Section 4.3 Supplement: Conceptual Background
First Derivative $f^{\prime}(x)$
What f^{\prime} says about the graph of f :

- $f^{\prime}(x)>0$ (tangents have positive slope)
- f is increasing (as x increases, y increases)

- $f^{\prime}(x)<0$ (tangents have negative slope)
- f is decreasing (as x increases, y decreases)

What about local extreme values? Suppose $x=c$ is a critical point of f. (So $f^{\prime}(c)=0$ or $f^{\prime}(c)$ die.)

- f^{\prime} does not change sign at $x=c$
- f has no local extremum at $x=c$

- f^{\prime} changes from \oplus to Θ at $x=c$
- local max

- f^{\prime} changes from Θ to \oplus at $x=c$
- local min

Summary of information from $f^{\prime}(x)$:

Sign of $f^{\prime}(x)$ on (a, b)	Shape of $f(x)$ on (a, b)
Θ	decreasing
\oplus	increasing

Sign change of f^{\prime} at $x=c$	Classification of $f(c)$
Θ to \oplus	local minimum
\oplus to Θ	local maximum
no change	not a local extremum

* Assume $x=c$ is a critical point $\left(f^{\prime}(c)=0\right.$ or $\left.f^{\prime}(c) d n e\right)$

Second Derivative $f^{\prime \prime}(x)$
What $f^{\prime \prime}$ says about the graph of f :
Note: $f^{\prime}(x)>0$ in both graphs but how is $f^{\prime}(x)$ changing?

- $f^{\prime}(x)$ is decreasing (slope gets less positive)
- $f^{\prime \prime}(x)<0$ (concave down)
- graph of f is below tangent lines

- $f^{\prime}(x)$ is increasing (slope gets move positive)
- $f^{\prime \prime}(x)>0$ (concave up)
- graph of f is above tangent lines

What about local extreme values? Suppose $x=c$ is a critical point of f and $f^{\prime \prime}$ is continuous at $x=c$.

- $f^{\prime}(c)=0$
- $f^{\prime \prime}(c)>0$
- $f(c)$ is a local minimum

- $f^{\prime}(c)=0$
- $f^{\prime \prime}(c)<0$
- $f(c)$ is a local maximum

Summary of information from $f^{\prime \prime}(x)$:

Sign of $f^{\prime \prime}(x)$ on (a, b)	Shape of $f(x)$ on (a, b)
Θ	concave down
\oplus	concave up

$f^{\prime}(c)=0$, sign of $f^{\prime \prime}(c)$	Classification of $f(c)$
Θ	local maximum
Θ	local minimum
zero	un known

* Inflection points occur where $f(x)$ is continuous and $f^{\prime \prime}(x)$ changes sign

inflection from concave
inflection from concave down to concave up up to concave down

Graphing $y=f(x)$
(1) Info from $f(x)$:

- points on graph
- vertical asymptotes
- horizontal asymptotes
(2) Info from $f^{\prime}(x)$:
- find where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ due
- construct sign chart for $f^{\prime}(x)$
- infer intervals of increase /decrease
- determine local extrema
(3) Info from $f^{\prime \prime}(x)$:
- find where $f^{\prime \prime}(x)=0$ or where $f^{\prime \prime}(x)$ due
- construct sign chart for $f^{\prime \prime}(x)$
- infer intervals of concavity
- determine inflection points
- (optional: verify local extrema)
(4) Graph $y=f(x)$:
- list important points (local extrema, inflection pts, etc.)
- summarize all info from f, f^{\prime}, and $f^{\prime \prime}$
- use chart below to sketch graph:

