Sections 2.1/2.2: Introduction to Limits
Motivation: average vs. mstantaneous velocity
$x(t)$: position of particle
$v(t)$: (instantaneous) velocity of particle
Average velocity over time interval $\left[t_{1}, t_{2}\right]$

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}
$$

Exp
Suppose $x(t)=16 t^{2}$. Estimate the instantaneous velocity at $t=2$.
Solution:
We can estimate the velociky at $t=2$ with the average velocity over $[2,2.1]$.

$$
\bar{V}=\frac{\Delta x}{\Delta t}=\frac{x(2.1)-x(2)}{2.1-2}=\frac{16(2.1)^{2}-16(2)^{2}}{2.1-2}=65.6
$$

We get a better estimate by using a smaller interval.

Interval	\underline{t}	$\underline{\bar{v}}$	what is relationship
$[2,2.1]$	0.1	65.6	between these two o
$[2,2.01]$	0.01	64.16	columns of H1's? $[2,2.001]$ 0.001
1.94 .016	"As Δt gets smaller (closer to 0), \bar{U}		
$[1.9]$	0.1	62.4	gets closer to $64 . "$

$[1.99,2]$	0.01	63.84
$[1.999,2]$	0.001	63.984

We estimate $\quad v(2)=64$.
"As Δt gets smaller (closer to 0), \bar{U} gets closer to 64."
This intuition is written symbolically as:

$$
\lim _{\Delta t \rightarrow 0}(\bar{v})=64
$$

limit of \bar{v} as Δt goes to 0 is $64^{\prime \prime}$
Q: How can we calculate $v(2)$ exactly?
A: Use \bar{v} as an estimate, but calculate \bar{U} symbolically in terms of Δt.
Ex. 1 cont.
Let $\underbrace{h>0}$. The average velocity over $\underbrace{[2,2+h]}$
(Think of h as a tiny number) length $=h$

$$
\begin{aligned}
\bar{v} & =\frac{x_{\text {final }}-x_{\text {initial }}}{f_{f_{\text {final }}-t_{\text {initial }}}=\frac{x(2+h)-x(2)}{2+h-2} \quad \begin{array}{l}
\text { Recall: } \\
x(t)=16 t^{2}
\end{array}} \\
& =\frac{16(2+h)^{2}-16(2)^{2}}{h}=\frac{16\left(h^{2}+4 h+4\right)-64}{h}=\frac{k(16 h+64)}{h}=16 h+64
\end{aligned}
$$

So as h gets closer to $0, \bar{v}$ gets closer
to 64. (Why? Plugging in $h=0$ into $16 h+64$ gives 64.)
General Definition of Limit

$$
\lim _{x \rightarrow a} f(x)=L \text { "limit of } f(x) \text { as } x
$$

This means the values of $f(x)$ can be made aribitrarily close to L as long as we choose x-values arbitrarily close to a.
Ex. 2
Use a table of values to estimate the limit:

$$
\lim _{x \rightarrow 3}\left(\frac{x^{2}-2 x-3}{x-3}\right)
$$

Solution:

This suggests the limit is 4 .

ExP
use a graph to estimate the limit.

$$
\lim _{x \rightarrow 3}\left(\frac{x^{2}-2 x-3}{x-3}\right)
$$

Solution:

$$
f(x)= \begin{cases}\frac{x^{2}-2 x-3}{x-3} & \text { if } x \neq 3 \\ \text { undefined } & \text { if } x=3\end{cases}
$$

So $f(x)$ can be written as:

$$
f(x)=\left\{\begin{array}{lll}
x+1 & \text { if } & x \neq 3 \\
\text { undefined } & \text { if } & x=3
\end{array}\right.
$$

Graph suggests $\lim _{x \rightarrow 3} f(x)=4$.
Ex. 4
Calculate the limit using algebra.

$$
\lim _{x \rightarrow 3}\left(\frac{x^{2}-2 x-3}{x-3}\right)
$$

Solution:

$$
\begin{array}{r}
\lim _{x \rightarrow 3}\left(\frac{x^{2}-2 x-3}{x-3}\right) \ominus \lim _{x \rightarrow 3}\left(\frac{(x-3)(x+1)}{x-3}\right) \lim _{x \rightarrow 3}(x+1) \Theta 4 \\
\text { algebra (factor) cancel }(x-3)(\text { why?) plug in } x=3
\end{array}
$$

Note: $\frac{x-3}{x-3} \neq 1$ in general (what if $x=3$?)
One-sided Limits Compare to General Definition of Limit

- Left-sided limits

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

This means the values of $f(x)$ can be made aribitrarily close to L as long as we choose x-values arbitrarily close to $a \ldots$ AND $x<a$.

- Right-sided limits

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

This means the values of $f(x)$ can be made aribitrarily close to L as long as we choose x-values arbitrarily close to $a \ldots$ AND $x>a$.

Ex. 5
For $a=-2,-1,1,2$: use the graph to calculate
(a) $\lim _{x \rightarrow a^{-}} f(x)$
(b) $\lim _{x \rightarrow a^{+}} f(x)$
(c) $\lim _{x \rightarrow a} f(x)$
(d) $f(a)$

Solution:

a	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$\lim _{x \rightarrow a} f(x)$	$f(a)$
-2	3	3	3	3
-1	-1	1	DNE	-1
1	2	3	DNE	-1
2	1	1	1	DNE

* If left and right limits are different, then the two-sided timit does not exist (DNE).

Section 2.3/3.5: Calculating Limits
Direct Substitution Property (DSP)
If $\lim _{x \rightarrow c} f(x)=f(c)$, then f has the $D S P$ at $x=c$. What are some functions with the $D S P$?
(1) polynomials
$\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right)$
(2) rational
(5) exponential $\left(e^{x}, 2^{x}, \ldots\right)$
(3) algebraic
(6) logarithmic
(4) trigonometric

These functions hove the DSP only on their domain
Ex. I
Calculate $\lim _{x \rightarrow 3}\left(\frac{x^{2}+x-12}{x-3}\right)$.
Solution:
The function $f(x)=\frac{x^{2}+x-12}{x-3}$ does not have DSP at $x=3$. So we use algebra to transform $f(x)$ into a function with the $O S P$.

$$
\lim _{x \rightarrow 3}\left(\frac{x^{2}+x-12}{x-3}\right)=\lim _{x \rightarrow 3}\left(\frac{(x-3)(x+4)}{x-3}\right) \Theta \lim _{x \rightarrow 3}(x+4) \fallingdotseq 3+4=7
$$

limit symbol tells you $x \neq 3, \quad x+4$ is a polynomial, so cancelation is okay so it has the
Note: $\frac{x^{2}+x-12}{x-3} \neq x+4$ (why? what if $x=3$?)
Ex.culate $\lim _{x \rightarrow 2} \frac{\sqrt{2}-\sqrt{x}}{4-x^{2}}$.

