Optional: Intermediate Value Theorem \& Applications
Thu: (IVT) Suppose f is continuous on $[a, b]$. Then given any number d between $f(a)$ and $f(b)$, there exists a number c in (a, b) such that $f(c)=d$.

What does this mean graphically?

Our intuitive notion of continuity implies that continuous functions cannot skip any y-values.

Challenge: Given $(a, f(a))$ and $(b, f(b))$, can we draw The graph of f so that some y-values between $f(a)$ and $f(b)$ are skipped?
 Easy! As long as we are allowed to make f not continuous on $[a, b]$!

The IVT says this challenge is impossible if f has to be continuous.

Proving an equation has a solution
Suppose we knew the following:

- f is continuous on $[a, b]$
- $f(a)$ and $f(b)$ have opposite signs (one is positive and the other is negative)
What can we say about the equation " $f(x)=0$ "?

The IVT tells us that there must be at least one solution to " $f(x)=0$ " in the interval (a, b) !

Ex. 1
Prove that the equation $\cos (x)=x^{3}-x$ has a solution in $[\pi / 4, \pi / 2]$.
Solution:
Equivalently, we show $\cos (x)-x^{3}+x=0$ has a solution. let $f(x)=\cos (x)-x^{3}+x$. Then observe:

- f is continuous on $[\pi / 4, \pi / 2]$

$$
\left.\begin{array}{l}
\text { - } f(\pi / 4)=\frac{1}{\sqrt{2}}-\frac{\pi^{3}}{64}+\frac{\pi}{4} \approx 1.008 \\
\text { - } f(\pi / 2)=0-\frac{\pi^{3}}{8}+\frac{\pi}{2} \approx-2.305
\end{array}\right\}
$$

opposite signs
So by the IVT, the equation $f(x)=0$ has a solution in $(\pi / 4, \pi / 2)$.
Solving nonlinear inequalities
Suppose we want to solve " $f(x)>0$ " where f is a rational function (ratio of two polynomials, with
no common factors). Recall the general method.
Ex. 2
Solve $\frac{2 x-1}{x+2}>1$.
Solution:
$\left.\frac{2 x-1}{x+2}-1>0\right\}$ move all terms to ane side
$\left.\frac{x-3}{x+2}>0\right\}$ simplify left side; write as quotient
$(x=3, x=-2)\} \begin{aligned} & \text { determine "cut points" by setting each of } \\ & \text { numerator and denominator to } 0\end{aligned}$
$\left.\begin{array}{l}\text { (3) } \\ \text { (0) }^{-2} \text { (4) }\end{array}\right\}$ draw a number line and mark cut points

$$
\left.\begin{array}{l}
x=-3: \frac{x-3}{x+2}=6>0 \\
x=0: \frac{x-3}{x+2}=-\frac{3}{2}<0 \\
x=4: \frac{x-3}{x+2}=\frac{1}{6}>0
\end{array}\right\}
$$

in each interval, test the frith of the inequality using ane test port only.
$x \in(-\infty,-2) \cup(3, \infty)$ \} final answer is union of intervals
Why does this work? Specifically, why can we test only one point per interval?
Q: At what values of x can a function f change sign?
A: The IVT tells us $f(x)$ can change sign at $x=c$ only if either $f(c)=0$ or f is not continuous at c. Otherwise, $f(x)$ has a single sign in each interval
determined by these values of c.
When we find cut points for rational functions, we are finding these values of c where f can change sign.

- $f(c)=0$
\longrightarrow set numerator to 0 , solve for x
- f is not continuous at c
\rightarrow set denominator to 0 , solve for x
So we only test one point per interval because IVT tells us $f(x)$ has just one sign for the entire interval!

