin 3π

4 ).
(b) The polar coordinates of 3i are (3, π2 ), so 3i = 3(cos π2 + i sin π

2 )

(c) Because |2
√

3 − 2i| = 4 and the angular coordinate of 2
√

3 − 2i is θ =
tan−1(− 1√

3
) = −π6 , then 2

√
3− 2i = 4(cos(−π6 ) + i sin(−π6 ))

(d) The polar coordinates of −2 are (2, π), therefore −2 = 2(cosπ+ i sinπ).

The Taylor expansion of ex, for all real numbers x, is given by (see Rogawski,
section 10.7)

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ ... (17)

We now use (17) as starting point to define the exponential function of the
complex variable z

Definition 3 - For any complex number z, the exponential function is defined as

ez =

∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+
z4

4!
+ ... (18)

.

EULER’s FORMULA - A complex number z with polar coordinates (r, θ) can
be expressed as

z = reiθ or z = |z|eiθ (19)

called the exponential form of z.

Proof. Writing (18) for z = iθ, and using the recurrence of the powers of the
imaginary unit (10), we have

eiθ =

∞∑
n=0

(iθ)n

n!
= 1 + iθ +

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ ...

= 1 + iθ +
i2θ2

2!
+
i3θ3

3!
+
i4θ4

4!
+ ... (20)

= 1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
+ ...
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In (20) only the odd powers of θ are multiplied by i.
We recall now that the Taylor expansions of cos θ and sin θ, for any real number
θ, are (see Example 2, section 10.7 Rogawski)

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ ... (21)

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ ... (22)

Multiplying (22) by i

i sin θ = iθ − iθ3

3!
+
iθ5

5!
− iθ7

7!
+ ... (23)

and adding (23) to (21) we obtain that cos θ + i sin θ is equal to the right end
side of (20), therefore

eiθ = cos θ + i sin θ (24)

Euler’s Formula (19) follows from (24) and the polar form of a complex
number (16).

It is worth noting that, on one hand, because of its own definition (18), ez

is equal to the real valued function ex for z = x real, on the other hand ez is a
true extension of ex because its outputs are all complex numbers. In particular,
negative real numbers can be outputs of ez but not of ex. For example, from
(24) written for z = iπ we have eiπ = −1 (see also example 10d below).

We should also point out that in (19) the coefficient of the exponential
function is the modulus of z, which cannot be negative, therefore an expression
like −eiθ is not acceptable as exponential form of a complex number z. Using
the example mentioned above, the exponential form of −1 can only be eiπ, where
the minus sign of −1 results from cosπ = −1 in (24).

Example 10 - Find the exponential form of

(a) − 2
√

2 + 2
√

2i, (b) 3i, (c) 2
√

3− 2i, (d) − 2

Solution - Based on the results of Example 9 and on the Euler’s formula (19),
we have
(a) −2

√
2 + 2

√
2i = 4e

3π
4 i. (b) 3i = 3e

π
2 i (c) 2

√
3 − 2i = 4e−

π
6 i (d)−2 =

2eπi.

2.3 EXERCISES

In Exercises 1-6, find the rectangular form of the complex number with the given
polar coordinates

1.
(

2,
π

3

)
2.
(

4,
π

4

)
3.
(
π,

3π

2

)
4.
(
π, π

)
5.
(2

3
,

3π

4

)
6.
(1

2
,

7π

6

)

15



In Exercises 7-12, write the given complex number in rectangular form

7. 2ei
π
4 8. 5ei

π
3

9.
1

3
e−i

π
3 10. πe−i

π
4

11. 6ei
3π
4 12. 3ei

5π
4

In Exercises 13-18, find the polar form of the given complex number

13. 5 14. − πi

15.
√

3− i 16. −
√

2

2
+

√
2

2
i

17. 2 + 2
√

3i 18. − 1− i

In Exercises 19-24, find the exponential form of the given complex number

19. − 3 20. − 2i

21. −
√

3 + i 22. −
√

2−
√

2i

23. 2 + 2
√

3i 24. − 1 + i

2.4 The Product and the Quotient of Complex Numbers
in Polar Coordinates - De Moivre’s Formulas

If the complex numbers z1 and z2 have respective polar coordinates (r1, θ1) and
(r2, θ2), then

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

By expanding and then using the addition and subtraction formulas for sine and
cosine, we have that

(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)=

= cos θ1 cos θ2 + i sin θ1 cos θ2 + i sin θ2 cos θ1 − sinθ1 sin θ2

= cos θ1 cos θ2 − sinθ1 sin θ2 + i(sin θ1 cos θ2 + sin θ2 cos θ1)

= cos(θ1 + θ2) + i sin(θ1 + θ2),
therefore

z1z2 = r1r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
(25)

Formula (25) means that the product of two complex numbers z1 and z2 has
for radial coordinate the product of the radial coordinates of z1 and z2, and for
angular coordinate the sum of the angular coordinates of z1 and z2.

