Optional: Mean Value Theorem
Thu: (MVT) Suppose f is continuous an $[a, b]$ and differentiable on (a, b). Then there exists c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Graphical interpretation of MVT:

MUT says there is a tangent line parallel to the secant line

Ex. 1
Let $f(x)=x^{2 / 3}$. For each interval, determine whether the hypotheses of the MVT are satisfied. If yes, find all values of c decribed by the MVT.
(a) $[-1,1]$
(b) $[0,8]$

Solution:

- Where is f continuous?

Power functions are continuous on their domain, so $f(x)=x^{2 / 3}$ is continuous on $(-\infty, \infty)$. So the continuity hypothesis of MVT is satisfied on all intervals.

- Where is f differentiable?

Since $0<2 / 3<1$, we know $f(x)=x^{2 / 3}$ is differentiable everychere except $x=0$. So any open interval with $x=0$ does not satisfy the MVT hypotheses.
(a) Since $x=0$ is in $(-1,1)$, the MVT hypotheses are not satisfied.
(6) Since $x=0$ is not in $(0,8)$, the MVT hypotheses are satisfied. Hence there is some c in $(0,8)$ with:

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(8)-f(0)}{8-0} \\
\frac{2}{3} c^{-1 / 3} & =\frac{8^{2 / 3}-0}{8-0}=8^{-1 / 3}
\end{aligned}
$$

Solving for c gives

$$
c=\left(\frac{3}{2}\right)^{-3} \cdot 8=\frac{64}{27}
$$

Important special case of MNT:
Tum: (Rolle's Theorem) Suppose f is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)$. Then there exists c in (a, b) with $f^{\prime}(c)=0$.

