Section 4.1 Supplement: Conceptual Background
Basic Definitions:

Absolute minimum value of f on $[a, b]$	Relative minimum value of f at $x=c$
$l f f(c)$ is the abs. min.	If $f(c)$ is a relative min.
value of f on $[a, b]$, then	value of f, then $f(c)$ is the least possible value $f(c)$ is the least possible value of f for all x in $[a, b]$.

- similar definitions for absolute maximum and relative maximum (replace "least" with "greatest")
- "global" = "absolute" and "local" = "relative"
- "extremum" means minimum or maximum

Locating local extreme values graphically

Relative Minimum Values : $\underset{T}{f(A), ~} f(C), f(E)$
your textbook does not allow also absolute minimum relative extrema at boundary points
Relative Maximum Values:
$f(B), f(D), f(F)$
your textbook does allow absolute extrema at boundary points
Thu: (Extreme Value Theorem, EVT)
Suppose f is continuous on the closed, bounded interval $[a, b]$. Then the absolute min. and max. of f on $[a, b]$ exist.
What can go wrong if f is not continuous?

domain: $[a, b]$
no absolute min.
no absolute max.

Def: A number c in the interior of the domain of f is a critical number of $f^{\prime}(c)$ DNE or $f^{\prime}(c)=0$.
Thu: (Fermat)
If $f(c)$ is a local extremum, then c is a critical number.

* Why do we need to check where $f^{\prime}(x)$ due?
possible for local extremum to ocour at corners or cusps

Algorithm for finding absolute extrema of f on $[a, b]$
(i) Is f continuous on $[a, b]$?

- If no, stop. (EVT concludes nothing.)
- If yes, continue to (2).
(2) Find critical numbers of f in (a, b).
- find where $f^{\prime}(x)$ due
- Solve the equation $f^{\prime}(x)=0$
(3) Make a table of candidate extreme values of $f(x)$:
- values of f at critical numbers
- values of f at endpoints $(x=a$ and $x=b$
(4) Least candidate value is absolute min. Greatest candidate value is absolute max.
* Discard other values
* Okay for abs. extremum to occur at more than one x-value.