16



The formula for the product of two complex numbers in exponential form
follows from (24) and (25). If r1e

iθ1 and z2 = r2e
iθ2 , then

z1z2 = r1r2e
i(θ1+θ2)

but this same formula can also be obtained via the straightforward use of the
properties of the exponential function (the same properties we are accustomed
to for ex hold for ez): z1z2 = r1r2e

iθ1eiθ2 = r1r2e
(iθ1+iθ2) = r1r2e

i(θ1+θ2).

Figure 5: The Product in Polar Coordinates

It is now possible to derive from (25) the formula for the quotient of two
complex numbers z1 and z2 (z2 6= 0) with respective polar coordinates (r1, θ1)
and (r2, θ2).
Because 1

z2
= z2

|z2|2 = z2
(r2)2

and because from (11) z2 has polar coordinates

(r2,−θ2), therefore 1
z2

has polar coordinates ( r2
(r2)2

,−θ2) = ( 1
r2
,−θ2). From this

fact and from (25) we can state that the quotient of two complex numbers z1
and z2 has for radial coordinate the quotient of the radial coordinates of z1 and
z2, and for angular coordinate the difference between the angular coordinates
of z1 and z2.
This can be expressed using the polar and the exponential forms as follows

z1
z2

=
r1
r2

(
cos(θ1 − θ2) + i sin(θ1 − θ2)

)
=
r1
r2
ei(θ1−θ2) (26)

Example 11 - Use (25) and (26) to find the polar coordinates

(a) (−3) · i, (b)
−3

i
, (c) (

√
3

4
− 1

4
i) · (2 + 2

√
3i) (d)

√
3
4 −

1
4 i

2 + 2
√

3i

then verify your results first by finding the rectangular form of the product and
quotient, and then deriving their polar coordinates using (13) and (14).

17



Solution -
(a) The polar coordinates of −3 and i are respectively (3, π) and (1, π2 ), there-
fore, from (25) we have that the polar coordinates of (−3) · i are (3, π + π

2 ) =
(3, 3π2 ). In order to verify this result by proceeding directly, we find that −3i
has modulus 3, and from (14) we derive that its angular coordinate is −π2 . This
implies that the polar coordinates are (3,−π2 ), which is in accordance with the
result found above, because (3, 3π2 ) and (3,−π2 ) represent the same complex
number since the angles differ by 2π.
(b) From (26) we have that the polar coordinates of −3i are (3, π− π

2 ) = (3, π2 ).
To verify this, we proceed like in section 1.3 to find that the rectangular form
−3
i = 3i, which indeed has polar coordinates (3, π2 ).

(c) The polar coordinates of
√
3
4 −

1
4 i are

(
1
2 , tan−1(− 1√

3
)
)

=
(
1
2 ,−

π
6

)
. On the

other hand, the polar coordinates of 2 + 2
√

3i are
(
4, tan−1(

√
3)
)

=
(
4, π3

)
. Ac-

cording to (25), the product has for polar coordinates
(
1
2 · 4,−

π
6 + π

3

)
=
(
2, π6

)
.

To check our result, we perform the product directly

(

√
3

4
− 1

4
i)(2 + 2

√
3i) =

√
3

4
· 2 +

√
3

4
· 2
√

3i− 2 · 1

4
i− 1

4
· 2
√

3i2 =
√

3 + i

and we can verify that the polar coordinates of this complex number are
(
2, tan−1 1√

3

)
=(

2, π6
)
, which confirms the result found above.

(d) From (26), it follows that the polar coordinates of
√

3
4 −

1
4 i

2+2
√
3i

are
( 1

2

4 ,−
π
6−

π
3

)
=(

1
8 ,−

π
2

)
.

