Section 4.1 Supplement: Catalog of Non-differenfiable Functions
In Section 3.1, we learned how to recognize non-differentialle functions graphically. The notes below describle how to recognize analytically functions that are continuous but not differentiable. There are three main categories:
(1) Absolute Value: $f(x)=|x|$

The function f is not differentiable at $x=0$. The graph of f has a sharp corner at $x=0$. So the function $h(x)=|g(x)|$ is (possibly) not differentiable where $g(x)=0$.

$y=|x|$

$y=\left|x^{2}-4\right|$

$y=\left(x^{3}\right)$

Ex: The function $h(x)=\left|x^{2}-4\right|$ is not differentiable at $x=-2$ and $x=2 .\left(x^{2}-4=0 \Leftrightarrow x= \pm 2\right)$
(2) Power Functions: $f(x)=x^{n} \quad(0<n<1)$

The function f is not differentiable at $x=0$. The graph has a cusp or vertical tangent at $x=0$. So the function $h(x)=g(x)^{n}$ is (possibly) not differentiable where $g(x)=0$

$y=x^{1 / 3}$
$y=x^{1 / 2}$

Ex: The function $h(x)=\left(x^{2}-4\right)^{2 / 3}$ is not differentiable at $x=-2$ and $x=2 .\left(x^{2}-4=0 \Leftrightarrow x= \pm 2\right)$. Similarly, both $F(x)=\left(x^{2}-4\right)^{1 / 3}$ and $F(x)=\left(x^{2}-4\right)^{1 / 2}$ are not differentiable at $x=-2$ and $x=2$.

(3) Piecewise-defined Functions

Very often (but not always), a precewise-defined function is not differentiable at the transition pants.

$$
y= \begin{cases}-x & \text { if } x<0 \\ x^{2} & \text { if } x \geqslant 0\end{cases}
$$

$$
y=\left\{\begin{array}{cc}
1-\cos (x) & \text { if } x<0 \\
x^{2} & \text { if } x \geqslant 0
\end{array}\right.
$$

not differentiable at $x=0$ differentiable at $x=0$