Solution:
Note: D.S. of $x=2$ gives " $\frac{0}{0}$ ", which is undefined.
(1) this does not necessarily mean the limit DNE.
(2) "O" suggests algebraic cancelation

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left(\frac{\sqrt{2}-\sqrt{x}}{4-x^{2}} \cdot \frac{\sqrt{2}+\sqrt{x}}{\sqrt{2}+\sqrt{x}}\right)=\lim _{x \rightarrow 2}\left(\frac{2-x}{\left(\frac{\left.2-x^{2}\right)(\sqrt{2}+\sqrt{x})}{(4-x}\right.}\right) \\
& =\lim _{x \rightarrow 2}\left(\frac{2-\sqrt{x} \text { factored }}{(2-x)(2+x)(\sqrt{2}+\sqrt{x})}\right)=\lim _{x \rightarrow 2}\left(\frac{1}{(2+x)(\sqrt{2}+\sqrt{x})}\right) \\
& =\frac{1}{(2+2)(\sqrt{2}+\sqrt{2})}=\frac{1}{8 \sqrt{2}}
\end{aligned}
$$

Ex. 3
Calculate each limit:
(a) $\lim _{x \rightarrow 0}\left(\frac{(x+3)^{2}-9}{x}\right)$
(b) $\lim _{x \rightarrow 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4}\right)$

Solution:

$$
\begin{aligned}
& \text { (a) } \lim _{x \rightarrow 0}\left(\frac{(x+3)^{2}-9}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{x^{2}+6 x+9-9}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{x^{2}+6 x}{x}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{x(x+6)}{x}\right)=\lim _{x \rightarrow 0}(x+6)=0+6=6
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \lim _{x \rightarrow 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{x-4} \cdot \frac{4 x}{4 x}\right)=\lim _{x \rightarrow 4}\left(\frac{4-x}{(x-4) \cdot 4 x}\right)=\lim _{x \rightarrow 4}\left(\frac{-(x-4)}{(x-4) \cdot 4 x}\right) \\
& =\lim _{x \rightarrow 4}\left(\frac{-1}{4 x}\right)=\frac{-1}{16}
\end{aligned}
$$

Ex. 4
Calculate $\lim _{x \rightarrow 1} f(x)$ where f is:

$$
f(x)= \begin{cases}\frac{x^{2}-x}{x-1} & \text { if } x>1 \\ \sqrt{1-x} & \text { if } x \leq 1\end{cases}
$$

Solution:
Note that $x=1$ is a transition point for $f(x)$. So we examine the one-sided limits.
left limit

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(\underbrace{\sqrt{1-x}})=\sqrt{1-1}=0
$$

This means: $f(x)=\sqrt{1-x} \quad$ use DSP
(1) close to 1 If x is close
(2) $x<1$ to 1 and $x<1$
Right limit

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(\frac{x^{2}-x}{x-1}\right)=\lim _{x \rightarrow 1^{+}}\left(\frac{x(x-1)}{x-1}\right)=\lim _{x \rightarrow 1^{+}}(x) \bigoplus 1
$$

This means:
(1) close to 1
$f(x)=\frac{x^{2}-x}{x-1}$
(2) $x>1$ use DSP

$$
\text { If } x \text { is close }
$$

fo 1 and $x>1$

Since $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x), \quad \lim _{x \rightarrow 1} f(x) \quad D N E$.
Ex. 5
Calculate $\lim _{x \rightarrow 6} \frac{|x-6|}{x-6}$.
Solution:
Recall definition of $|x|$.

$$
|x|=\left\{\begin{array}{cc}
-x & \text { if } x<0 \\
x & \text { if } x \geqslant 0
\end{array} \Rightarrow|x-6|=\left\{\begin{array}{cc}
-(x-6) & \text { if } x<6 \\
x-6 & \text { if } x \geqslant 6
\end{array}\right.\right.
$$

So $x=6$ is a transition point for $|x-6|$. So we examine one-sided limits.
Left limit:

$$
\lim _{x \rightarrow 6^{-}} \frac{(x-6 \mid}{x-6}=\lim _{x \rightarrow 6^{-}}\left(\frac{-(x-6)}{x-6}\right)=\lim _{x \rightarrow 6^{-}}(-1)=-1
$$

This means $x<6$. So $x-6$ is negative.
So $|x-6|=-(x-6)$.
Right Limit:-

$$
\lim _{x \rightarrow 6^{+}} \frac{|x-6|}{x-6}=\lim _{x \rightarrow 6^{+}}\left(\frac{x-6}{x-6}\right)=\lim _{x \rightarrow 6^{+}}(+1)=11
$$

This means $x>6$. So $x-6$ is positive
So $|x-6|=x-6$
So $\lim _{x \rightarrow 6} \frac{|x-6|}{x-6}$ DUE.
Special Limit to Memorize

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1 \quad \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)}=1
$$

Common mistakes:
(1) $\frac{\sin (7 \theta)}{\theta} \neq \frac{7 \sin (\theta)}{\theta}=\ldots$
(2) $-\frac{S y a(\theta)^{-n}}{-\theta^{-n}} \neq 1$ Need the limit Symbol!

Ex. 6
Calculate $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}$.
Solution:
False Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}=\lim _{x \rightarrow 0} \frac{2 \sin (x)}{2 x}=\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

These two limits look similar:

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}, \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}
$$

But in chat sense? " $2 x$ " plays the role of " θ ".
(1) If $\theta=2 x$, then $\frac{\sin (\theta)}{\theta}=\frac{\sin (2 x)}{2 x}$
(2) If $\theta=2 x$, then " $\theta \rightarrow 0$ " means the same thing as " $2 x \rightarrow 0$ " (or " $x \rightarrow 0$ ").
So we can conclude that

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x}=1
$$

Similarly...

$$
\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta}=1 \quad \lim _{\theta \rightarrow 0} \frac{a \theta}{\sin (a \theta)}=1 \quad(a \neq 0)
$$

Ex. 7
Calculate $\lim _{x \rightarrow 0} \frac{\tan (8 x)}{\sin (3 x)}$.
Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{\tan (8 x)}{\sin (3 x)}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin (8 x)}{\cos (8 x) \sin (3 x)}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin (8 x)}{8 x} \cdot \lim _{x \rightarrow 0} \cos (8 x)=1\right. \\
& \left.=\frac{3 x}{\sin (3 x)} \cdot \frac{8 x}{3 x} \cdot \frac{1}{\cos (8 x)}\right) \\
& =\underbrace{\lim _{x \rightarrow 0}\left(\frac{\sin (8 x)}{8 x}\right)}_{=1} \cdot \underbrace{\lim _{x \rightarrow 0}\left(\frac{3 x}{\sin (3 x)}\right)}_{=1} \cdot \underbrace{\lim _{x \rightarrow 0}\left(\frac{8 x}{3 x}\right)} \cdot \underbrace{\lim _{x \rightarrow 0}\left(\frac{1}{\cos (8 x)}\right)}_{x \rightarrow 0}=1 \\
& (\text { special }) \\
& (\text { special }) \\
& =1 \cdot 1 \cdot \frac{8}{3} \cdot 1=\frac{8}{3}
\end{aligned}
$$

Section 2.4: Infinite limits
Consider the following limit:

$$
\begin{array}{ll}
\longrightarrow \text { This means. } x \text { is close to } O \text { AND } \\
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)=+\infty & \text { (technically, limit DNE) }
\end{array}
$$

As $x \rightarrow 0^{+}$, what happens to $\frac{1}{x}$. The values of $\frac{1}{x}$ are positive and they get arbitrarily large What about This similar limit?
\rightarrow This means: x is close to 0 AND $x<0$

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)=-\infty \quad \text { (technically, limit DNE) }
$$

As $x \rightarrow 0^{-}$, what happens to $\frac{1}{x}$. The values of $\frac{1}{x}$ are negative and they get arbitrarily large What does "arbitrarily large" mean? It does not mean "numbers get bigger and bigger".
Ex:

$$
1,2,3,4,5,6,7,8, \ldots
$$

These numbers get arbitrarily large because they eventually surpass any given number and remain larger.

$$
0.9,0.99,0.999,0.9999,
$$

These numbers get bigger and bigger but never surpass 1, so they do not get arbitrarily large.

Master Strategy for Infinite limits
If D.S. gives the expression "nonzero\#", then each one-sided limit is infinite. To determine whether limit is $+\infty$ or $-\infty$, we perform a sign analysis of numerator and denominator.
Vertical Asymptote
If either $\lim _{x \rightarrow a^{-}} f(x)$ or $\lim _{x \rightarrow a^{+}} f(x)$ is infinite, then the line $x=a$ is a vertical asymptote of f.
Ex. 1
Use the graph to fill in the table.