To check our result, we perform the quotient directly
√
3
4 −

1
4 i

2 + 2
√

3i
=

(√
3
4 −

1
4 i
)(

2− 2
√

3i
)(

2 + 2
√

3i
)(

2− 2
√

3i
) = − 2i

16
= −1

8
i

,
which indeed has polar coordinates

(
1
8 ,−

π
2

)
.

From (25) and (26) we derive the

DE MOIVRE’s FORMULAS - If z 6= 0 has polar coordinates (|z|, θ), then for
any integer n ≥ 0

zn = |z|neinθ = |z|n(cosnθ + i sinnθ) (27)

and

z−n = |z|−ne−inθ = |z|−n(cosnθ − i sinnθ). (28)

In particular, if z = cos θ + i sin θ (i.e. |z| = 1), we have

(cos θ + i sin θ)n = (cosnθ + i sinnθ)

18



(cos θ + i sin θ)−n = (cosnθ − i sinnθ).

Example 12 - Find the (a) exponential, (b) polar, and (c) rectangular forms of
(1 + i)3 and (1 + i)−3.

Solution -
(a) 1 + i has polar coordinates (

√
2, π4 ), therefore the exponential forms are

(1 + i)3 = (
√

2)3e
3π
4 i, and (1 + i)−3 = (

√
2)−3e−

3π
4 i.

(b) From (a) it follows that (1 + i)3 = 2
√

2(cos 3π
4 + i sin 3π

4 ) and (1 + i)−3 =
√
2
4 (cos 3π

4 − i sin 3π
4 ).

(c) From (b) it follows that (1+i)3 = 2
√

2(−
√
2
2 +

√
2
2 i) = −2+2i, and (1+i)−3 =

2
√

2(−
√
2
2 −

√
2
2 i) = − 1

4 −
1
4 i.

2.4 EXERCISES

In Exercises 1-6, write the given complex number in rectangular form

1. 2ei
π
6 ei

π
3 2.

1

3
ei
π
4 ei

π
2

3.
2ei

π
4

3ei
π
2

4.
3ei

π
6

2ei
π
3

5.
(

2ei
π
3

)3
6.
( 1√

2
ei
π
6

)−3
In Exercises 7-12, find the exponential form of (a) z1z2, and (b) z1

z2
, where

7. z1 = 2
(

cos
π

4
+ i sin

π

4

)
, z2 =

(
cos

π

6
+ i sin

π

6

)
8. z1 = 3eiπ, z2 =

1

2
ei
π
3

9. z1 = 3(cosπ + i sinπ), z2 = 2(cos
π

3
− i sin

π

3
) 10. z1 = ei

π
4 , z2 = 2ei

π
3

11. z1 =
(

cos
(
− π

4

)
+ i sin

(
− π

4

))
, z2 =

√
5
(

cos
π

2
+ i sin

π

2

)
, 12. z1 = −2, z2 = ei

π
6

2.5 Roots of Complex Numbers

In this section, at first we need to take into account all possible polar coordinates
of a complex number. If θ is the angular coordinate of z in [0, 2π), we consider
all polar coordinates (r, θ + 2kπ), for k = 0,±1,±2,±3, ....

Let n be any natural number (aka counting number: 1, 2, 3, ...).

Definition 4 - The nth roots of a complex number z are all complex numbers ζ
such that ζn = z. They will be denoted by ζ = z

1
n or ζ = n

√
z
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Given z with polar coordinates (|z|, θ + 2kπ), for k = 0,±1,±2,±3, ..., our
aim is now to find the polar coordinates of its nth roots. Those roots by definition
are complex numbers ζ such that ζn = z. If we call (ρ, ψ) the polar coordinates
of ζ, then using the De Moivre’s Formula (27), we have that ζn has polar
coordinates (ρn, nψ). From ζn = z it follows that (ρn, nψ) and (|z|, θ + 2kπ)
must coincide. In particular

ρn = |z| , nψ = θ + 2kπ , for k = 0,±1,±2,±3, ...

that yield

ρ = |z| 1n = n
√
|z| , ψ =

θ + 2kπ

n
, for k = 0,±1,±2,±3, ...

We conclude that the polar coordinates of the nth roots of z have polar coordi-
nates

(ρ, ψ) =
(
|z| 1n ,

θ + 2kπ

n

)
, for k = 0,±1,±2,±3, ... (29)

Here |z| 1n = n
√
|z| denotes the unique real nth root of the real number |z|, which

exists in R for any n because |z| ≥ 0.

Example 13 - Find the polar coordinates of the 5th roots of z = 1 + i.

Solution - The polar coordinates of z = 1 + i are (
√

2, π4 ). From (29) we have

that its 5th roots have polar coordinates
(

5
√√

2, π/4+2kπ
5

)
=
(

10
√

2, π20 + 2kπ
5

)
,

for k = 0,±1,±2,±3, ....

Remark 1 - For z 6= 0, from (29) we obtain ψ = θ
n for k = 0, and θ

n + 2π for
k = n, therefore the corresponding points in the plane coincide and so do the
respective complex numbers. We can repeat the same reasoning for any multiple
of n, k = hn, and affirm that all nth roots obtained in(29) with k = hn coincide
with the one obtained with k = 0.
It is possible to verify a similar occurrence for each k = 0, 1, ...n − 1. Namely,
all angles ψ obtained in (29) for all integers k = 0,±1,±2,±3, ... differ from the
n angles obtained for k = 0, 1, ...n− 1 by multiples of 2π.
Geometrically, this implies that only n distinct points are obtained by plotting
in the plane the complex numbers with polar coordinates given in (29) with all
possible values k = 0,±1,±2,±3, .... The same n distinct points in the plane
can be obtained by choosing for k only the n values k = 0, 1, ...n− 1.

We can now state the following result

Theorem - Any complex number z 6= 0 with polar coordinates (|z|, θ) has exactly
n distinct nth roots whose polar coordinates are(

|z| 1n ,
θ

n
+

2kπ

n

)
, for k = 0, 1, ...n− 1. (30)

Their corresponding polar form is then

z
1
n = |z| 1n

(
cos
( θ
n

+
2kπ

n

)
+ i sin

( θ
n

+
2kπ

n

))
, for k = 0, 1, ...n− 1. (31)
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Example 14 - Find the rectangular form of the two distinct 2nd (square) roots
of −1.

Solution - The polar coordinates of −1 are (| − 1|, π). It follows that the radial
coordinate of

√
−1 is equal to 1. The angular coordinates that will yield the

two distinct square roots are obtained from (30) with n = 2, θ = π, and for
k = 0, 1, namely

(1,
π

2
+ kπ), for k = 0, 1

that is (
1,
π

2

)
and

(
1,

3π

2

)
Using (16), it follows that the square roots of -1 in rectangular form are

z1 = cos
π

2
+ i sin

π

2
= i and z2 = cos

3π

2
+ i sin

3π

2
= −i

Example 15 - Find the rectangular form of the three distinct 3rd (cubic) roots
of z = −2− 2i

√
3.

Solution - |z| =
√

4 + 12 = 4. From (14), because Re(z) = −2 < 0, then the
angular coordinate of z is θ = tan−1

√
3 + π = 4π

3 .
From (30) it follows that the cubic roots of z have polar coordinates

(
3
√

4,
4π
3

3
+

2kπ

3

)
, k = 0, 1, 2

therefore, their rectangular forms are

z1 =
3
√

4

(
cos
(4π

9

)
+ i sin

(4π

9

))
≈ 0.276 + 1.563i

z2 =
3
√

4

(
cos
(4π

9
+

2π

3

)
+ i sin

(4π

9
+

2π

3

))
=

3
√

4

(
cos
(10π

9

)
+ i sin

(10π

9

))
≈ −1.492− 0.543i

z3 =
3
√

4

(
cos
(4π

9
+

4π

3

)
+ i sin

(4π

9
+

4π

3

))
=

3
√

4

(
cos
(16π

9

)
+ i sin

(16π

9

))
≈ 1.216− 1.02i

Remark 2 - In the set R, the nth roots of a real number are at most two. If n
is odd, there is only one root, for example, 3

√
−8 = −2 is the only real number

that satisfies (−2)3 = −8. If n is even, there are two, one, or no roots, de-
pending on whether the number is positive, zero, or negative. For example for
n = 4, ± 4

√
16 = ±2 are the only real numbers that solve x4 = 16, while 0 is the
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only real number that solves x4 = 0, and there is no real number that solves
x4 = −16 .
In the set C of the complex numbers, the situation is very different. As previ-
ously seen, any complex number z 6= 0, has n different nth roots. This applies
also to the complex numbers with a zero imaginary part, namely the real num-
bers: any real number has n distinct nth roots in C, contrary to what happens
in R.