Solution:

a	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$\lim _{x \rightarrow a} f(x)$	$f(a)$
1	$+\infty$	$+\infty$	$+\infty$	$D N E$
2	$+\infty$	$-\infty$	DNE	DNE
3	5	$+\infty$	DNE	5
4	5	$-\infty$	$D N E$	$D N E$

How many VA's can a function have? Infinitely many? Ex: $f(x)=\tan (x)$

Ex. 2
Find all vertical asymptotes of

$$
f(x)=\frac{x}{x^{2}-4}
$$

Find the one-sided limits at the leftmost VA.
Solution:
To find candidate $V A ' s$, set denominator to 0 .

$$
x^{2}-4=0 \Rightarrow x=-2 \text { OR } x=2
$$

0.S. of $x=-2$ (or $x=2$) into $f(x)$ gives " $\frac{\text { nonzero" }}{0}$.

So the one-sided limits at $x=-2$ and $x=2$ are infinite. So $x=-2$ and $x=2$ are UA's.

$$
x=-2
$$

$$
\begin{aligned}
& x=-2 \\
& \left.\lim _{x \rightarrow-2-}\left(\frac{x}{x \text { is close to }-2}\right)=\frac{-2}{x^{2}-4}\right) \infty=-\infty=0 \text { offs. of } x=-
\end{aligned}
$$

x is close to -2
\rightarrow goes to 0 but $x^{2}-4>0$ and $x<-2$
$\lim _{x \rightarrow-2^{+}}\left(\frac{x}{x^{2}-4}\right)=0^{-2} \rightarrow$ D. S. of $x=-2$
x is close to -2 and $x>-2$
D.S. gives "nonzero"

Ex. 3
Compute $\lim _{x \rightarrow \pi} \frac{x^{2}}{1+\cos (x)}$.
Solution:
D.S. of $x=\pi$ gives " $\frac{\pi^{2}}{0}$ ". So the one-sided limits are infinite.

$$
\begin{aligned}
& \lim _{x \rightarrow \pi^{-}}\left(\frac{x^{2}}{1+\cos (x)}\right)=\frac{\pi^{2}}{0^{+}} \infty=+\infty \\
& \lim _{x \rightarrow \pi^{+}}\left(\frac{x^{2}}{1+\cos (x)}\right)=\frac{\pi^{2}}{0^{+}} \infty=+\infty
\end{aligned}
$$

$$
y=1+\cos (x)
$$

Ex. 4
Find all UA's of $f(x)=\frac{x^{2}-4}{x^{2}-x-2}$.
Solution:
Observe:

$$
x^{2}-x-2 \Rightarrow x=2, x=-1
$$

D.S. of $x=-1$ gives " $\frac{-3}{0}$ ". So $x=-1$ must be a VA.
D.S. of $x=2$ gives " $\frac{0}{0}$ ". So $x=2$ may or may not be a VA. Need more analysis.

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x^{2}-x-2}\right)=\lim _{x \rightarrow 2}\left(\frac{(x-2)(x+2)}{(x-2)(x+1)}\right) \\
& =\lim _{x \rightarrow 2}\left(\frac{x+2}{x+1}\right)=\frac{2+2}{2+1}=\frac{4}{3}
\end{aligned}
$$

So $x=2$ is not a VA. The only VA is $x=-1$.

Ex. 5
Let $f(x)=\frac{x^{3}+4 x^{2}+3 x}{x^{3}+2 x^{2}+x}$. Find all VA's and, at each $U A$, find the one-sided limits Solution:
Observe:

$$
\begin{aligned}
0 & =x^{3}+2 x^{2}+x=x\left(x^{2}+2 x+1\right)=x(x+1)^{2} \\
& \Rightarrow x=0 \quad \text { or } \quad x=-1
\end{aligned}
$$

So our candidate UA's are $x=0$ and $x=-1$.
D.S. of each gives:
$\left.x=0: \frac{0}{0}\right\}$ inconclusive, so need more
$\left.x=-1: \frac{0}{0}\right\}$ analysis!
First we do some algebra. If $x \neq 0$ and $x \neq-1$, we have:

$$
\frac{x^{3}+4 x^{2}+3 x}{x^{3}+2 x^{2}+x}=\frac{x\left(x^{2}+4 x+3\right)}{x(x+1)^{2}}=\frac{x(x+1)(x+3)}{x(x+1)^{x}-1}=\frac{x+3}{x+1}
$$

Now we investigate the limits:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(\frac{x+3}{x+1}\right)=\frac{0+3}{0+1}=3
$$

So $x=0$ is not a VA. (limit is not infinite)

$$
\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1}\left(\frac{x+3}{x+1}\right) \begin{aligned}
& \text { Dis. gives "22", which } \\
& \text { indicates in finite one- } \\
& \text { sided limits! }
\end{aligned}
$$

So $x=-1$ is a UA. Now for the ane-sided limits.

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}\left(\frac{x+3}{x+1}\right)=\frac{2}{0-} \infty=-\infty
$$

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}}\left(\frac{x+3}{x+1}\right)=\frac{(2}{0^{+}} \infty=+\infty
$$

Section 2-5: Limits at Infinity
Consider the following limit.
\longrightarrow As \times gets arbitrarily large and positive...

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

T. the values of $\frac{1}{x}$ get arbitrarily close to 0 . (and $\frac{1}{x}$ is always positive)
Similarly,

$$
\lim _{x \rightarrow-\infty}\left(\frac{1}{x}\right)=0
$$

$\rightarrow x$ gets arbitrarily large and negative $\frac{1}{x}$ gets arbitrarily small and negative

In general, we have $($ for $n>0)$

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=\left(\lim _{x \rightarrow \infty} \frac{1}{x}\right)^{n}=0^{n}=0
$$

Master Strategy for limits with $x \rightarrow \pm \infty$
If $x \rightarrow \infty$ or $x \rightarrow-\infty$, then factor out "highest power" of numerator and denominator separately. (Or factor out "highest power" of denominator from all terms.)

Horizontal Asymptotes (L is finite)
If either $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$, then we say that the line $y=1$ is a horizontal asymptote for.

2 HA's

2 HA's

Ex. 1
Calculate $\lim _{x \rightarrow \infty} \frac{3 x^{2}-5 x+1}{4 x^{2}-7}$.
Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{3 x^{2}-5 x+1}{4 x^{2}-7}\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x^{2}} \cdot \frac{3-\frac{5}{x}+\frac{1}{x^{2}}}{4-\frac{7}{x^{2}}}\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{x^{2}}\right) \cdot \lim _{x \rightarrow \infty}\left(\frac{3-\frac{5}{x}+\frac{1}{x^{2}}}{4-7 / x^{2}}\right)=1 \cdot \frac{3-0+0}{4-0}=\frac{3}{4}
\end{aligned}
$$

Ex. 2
Calculate $\lim _{x \rightarrow-\infty}\left(\frac{5 x^{3}-2 x}{x^{2}+1}\right)$.
Solution'.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(\frac{5 x^{3}-2 x}{x^{2}+1}\right)=\lim _{x \rightarrow-\infty}\left(\frac{x^{3}}{x^{2}} \cdot \frac{5-2 / x^{2}}{1+1 / x^{2}}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{x^{3}}{x^{2}}\right) \cdot \underbrace{\lim _{x \rightarrow-\infty}\left(\frac{5-2 / x^{2}}{1+1 / x^{2}}\right)=(-\infty) \cdot(5)=-\infty}_{x \rightarrow-\infty}=\frac{\lim _{x \rightarrow-\infty}\left(\frac{2}{x^{2}}\right)=0}{=\lim _{x \rightarrow-\infty}(x)=-\infty}=5 \\
& \lim _{x \rightarrow-\infty}\left(\frac{1}{x^{2}}\right)=0
\end{aligned}
$$