Example 16 - Find the rectangular form of the 6 distinct 6th roots of 1.
Solution - The polar coordinates of 1 are (1, 0), hence from (31)

6
√

1 = cos
(
0 +

2kπ

6

)
+ i sin

(
0 +

2kπ

6

)
, k = 0, 1, 2, 3, 4, 5

therefore the six distinct 6th roots of 1 are

z1 = cos 0 + i sin 0 = 1, for k = 0

z2 = cos
π

3
+ i sin

π

3
=

1

2
+

√
3

2
i, for k = 1

z3 = cos
2π

3
+ i sin

2π

3
= −1

2
+

√
3

2
i, for k = 2

z4 = cosπ + i sinπ = −1, for k = 3

z5 = cos
4π

3
+ i sin

4π

3
= −1

2
−
√

3

2
i, for k = 4

z6 = cos
5π

3
+ i sin

5π

3
=

1

2
−
√

3

2
i, for k = 5

Remark 3 - Formula (31) shows that the points in the x,y-plane representing

the nth distinct roots of a complex number are located on a circle of radius |z| 1n
centered at (0, 0). In addition, these points, for k = 0, 1, ...n − 1, have angular
coordinates that differ by the same angle 2π

n . This means that these points are

at the vertexes of a regular n-sided polygon inscribed in the circle of radius |z| 1n
centered at the origin.

Example 17 - Find the rectangular form of the three distinct 3rd roots of 8i.

Solution - The polar coordinates of 8i are (8, π2 ). Using (30), we find that the
polar coordinates of its cubic roots are(

8
1
3 ,

π
2

3
+

2kπ

3

)
, k = 0, 1, 2

that is (
2,
π

6

)
,
(

2,
5π

6

)
,
(

2,
3π

2

)
It follows that
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z1 = 2
(

cos
π

6
+ i sin

π

6

)
= 2
(√3

2
+

1

2
i
)

=
√

3 + i

z2 = 2
(

cos
5π

6
+ i sin

5π

6

)
= 2
(
−
√

3

2
+

1

2
i
)

= −
√

3 + i

z3 = 2
(

cos
3π

2
+ i sin

3π

2

)
= −2i

Figure 6: The 6th roots of 1

Example 18 - Solve the equations

(a) z2 + 1 = 0, (b) z4 + 16 = 0, (c) z6 − 1 = 0, (d) z3 − 8i = 0

Solution - (a) The solutions are the complex numbers z that satisfy z2 = −1,
namely z =

√
−1, the square roots of −1. From Example 14, it follows that

z = ±i.
(b) Similarly, the solutions to z4 + 16 = 0 are the complex numbers z = 4

√
−16,

that is the 4th roots of −16.
Because −16 has polar coordinates (16, π), from (30) it follows that the polar
coordinates of 4

√
−16 are(

2 ,
π

4
+
kπ

2

)
for k = 0, 1, 2, 3
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therefore the solutions to equation (b) are

z1 = 2
(

cos
π

4
+ i sin

π

4

)
=
√

2 + i
√

2 for k = 0

z2 = 2
(

cos
3π

4
+ i sin

3π

4

)
= −
√

2 + i
√

2, for k = 1

z3 = 2
(

cos
5π

4
+ i sin

5π

4

)
= −
√

2− i
√

2, for k = 2

z2 = 2
(

cos
7π

4
+ i sin

7π

4

)
=
√

2− i
√

2, for k = 3

(c) The solutions to the equation z6 − 1 = 0 are the complex numbers z = 6
√

1,
that is the 6th roots of 1, which have been found in Example 16 :

z1 = 1, z2 = 1
2 +

√
3
2 i, z3 = − 1

2 +
√
3
2 i, z4 = −1, z5 = − 1

2 −
√
3
2 i, z6 = 1

2 −
√
3
2 i

(d) The solutions to the equation z3−8i = 0 are the complex numbers z = 3
√

8i,
that is the cubic roots of 8i, which have been found in Example 17 :
z1 =

√
3 + i, z2 = −

√
3 + i, z3 = −2i

So far, we have solved equations in one variable z of the form zn + w = 0,
where n is a given natural number and w a given complex number. Because z
has to satisfy zn = −w, the solutions are found to be z = n

√
−w, namely the n

complex roots of −w.
Here we are interested in solving polynomial equations of a more general form,
and for that we need to introduce a few general notions and results.

A polynomial in one variable z is an expression of the form

P (z) = anz
n + an−1z

n−1 + ...+ a2z
2 + a1z + a0, an 6= 0 (32)

where the constants a0, a1, a2, ..., an−1, an are called the coefficients, n the de-
gree, a0 the constant term, and an the leading coefficient of P (z).

A polynomial with real coefficients ai, i = 0, ...n, is called real polynomial.
Here we will limit our attention to real polynomials, and from now on we will
simply refer to those as polynomials.

A number ζ is called root of the polynomial P (z) if P (ζ) = 0, that is if ζ is
solution to the polynomial equation P (z) = 0.
The equation P (z) = 0 is said to have degree n if the polynomial P (z) has
degree n. In particular we use the words linear, quadratic, cubic, etc for both
equations and polynomials with degree 1, 2, 3, etc.

Complex numbers are essential in solving polynomial equations. In fact, as
noticed at the very beginning of these lecture notes, the equation (1)

z2 + 1 = 0
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has no solutions in R, while its solutions in C are z = ±i.

The following result gives the exact number of roots of a polynomial (or
solutions to a polynomial equation)

THE FUNDAMENTAL THEOREM OF ALGEBRA - Any polynomial equation
P(z)= 0 of degree n ≥ 1 has exactly n solutions (some of which may be repeated).

For example, the only real solutions to the equation z6 − 1 = 0, are z = ±1.
Then, the Fundamental Theorem of Algebra tells us that there must be other
four non-real solutions. These complex numbers are provided in Example 18c.

Remark 4 - The common algebraic operations with polynomials in the real
variable x, including the polynomial division and factorization, still work for
polynomials in the complex variable z. As a consequence, also the quadratic
formula that expresses the solutions to a quadratic equation is valid. In the few
examples below, we will make use of these tools.

Example 19 - Solve the equations

(a) z5 − z2 = 0 (b) z4 + 2z2 + 1 = 0

(c) z2 + 4z + 13 = 0 (d) z5 − 3z4 + 3z3 − 3z2 + 2z = 0

Solution - (a) By factoring out z2, we derive that the solutions are given by
both the solutions to z2 = 0 and z3 − 1 = 0. The equation z2 = 0 has one only
solution z = 0 repeated twice. The equation z3 − 1 = 0 is solved by finding the

cubic roots of 1, which are z1 = 1, z2 = − 1
2 + i

√
3
2 , z3 = − 1

2 − i
√
3
2 .

(b) Because z4 + 2z2 + 1 = (z2 + 1)2, and because the solutions to z2 + 1 = 0
are z = ±i, then each of i and −i is repeated twice.
(c) Using the quadratic formula we find that the solutions are z = 2± 3i.
(d) By splitting the term 3z3 = 2z3+z3, we have that z5−3z4+3z3−3z2+2z =
z5− 3z4 + 2z3 + z3− 3z2 + 2z = z3(z2− 3z+ 2) + z(z2− 3z+ 2) = (z3 + z)(z2−
3z + 2) = z(z2 + 1)(z2 − 3z + 2) = 0, therefore the solutions are given by the
roots of each factor. The roots of the first two factors are 0,±i, and the roots
of z2− 3z+ 2 are z = 1, 2, which can be found using the quadratic formula.

The following result on real polynomials is fundamental

Complex Conjugate Root Theorem - If P(z) is a polynomial in one variable with
real coefficients, and ζ = α+βi is root of P(z) with α and β real numbers, then
its complex conjugate ζ = α− βi is also root of P(z).

In short, complex roots of a real polynomial must occur in conjugate pairs. For
example, if −3− 10i is solution to an equation, then also −3 + 10i is solution.

Example 19 has also provided us with a few examples of this result.

Here are few of the many consequences of the Complex Conjugate Root The-
orem for real polynomial equations
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- If a cubic equation has two real solutions, the third one must be real too.
- No equation can have an odd number of complex (with non zero imaginary
part) solutions.
- An equation of odd degree must have at least one real solution
- An equation of even degree cannot have an odd number of real solutions. - If
α+ iβ is root of a polynomial, then the polynomial is divisible by
(z − (α+ iβ))(z − (α− iβ)) = ((z − α)2 + β2) = (z2 − 2αz + β2).