Warning: " $\infty \cdot 0$ " is undefined (like " $\frac{O}{O}$ ")
(a) $\lim _{x \rightarrow \infty}\left(x \cdot \frac{1}{x}\right)=\lim _{x \rightarrow \infty}(1)=1$
$\infty .0$
(b) $\lim _{x \rightarrow \infty}\left(x^{2} \cdot \frac{1}{x}\right)=\lim _{x \rightarrow \infty}(x)=\infty$
(c) $\lim _{x \rightarrow \infty}\left(x \cdot \frac{1}{x^{2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)=0$

Ex. 3
Calculate $\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{25 x^{2}+3}}{9 x-1}\right)$
Solution:
Note: $\sqrt{x^{2}-9} \neq x-3, \sqrt{x^{2}+9} \neq x+3$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}\left(\frac{\sqrt{25 x^{2}+3}}{9 x-1}\right)=\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{x^{2}\left(25+3 / x^{2}\right)}}{9 x-1}\right) \\
& =\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{x^{2}} \sqrt{25+3 / x^{2}}}{9 x-1}\right)=\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{x^{2}}}{x} \cdot \frac{\sqrt{25+3 / x^{2}}}{9-1 / x}\right)
\end{aligned}
$$

$\sqrt{x^{2}} \neq \pm x \leftarrow$ not a function (two values)
$\sqrt{x^{2}} \neq x \leftarrow$ what if $x<0$?

$$
\begin{aligned}
& \sqrt{x^{2}}=|x| \\
& =\lim _{x \rightarrow-\infty}\left(\frac{|x|}{x} \cdot \frac{\sqrt{25+3 / x^{2}}}{9-1 / x}\right)=\lim _{x \rightarrow-\infty}\left(\frac{-x}{x} \cdot \frac{\sqrt{25+3 / x^{2}}}{9-1 / x}\right)
\end{aligned}
$$

since $x \rightarrow-\infty$, we can assume $x<0$.
So then $|x|=-x$.

$$
=\lim _{x \rightarrow-\infty}\left(-1 \cdot \frac{\sqrt{25+3 / x^{2}}}{9-1 / x}\right)=-1 \cdot \frac{\sqrt{25+0}}{9-0}=-\frac{5}{9}
$$

terms go to 0 as $x \rightarrow-\infty$
Ex. 4
Let $f(x)=\frac{3+e^{x}}{5-4 e^{x}}$. Find all HA's of f.
Solution'.
To calculate the HAS, we must calculate: $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$

Recall the following:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(e^{x}\right)=\infty \\
& \lim _{x \rightarrow-\infty}\left(e^{x}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(e^{-x}\right)=0 \\
& \lim _{x \rightarrow-\infty}\left(e^{-x}\right)=\infty
\end{aligned}
$$

Now we compute our limits:

$$
x \rightarrow-\infty
$$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x)= & \lim _{x \rightarrow-\infty}\left(\frac{3+e^{x}}{5-4 e^{x}}\right)=\frac{3+0}{5-0}=\frac{3}{5} \\
& \lim _{x \rightarrow-\infty}\left(e^{x}\right)=0
\end{aligned}
$$

$x \rightarrow \infty$

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{3+e^{x}}{5-4 e^{x}}\right)=?
$$

$\lim _{x \rightarrow+\infty}\left(e^{x}\right)=+\infty$, so this gives $\frac{\infty}{-\infty}$, which is like $\frac{0}{0}$ or $0 \infty .0$ (need algebra)
This is where we modify our "highest power" strategy:

$$
=\lim _{x \rightarrow+\infty}\left(\frac{e^{x}}{e^{x}} \cdot \frac{3 e^{-x}+1}{5 e^{-x}-4}\right)=\lim _{x \rightarrow \infty}\left(\frac{3 e^{-x}+1}{5 e^{-x}-4}\right)=\frac{0+1}{0-4}=-\frac{1}{4}
$$

$$
\lim _{x \rightarrow \infty}\left(e^{-x}\right)=0
$$

So the HA's are $y=\frac{3}{5}$ and $y=-\frac{1}{4}$.

Section 2.6: Continuity
Def: We say f is continuous at $x=c$ of

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

(i.e., f has the DSP at $x=c$). Otherwise, we say f is discontinuous at $x=c$.

How can f fail to be continuous at $x=c$? Four types:
(1)

- $\lim _{x \rightarrow c} f(x)$ exists
- $f(c)$ undefined $O R$
$f(c) \neq \lim _{x \rightarrow c} f(x)$
(3)

- vertical asymptote at $x=c$
- at least one one-sided limit is infinite
Ex. 1
Let $f(x)=\frac{x^{2}+x-12}{x-3}$.
(a) Where is f continuous?
(b) At each value of x where f is discontinuous,
can we redefine the value of f so that f is cont.?
Solution:
(a) For what values of x does f have the DSP? For all x in the domain! So f is continuous on $(-\infty, 3) \cup(3, \infty)$.
(6) Right now $f(3)$ is undefined. Can we choose a value for $f(3)$ to make f continuous at $x=3$?
Note: If f were continuous at $x=3$, we would have

$$
\lim _{x \rightarrow 3} f(x)=f(3)
$$

This tells us what the new value of $f(3)$ should be! So we compute this limit.

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}\left(\frac{x^{2}+x-12}{x-3}\right)=\lim _{x \rightarrow 3}\left(\frac{(x+4)(x-3)}{x-3}\right)=\lim _{x \rightarrow 3}(x+4)=7
$$

So if we define $f(3)$ to be 7 , then f is cont. at $x=3$.

(before redefining $f(3)$)
(after redefining $f(3)$)
Ex. 2
Let $f(x)= \begin{cases}x^{2}+3 & , x<0 \\ x-5, & x \geqslant 0\end{cases}$
(a) Where is f continuous?
(b) At each value of x where f is discontinuous, can we redefine the value of f so that f is cont.?
Solution:
(a) Where does f have the $D S P$?. Each "piece" of f has the DSP so the only value of x for which f might not have the BSP is $x=0$ (transition point). To check whether f is continuous at $x=0$, we check:

$$
\lim _{x \rightarrow 0} f(x)=f(0)
$$

Note: This means the left-limit, right-limit, and function value aust all be equal.
Left limit

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2}+3\right)=0+3=3
$$

Right limit
These numbers are

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x-5)=0-5=-5
$$ not all equal! So f is not cont. at $x=0$

Function value

$$
f(0)=\left.(x-5)\right|_{x=0}=-5
$$

So f is continuous on $(-\infty, 0) \cup(0, \infty)$.
(6) If we can redefine $f(0)$ to make f continuous, we have one candidate value:

$$
f(0)=\lim _{x \rightarrow 0} f(x) \leftarrow \text { only possible value }
$$

Since $\lim _{x \rightarrow 0} f(x)$ does not exist (why?), there is no
value we can assign to make f continuous.
is there a point on the y-axis we can put this point to make f continuous? No!

$$
y=f(x) \text { with } f(0) \text { undefined }
$$

Ex. 3
Let $f(x)= \begin{cases}\frac{x^{4}-16}{x+2}, & x<-2 \\ a+2 b, & x=-2 \\ 6 x+3, & x>-2\end{cases}$
where a and b are unspecified constants.
Find the values of a and b which make f continuous at $x=-2$, or determine no such values exist.
Solution:
We need the left-limit, right limit, and function value at $x=-2$ to be equal.
Ceft-limit

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}}\left(\frac{x^{4}-16}{x+2}\right)=\lim _{x \rightarrow-2^{-}}\left(\frac{\left(x^{2}-4\right)\left(x^{2}+4\right)}{x+2}\right) \\
& =\lim _{x \rightarrow-2^{-}}\left(\frac{(x-2)(x+2)\left(x^{2}+4\right)}{x+2}\right)=\lim _{x \rightarrow 2^{-}}\left((x-2)\left(x^{2}+4\right)\right)=-32
\end{aligned}
$$