2.5 EXERCISES

In Exercises 1-4, find the polar coordinates of the distinct nth roots of the com-
plex number whose polar coordinates are given

1. n = 3,
(

5,
π

4

)
2. n = 4,

(
7,
π

4

)
3. n = 5,

(
1,
π

3

)
4. n = 2,

(
1,
π

6

)
In Exercises 5-10, find the rectangular form of the nth roots of the given complex
number

5. n = 3, z = i 6. n = 3, z = −i
7. n = 4, z = −16 8. n = 3, z = 8

9. n = 6, z = −1 10. n = 4, z = −1 + i

In Exercises 11-14, find the rectangular form of all the complex numbers that
solve the given equation

11. z4 + 1 = 0 12. z3 + 8 = 0

13. z3 − 8 = 0 14. z6 + 1 = 0

In Exercises 15-18, find all solutions to the given equation, knowing that it has
the given solution

15. z3 − 4z4 + z + 26; z = −2 16. z4 + z3 + 4z2 + 4z = 0; z = −1

17. z3 + z2 − z + 15 = 0; z = 1 + 2i 18. z4 − 2z3 − 2z2 + 8 = 0; z = 1 + i
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ANSWERS TO ODD-NUMBERED EXERCISES

Section 1.1

1. (a) 2, (b) − 2; 3. (a) 1, (b) 0; 5. (a) 0, (b) − 1

7. 2 + i; 9. 3
2 ; 11. − 5

3 −
2
3 i

Section 1.2

1. (a) 5 , (b) −1−4i; 3. (a) −2
√

2+ i, (b) 4
√

2− i; 5. (a) −1−4i, (b) 5−6i

7. 6− 12i; 9. 6− 2i; 11. 1− 5i

Section 1.3

1. (
√

3 + 2) + (
√

3− 2)i; 3. −2i; 5. −1 ; 7. 2; 9.
√
3
2 + 1

2 i.

Section 1.4

1. (a) 2 + 2i, (b) 2
√

2; 3. (a) − 3− 2i, (b)
√

13; 5. (a) − 1 + 17i, (b)
√

290

7.
√
2
2 +

√
2
2 i; 9. 1

2 i; 11. − 1
2 i.

Section 2.1

1. (−1, 0); 3. (2,−2); 5. (−1, 17) ; 7. (−3,−4).

Section 2.2

1. (5π, 0); 3. (2,−π6 ) or (2, 11π6 ); 5. (4, 2π3 ).

Section 2.3

1. 1 +
√

3i; 3. −πi ; 5. −
√
2
6 +

√
2
6 i.

7.
√

2 + i
√

2; 9. 1
6 − i

√
3
6 ; 11. −3

√
2 + 3

√
2i.

13. 5(cos 0 + i sin 0); 15. 2
(

cos(−π6 ) + i sin(−π6 )
)

; 17. 4(cos π3 + i sin π
3 ).

19. 3eiπ; 21. 2e
5π
6 i ; 23. 4e

π
3 i.

Section 2.4

1. 2i; 3.
√
2
3 −

√
2
3 i; 5. -8; 7. (a) 2ei(

π
4 +π

6 ) = 2ei
5π
12 , (b) 2ei

π
12 .

9. (a) 6ei
2π
3 , (b) 3

2e
i 4π3 ; 11. (a)

√
5ei

π
4 , (b)

√
5
5 e
−i 3π4 .

Section 2.5

1. ( 3
√

5, π12 ), ( 3
√

5, 9π12 ), ( 3
√

5, 17π12 ); 3. (1, π15 ), (1, 7π15 ), (1, 13π15 ), (1, 19π15 ), (1, 5π3 ).
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5.
√
3
2 + 1

2 i, −
√
3
2 + 1

2 i, −i; 7.
√

2+i
√

2, −
√

2+i
√

2, −
√

2−i
√

2,
√

2−i
√

2.

9.
√
3
2 + 1

2 i, i, −
√
3
2 + 1

2 i, −
√
3
2 −

1
2 i, − i,

√
3
2 −

1
2 i.

11.
√
2
2 +

√
2
2 i, −

√
2
2 +

√
2
2 i, −

√
2
2 −

√
2
2 i,

√
2
2 −

√
2
2 i.

13. 2, − 1 +
√

3i, − 1−
√

3i.

15. −2, 3± 2i.

17. −3, 1± 2i.
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