Right limit

$$
\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}} \frac{(b x+3)}{4 \text { substitute } x=-2}=-2 b+3
$$

Function Value

$$
f(-2)=a+2 b
$$

All three of these numbers must be equal.

$$
-32=-2 b+3=a+2 b
$$

So we solve for a and b. (Extract two equations)

$$
\left.\left.\begin{array}{l}
-32=-2 b+3 \\
-32=a+2 b
\end{array}\right\} \Rightarrow \begin{array}{rl}
2 b & =35 \\
a+2 b & =-32
\end{array}\right\} \Rightarrow \begin{aligned}
& a=-67 \\
& b=35 / 2
\end{aligned}
$$

So if $a=-67$ and $b=35 / 2, f$ is continuous at $x=-2$.
Let $f(x)=\left\{\begin{array}{cl}x+a, & x<0 \\ 5, & x=0 \\ \frac{\sin (b x)}{x}, & x>0\end{array}\right.$
where a and b are unspecified constants.
Find the values of a and b which make f continuous at $x=$, or determine no such values exist.
Solution:
We need the left-limit, right-limit, and function value at $x=0$ to be equal.
Left limit

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x+a)=0+a=a
$$

Right limit

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin (6 x)}{x}\right)=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin (6 x)}{b x} \cdot b\right) \\
\quad=\lim _{x \rightarrow 0^{+}}\left(\frac{\sin (6 x)}{b x}\right) \cdot \lim _{x \rightarrow 0^{+}}(b)=1 \cdot b=b
\end{gathered}
$$

Function Value

$$
f(0)=5
$$

All three numbers must be equal, so $a=b=5$.

Sections 3.1/3.2: Introduction to Derivatives

Slope of scant
line (h>0): $m_{\text {sec }}=\frac{\Delta y}{\Delta x}=\frac{f(a+h)-f(a)}{h}$
Slope of tangent: $\left.m_{\tan }=\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}\right)\right) ~$ line
Def: Given the function $f(x)$, the number

$$
m=\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}\right)
$$

is the derivative of f at $x=a$. We denote it as $f^{\prime}(a)$.

Def: The line tangent to the graph of $y=f(x)$ at $x=a$ is the line that passes through $(a, f(a))$ with slope $f^{\prime}(a)$.

(a) Where is $f^{\prime}(x)=0$? (b) $f^{\prime}(x)<0$? (c) $f^{\prime}(x)>0$?

Soluction:
(a)

$$
x=2,4,6,8
$$

(b)

$$
f^{\prime}(x)<0 \text { on }(0,2) \cup(4,6) \cup(6,8)
$$

Note: $f^{\prime}(0)$ due! (derivative cannot exist at boundary point since we cannot take both one-sided limits)
Note: f is decreasing on: $[0,2],[4,8]$
(c)

$f^{\prime}(x)>0$ on $(2,4) \cup(8, \infty)$
Note: f is increasing on: $[2,4],[8, \infty)$
ExT
Find tangent line to $f(x)=x^{3}+2 x-1$ at $x=1$.
Solution:
In the earlier language, $a=1$.
Pout: $(a, f(a))=(1,2)$
Slope: $m=f^{\prime}(1)=\lim _{h \rightarrow 0}\left(\frac{f(1+h)-f(1)}{h}\right)$

$$
=\lim _{h \rightarrow 0}\left(\frac{(1+h)^{3}+2(1+h)-1-2}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{x+3 h+3 h^{2}+h^{3}+2 x+2 h-1-2}{h}\right)
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left(\frac{5 h+3 h^{2}+h^{3}}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{h\left(5+3 h+h^{2}\right)}{\hbar}\right) \\
& =\lim _{h \rightarrow 0}\left(5+3 h+h^{2}\right)=5+0+0=5
\end{aligned}
$$

So our tangent line is:

$$
y=2+5(x-1)
$$

Ex. 3
Let $f(x)=\sqrt{x}$. Calculate $f^{e}(x)$ for $x>0$.
Solution:
We use the definition.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\right)=\lim _{h \rightarrow 0}\left(\frac{h}{h(\sqrt{x+h}+\sqrt{x})}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{1}{\sqrt{x+h}+\sqrt{x}}\right)=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}=\frac{1}{2} x^{-1 / 2}
\end{aligned}
$$

Ex. 4
Let $f(x)=|x|$. Calculate:
(a) $f^{\prime}(-3)$
(b) $f^{\prime}(0)$

Solution:
(a) By definition,

$$
f^{\prime}(-3)=\lim _{h \rightarrow 0}\left(\frac{f(-3+h)-f(-3)}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{|-3+h|-3}{h}\right)
$$

Note: We assume h is close to O (neg. or pos.).
So $(-3+h)$ is close to -3 , hance we can assume $(-3+h)$ is neg. So $|-3+h|=-(-3+h)$.

$$
=\lim _{h \rightarrow 0}\left(\frac{-(-3+h)-3}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{3-h-3}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{-k}{h}\right)=-1
$$

So $f^{\prime}(-3)=-1$.
(b) By definition,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0}\left(\frac{f(0+h)-f(0)}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{|h|}{h}\right)
$$

Note: See Section 2.3 for details.

$$
\begin{aligned}
& -\lim _{h \rightarrow 0^{-}}\left(\frac{|h|}{h}\right)=\lim _{h \rightarrow 0^{-}}\left(\frac{-h}{h}\right)=-1 \\
& -\lim _{h \rightarrow 0^{+}}\left(\frac{|h|}{h}\right)=\lim _{h \rightarrow 0^{+}}\left(\frac{h}{h}\right)=+1
\end{aligned}
$$

So $f^{\prime}(0)$ due. (Even though f is continuous at $x=0!$)
Ex. S
Find tangent line to $f(x)=\frac{1}{x}$ at $x=3$.
Solution:
Point: $(3, f(3))=(3,1 / 3)$

$$
\begin{aligned}
& \text { Slope: } f^{\prime}(3)=\lim _{h \rightarrow 0}\left(\frac{f(3+h)-f(3)}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{\frac{1}{3+h}-\frac{1}{3}}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{3-(3+h)}{h \cdot 3 \cdot(3+h)}\right)=\lim _{h \rightarrow 0}\left(\frac{3-x-h}{3 h(3+h)}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{-h}{3 h(3+h)}\right)=\lim _{h \rightarrow 0}\left(\frac{-1}{3(3+h)}\right)=\frac{-1}{3(3)}=\frac{-1}{9}
\end{aligned}
$$

The tangent line:

$$
y=\frac{1}{3}-\frac{1}{9}(x-3)
$$

How can a function fail to be differentiable?
Q: What is the relationship between continuity and differentiability?
A: Continuity is necessary for differentiability. So of f is not continuous at $x=a$, then f is not differentiable at $x=a$.
So if f is continuous, how can f fail to be differentiable?

Sections 33, 3.4, 3.5, 3.9: Derivative Rules

$\frac{f(x)}{c}$	$\frac{f^{\prime}(x)}{0}$
x^{n}	0
e^{x}	e^{n-1}
$\ln (x)$	$\frac{1}{x}$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\tan (x)$	$\sec (x)^{2}$
$\sec (x)$	$\sec (x) \tan (x)$
$\csc (x)$	$-\csc (x) \cos (x)$
$\cot (x)$	$-\csc (x)^{2}$

Power Rule
Advanced Rules

$\frac{F(x)}{f+g}$	$\frac{f^{\prime}(x)}{f^{\prime}+g^{\prime}}$
$c f$	$c f^{\prime}$
$f g$	$f^{\prime} g+f g^{\prime}$
$\frac{f}{g}$	$\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

Verify $\frac{d}{d x}(\tan (x))=\sec (x)^{2}$ using the other rules.
Solution:
We use Quotient Rule.

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{f}{\frac{\sin (x)}{\cos (x)}}\right)=\frac{f^{\prime}(x) \cdot \cos (x)-\sin (x)(-\sin (x))}{\cos (x)^{2}} \\
& g^{2} \\
& =\frac{\cos (x)^{2}+\sin (x)^{2}}{\cos (x)^{2}}=\frac{1}{\cos (x)^{2}}=\sec (x)^{2}
\end{aligned}
$$

Ex. 2
Calculate $\frac{d}{d x}\left(\frac{7 x^{2}}{x^{3} \sqrt{x}}\right)$.
Solution:
Rewrite function in simpler form first.

$$
\frac{7 x^{2}}{x^{3} \sqrt{x}}=7 x^{2} x^{-3} x^{-1 / 2}=7 x^{-3 / 2}
$$

Now we use power rule.

$$
\frac{d}{d x}\left(7 x^{-3 / 2}\right)=7 \cdot \frac{d}{d x}\left(x^{-3 / 2}\right)=7 \cdot\left(-\frac{3}{2} \cdot x^{-5 / 2}\right)=-\frac{21}{2} x^{-5 / 2}
$$

Power Rule: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Ex. 3
Calculate $h^{\prime}(x)$ if $h(x)=\frac{x \sqrt{x} \tan (x)}{e^{x}-e^{3}}$.
Solution:
First simplify. Then use Quotient Rue.

$$
\begin{gathered}
h(x)=\frac{\left.x^{3 / 2} \tan (x)\right] f}{\left.e^{x}-e^{3}\right]} \\
f^{\prime} \\
h^{\prime}(x)=\frac{\left(\frac{3}{2} x^{1 / 2} \tan (x)+x^{3 / 2} \sec (x)^{2}\right) \cdot\left(e^{x}-e^{3}\right)-x^{3 / 2} \tan (x) \cdot e^{x}}{\left(e^{x}-e^{3}\right)^{2}}
\end{gathered}
$$

Scratch Work

$$
\begin{aligned}
& f(x)=\underbrace{x^{3 / 2}}_{F} \underbrace{\tan (x)}_{G} \quad \text { (Product Rule) } \\
& f^{\prime}(x)=\underbrace{\frac{3}{2} x^{1 / 2} \cdot \underbrace{\tan (x)}_{F}+\underbrace{x^{3 / 2}}_{G^{\prime}} \cdot \sec (x)^{2}}_{G} \\
& g(x)=e^{x}-e^{3}
\end{aligned}
$$

$$
g^{\prime}(x)=\frac{d}{d x}\left(e^{x}-e^{3}\right)=\frac{d}{d x}\left(e^{x}\right)-\frac{d}{d x}\left(e^{3}\right)=e^{x}-0=e^{x}
$$

Ex. 4
Find the tangent lime to $f(x)$ at $x=1$.

$$
f(x)=x^{3}-\frac{3}{x^{2}}
$$

Solution:
Point: $(1, f(1))=(1,-2)$
Slope: $f(x)=x^{3}-3 x^{-2} 2 d / d x$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-3\left(-2 x^{-3}\right) \\
& f^{\prime}(x)=3 x^{2}+6 x^{-3} \leftarrow \text { recipe for slopes } \\
& f^{\prime}(1)=3+6=9 \leftarrow \text { slope of tangent } Q x=1
\end{aligned}
$$

Equation: $y=-2+9(x-1)$
Ex. 5
Find all horizontal tangent lines of f :

$$
f(x)=3 x^{5} e^{x}
$$

Solution:
Our initial goal is to solve $f^{\prime}(x)=0$.

$$
f(x)=3 \underbrace{x^{5}}_{F} \underbrace{e^{x}}_{6}
$$

$$
\begin{aligned}
& f^{\prime}(x)=3 \cdot(\underbrace{5 x^{4}}_{F^{\prime}} \cdot \underbrace{e^{x}}_{G}+\underbrace{x^{5}}_{F} \cdot \underbrace{e^{x}}_{G^{\prime}}) \\
& f^{\prime}(x)=3 x^{4} e^{x}(5+x)
\end{aligned}
$$

Now solve $f^{\prime}(x)=0$.

$$
\begin{gathered}
3 x^{4} e^{x}(5+x)=0 \\
3 x^{4}=0 \quad \text { or } e^{x}=0 \text { or } \quad 5+x=0 \\
x=0 \quad \text { or no solution or } x=-5
\end{gathered}
$$

The equations of the horizontal tangents are:

$$
\begin{array}{ll}
x=0 & x=-5 \\
f(0)=0 & f(-5)=3(-5)^{5} e^{-5}=-9375 e^{-5} \\
y=0 & y=-9375 e^{-5}
\end{array}
$$

Ex. 6
Find all horizontal tangent lines to

$$
f(x)=4 x^{3} \ln (x)
$$

Solution:
First find $f^{\prime}(x)$.

$$
\begin{aligned}
f(x) & =\underbrace{4 x^{3}}_{F} \underbrace{\ln (x)}_{G} \\
f^{\prime}(x) & =\frac{12 x^{2}}{F^{\prime}} \cdot \underbrace{\ln (x)}_{G}+\frac{4 x^{3}}{F} \cdot \frac{1}{G^{\prime}} \\
f^{\prime}(x) & =12 x^{2} \ln (x)+4 x^{2}
\end{aligned}
$$

$$
f^{\prime}(x)=4 x^{2}(3 \ln (x)+1)
$$

Now solve $f^{\prime}(x)=0$. (Why? Horizontal lines have slope 0.)

$$
\begin{gathered}
4 x^{2}(3 \ln (x)+1)=0 \\
4 x^{2}=0 \quad \text { or } \quad 3 \ln (x)+1=0 \\
x=0 \quad \text { or } \quad x=e^{-1 / 3}
\end{gathered}
$$

domain of f is: $(0, \infty)$
A horizontal tangent line occurs at $x=e^{-1 / 3}$ only. Its equation is:

$$
\begin{gathered}
y=f\left(e^{-1 / 3}\right)=4\left(e^{-1 / 3}\right)^{3} \ln \left(e^{-1 / 3}\right)=-\frac{4}{3 e} \\
f(x)=4 x^{3} \ln (x)
\end{gathered}
$$

Section 3.6: Derivatives as Rates of Change

- rate of change of y with respect to x
$\frac{d y}{d x}$? $\cdot \frac{\Delta y}{\Delta x}$ is approximation of $\frac{d y}{d x}$
- If x changes by Δx, then y changes by $\Delta y=\left(\frac{\Delta y}{\Delta x}\right) \Delta x=f^{\prime}(a) \Delta x$
Oae-dimensional Motion
$x(t)$
position
$v_{a v}=\frac{x(a+\Delta t)-x(a)}{\Delta t}: \quad \begin{aligned} & \text { average velocity } \\ & \text { over }[a, a+\Delta t]\end{aligned}$
$v(t)=\frac{d x}{d t}$
: (instantaneous) velocity
$|v(t)|=\left|\frac{d x}{d t}\right|$
speed
$a(t)=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} \quad:$ acceleration
Ex. 1
Graph shows position of patrol car relative to station $(s=0)$. Car initially heads north at $9: 00 \mathrm{am}$. Time t is measured in hours since $9: 00 \mathrm{am}$.

(a) What is the average velocity in the first is minutes?
(b) What is the average velocity on $[0.25,0.75]$? Is this a good estimate of the velocity at $9: 30 \mathrm{am}$?
(c) What is the velocity at lam? In which direction is the car moving?
(d) Describe the motion of the car from lam to noon. Solution:
(a) $v_{a v}=\frac{\Delta s}{\Delta t}=\frac{s(0.75)-s(0)}{0.7 s-0}=\frac{30-0}{0.75}=40 \mathrm{mph}$
(b) $v_{a v}=\frac{\Delta s}{\Delta t}=\frac{s(0.75)-s(0.2 s)}{0.75-0.25}=\frac{30-8}{0.5}=44 \mathrm{mph}$

$t 9: 30 \mathrm{am}$ is of tangent line
Yes. 44 mph is good estimate of velocity at $9: 30 \mathrm{am}$.
(c) The velocity at lam is the slope of the tangent line at $t=2$. We will use the average velocity on $[1.75,225]$ to estimate $v(2)$.

$$
\begin{aligned}
v(2) & \approx V_{a v}=\frac{S(2.25)-S(1.75)}{2.25-1.75} \\
& =\frac{(-13)-(17)}{0.5}=-60 \mathrm{mph}
\end{aligned}
$$

Since $-60<0$, the car is headed back to the station (south).
(d) The car initially moves away from station (north). At about 10:05 am (A) the car reaches it max distance
 from the station (35 miles) and then reverses direction (south). At about 11:05am (B) the car passes the station. At about II:40 am (c) the car reaches its max distance from the station (28 miles). Then it reverses direction again.
Ex. 2
A stove is thrown vertically from a 48 -ft cliff with initial velocity of $32 \mathrm{ft} / \mathrm{s}$. The height of The stone is:

$$
h(t)=-16 t^{2}+32 t+48
$$

(a) What is the velocity after t seconds?
(b) When does stone reach max height?
(c) What is the max height?
(d) When does it hit the ground?
(e) What is the impact velocity?
(f) When is the speed increasing?

Solution:
(a) $v(t)=h^{\prime}(t)=-32 t+32 \leftarrow \mathrm{ft} / \mathrm{s}$
(b) $v(t)=0 \Rightarrow t=1$
$\leftarrow \mathrm{sec}$.
(c) $h(1)=-16+32+48=64 \leftarrow \mathrm{ft}$.
(d)

$$
\begin{aligned}
& h(t)=0 \\
& -16 t^{2}+32 t+48=0 \\
& -16\left(t^{2}-2 t-3\right)=0 \\
& -16(t-3)(t+1)=0 \\
& t=3 \text { or } t=-1
\end{aligned}
$$

(e) $v(3)=-32 \cdot 3+32=-64 \mathrm{ft} / \mathrm{s}$
(f)

$$
\begin{aligned}
& y=v(t) \\
& (y=-32 t+32)
\end{aligned}
$$

velaity

$$
\begin{gathered}
y=|v(t)| \\
(y=\mid-32 t+32 D
\end{gathered}
$$

speed

The speed is increasing on $(1,3)$.
(The velocity is increasing on no interval.)
Ex. 3
Same as Ex. 2, but when stone reaches the ground it hits a spring elastically, bouncing back up with the same speed. Graph the height $h(t)$ and velocity $v(t)$.
Solution:

Ex. 4
A coffee vendor has collected data on the price of coffee in her store over the last year. The price of coffee t weeks since when the data collection began was

$$
p(t)=0.02 t^{2}-0.1 t+6
$$

dollars per pound.
For each part, you must give correct units as part of your answer.
(a) How much did the price of one pound of coffee increase in the first ten weeks after the data collection began?
(b) What was the average rate at which the price of one pound of coffee changed over the same ten-week period mentioned in part (a)?
The vendor also found that, in a given week, the local consumers bought approximately

$$
D(p)=\frac{2500}{p^{2}+1}
$$

pounds of coffee when the price was p dollars per pound. That is, D is the weekly demand of the consumers.
(c) Calculate $D^{\prime}(7)$ and explain its precise meaning in the given context.
(d) At what rate was the weekly demand for coffee changing with respect to time exactly ten weeks after data collection began?
Solution:

$$
\begin{aligned}
& \text { (a) } \Delta p=p(10)-p(0)=7-6=1 \text { dollar } \\
& \text { (b) } \frac{\Delta p}{\Delta t}=\frac{1}{10} \frac{\text { dollars }}{\text { week }}
\end{aligned}
$$

(c) $D^{\prime}(p)=-\frac{5000 p}{\left(\rho^{2}+1\right)^{2}}$

$$
D^{\prime}(7)=\frac{-5000 \cdot 7}{(49+1)^{2}}=-14 \frac{\text { pounds }}{\text { dollar }}
$$

When the price is $\$ 7$ per pound, the demand is decreasing by 14 pounds/dollar. In other words, of this rate were constant, each $\$ 1$ increase in the price would lead to a 14-pound decrease in demand.
(d)

We use chain rule:

$$
\begin{aligned}
&\left.\frac{d D}{d t}\right|_{t=10}=\left.\frac{d}{d t}(D(p(t)))\right|_{t=10} \\
&=\left.D^{\prime}(p(t)) p^{\prime}(t)\right|_{t=10} \quad \begin{array}{l}
\text { Recall: } \\
p(t)=0 \\
p(10) \\
p^{\prime}(t)= \\
p^{\prime}(10) \\
\end{array}=D^{\prime}(p(10)) p^{\prime}(10) \quad \\
&=D^{\prime}(7) \cdot p^{\prime}(10) \quad \\
&=(-14)(0.3)=-4.2 \text { pounds } \\
& \text { week }
\end{aligned}
$$

Section 3.7: Chain Rule
How do we differentiate...

$$
\begin{array}{ll}
f(x)=\sin (x) & f^{\prime}(x)=\cos (x) \\
f(x)=2 \sin (x) & f^{\prime}(x)=2 \cos (x) \\
f(x)=2 x \sin (x) & f^{\prime}(x)=2 \sin (x)+2 x \cos (x) \\
f(x)=\sin (2 x) & f^{\prime}(x)=? ? ?
\end{array}
$$

Thu: (Chain Rule)
If f and g are differentiable, then

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
$$

derivative of wal anted derivative of
outside at inside inside
Ex. 1
Calculate $\frac{d}{d x}\left(\sin \left(x^{2}\right)\right)$ and $\frac{d}{d x}\left(\sin (x)^{2}\right)$.
Solution:

$$
\begin{array}{ll}
h(x)=\sin \left(x^{2}\right) & h(x)=\sin (x)^{2} \\
\text { Outside: } f(x)=\sin (x) & \text { Outside: } f(x)=x^{2} \\
\text { Inside }: g(x)=x^{2} & \text { Inside: } g(x)=\sin (x) \\
h^{\prime}(x)=\cos \left(x^{2}\right) \cdot 2 x & h^{\prime}(x)=2 \sin (x)^{1} \cdot \cos (x)
\end{array}
$$

Ex. 2
Calculate $\frac{d}{d x}\left(e^{\tan (x)}\right)$ and $\frac{d}{d x}\left(\ln \left(x^{3}+x\right)\right)$.
Solution:
$h(x)=e^{\tan (x)}$
Outside: $f(x)=e^{x}$
Inside: $g(x)=\tan (x)$
$h^{\prime}(x)=e^{\tan (x)} \cdot \sec (x)^{2}$

$$
h(x)=\ln \left(x^{3}+x\right)
$$

Outside: $f(x)=\ln (x)$
inside: $g(x)=x^{3}+x$

$$
h^{\prime}(x)=\frac{1}{x^{3}+x} \cdot\left(3 x^{2}+1\right)
$$

Ex. 3
Calculate $\frac{d}{d x}\left(\sin \left(e^{x}\right) \cos (3 x)\right)$.
Solution:
Use product rule, then chain rule on each answer.

$$
\begin{gathered}
h(x)=\underbrace{\frac{\sin \left(e^{x}\right)}{\cos (3 x)}}_{f} \underbrace{\cos }_{g} \\
h^{\prime}(x)=\underbrace{\cos \left(e^{x}\right) \cdot e^{x}(3 x)}_{g}+\underbrace{\sin \left(e^{x}\right)}_{f} \cdot \underbrace{(-\sin (3 x)) \cdot 3}_{g^{\prime}}
\end{gathered}
$$

Ex. 4
Calculate $\frac{d}{d x}\left(\sqrt{\frac{x^{3}}{1-x}}\right)$.
Solution:
Use chain rule first.
Outside: $x^{1 / 2} \quad$ Inside: $\frac{x^{3}}{1-x}$

$$
h^{\prime}(x)=\frac{1}{2}\left(\frac{x^{3}}{1-x}\right)^{-1 / 2} \cdot \frac{3 x^{2} \cdot(1-x)-x^{3} \cdot(-1)}{(1-x)^{2}}
$$

Note: The main stencil you use is very

Sensitive to how you arite $h(x)$.

$$
h(x)=\left(\frac{x^{3}}{1-x}\right)^{1 / 2}=\frac{x^{3 / 2}}{(1-x)^{1 / 2}}=x^{3 / 2}(1-x)^{-1 / 2}
$$

Chain Rule QuotrentRule Product Rule
Ex. S
Calculate $\frac{d}{d x}\left[\ln \left(\tan \left(e^{3 x-5}\right)\right)\right]$.
Solution:
We use chain rule multiple times.

$$
\begin{array}{r}
h(x)=\ln \left(\left(\tan \left(e^{3 x-5}\right)\right)\right) \\
h^{\prime}(x)=\frac{1}{\tan \left(e^{3 x-5}\right)} \cdot \sec ^{2}\left(e^{3 x-5}\right) \cdot e^{3 x-5} \cdot 3
\end{array}
$$

Ex. 6
let $f(x)=x \sqrt{1-3 x}$. Find all horizontal tangent lines.
Solution:
First find $f^{\prime}(x)$.

$$
\begin{gathered}
f(x)=x \cdot(1-3 x)^{1 / 2} \\
f^{\prime}(x)=1 \cdot(1-3 x)^{1 / 2}+x \cdot \frac{1}{2}(1-3 x)^{-1 / 2} \cdot(-3)
\end{gathered}
$$

Now solve $f^{\prime}(x)=0$.

$$
\begin{gathered}
(1-3 x)^{1 / 2}\left((1-3 x)^{1 / 2}-\frac{3}{2} x(1-3 x)^{-1 / 2}\right)=0 \cdot(1-3 x)^{1 / 2} \\
(1-3 x)^{1}-\frac{3}{2} x=0
\end{gathered}
$$

$$
\begin{aligned}
& 1-\frac{9}{2} x=0 \\
& x=\frac{2}{9} \leftarrow \text { check: is } x=\frac{2}{9} \text { in } \\
& \text { domain of } f \text { ? Yes. }
\end{aligned}
$$

So the only horizontal tangent is:

$$
y=f\left(\frac{2}{9}\right)=\left.(x \sqrt{1-3 x})\right|_{x=2 / 9}=\frac{2}{9 \sqrt{3}}
$$

Ex. 7
Values of f, f^{\prime}, g, and g^{\prime} are in the table.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	-1	-4	4	2
1	-1	-3	2	-4
2	-4	3	1	-1

(a) Let $F(x)=\frac{f(x)}{g(x)}$.

Calculate $F^{\prime}(0)$.
(b) Let $G(x)=f(x g(x))$.

Calculate $G^{\prime}(1)$.
Solution'.
(a) First find $F^{\prime}(x)$. Use Quotient Rule.

$$
F^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Now put $x=0$.

$$
F^{\prime}(0)=\frac{(-4)(4)-(-1)(2)}{(4)^{2}}=-\frac{7}{8}
$$

(b) First find $G^{\prime}(x)$. Use chain Rule.

$$
G(x)=f(x g(x))
$$

Outside: $f(x)$ Inside: $x g(x)$

$$
G^{\prime}(x)=\underbrace{f^{\prime}(x g(x))}_{\begin{array}{l}
\text { derivative of } \\
\text { onside evaluated } \\
\text { at inside }
\end{array}} \cdot \underbrace{\left(1 \cdot g(x)+x \cdot g^{\prime}(x)\right)}_{\begin{array}{l}
\text { derivative of inside } \\
\text { (product rule) }
\end{array}}
$$

Now put $x=1$.

$$
\begin{aligned}
G^{\prime}(1) & =f^{\prime}(g(1)) \cdot\left(g(1)+g^{\prime}(1)\right) \\
& =f^{\prime}(2) \cdot(2+(-4)) \\
& =(3)(-2)=-6
\end{aligned}
$$

Section 3.8: Implicit Differentiation

Sometimes x and y are related by an equation but we cannot solve for one as a function of the other. these equations define local, implicit functions.

Even though we have no hope of finding an explicit formulas for these functions, we can still do calculus.
Ex. 1
Suppose $x^{2}+y^{2}=1$. Find tangent line to $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
Solution:
Note: We make no attempt to solve for x or y !

But $y=f(x)$ locally!

$$
\begin{equation*}
x^{2}+f(x)^{2}=1 \tag{1}
\end{equation*}
$$

The slope of the tangent line is $\frac{d y}{d x}$, or $f^{\prime}(x)$. We can find $f^{\prime}(x)$ from (1) by simply differentiating all terms and solving for $f^{\prime}(x)$.

$$
\begin{equation*}
2 x+2 f(x) f^{\prime}(x)=0 \tag{2}
\end{equation*}
$$

Scratch Work
Chain Rule!

$$
\text { - } g(x)=[f(x)]^{2}
$$

Outside: x^{2} Inside: $f(x)$

$$
g^{\prime}(x)=2 f(x) \cdot f^{\prime}(x)
$$

We will typically write (2) as:

$$
\begin{equation*}
2 x+2 y \frac{d y}{d x}=0 \tag{2}
\end{equation*}
$$

Now solve algebraically for $\frac{d y}{d x}$.

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{x}{y} \quad \begin{array}{l}
\text { For implicit functions, } \\
\text { okay for } d y / d x \text { to } \\
\text { depend on } x \text { and } y .
\end{array}
\end{aligned}
$$

Now for the tangent line.
$\left.\begin{array}{l}\text { Point:: }\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\ \text { Slope: }-\frac{1 / 2}{\sqrt{3} / 2}=-\frac{1}{\sqrt{3}}\end{array}\right\}$ Equation: $y=\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{3}}\left(x-\frac{1}{2}\right)$

Ex. 2
Suppose x and y are implicitly related by:

$$
x^{2}+3 y^{2}+x y=10
$$

Find $\frac{d y}{d x}$ for a green point on this curve.
Solution:
Use implicit differentiation wot. x.

$$
\begin{gathered}
x^{2}+3 y^{2}+x y=10 \\
2 x+6 y \frac{d y}{d x}+\underbrace{1}_{f^{\prime}} \cdot y+\underbrace{y}+\underbrace{y} \cdot \underbrace{\prime}
\end{gathered}
$$

Now algebraically solve for $d y / d x$.

$$
\left.\begin{array}{rl}
6 y \frac{d y}{d x}+x \frac{d y}{d x} & =-2 x-y \\
(6 y+x) \frac{d y}{d x} & =-2 x-y \\
\frac{d y}{d x} & =\frac{-2 x-y}{6 y+x}
\end{array}\right\} \begin{aligned}
& \text { algebra, } \\
& \text { no calculus }
\end{aligned}
$$

Ex. 3
Find an equation of the line tangent to the graph of

$$
x^{3}+y^{3}=3 x y
$$

at $(2 / 3,4 / 3)$.

Solution:

Use implicit differentiation.

$$
\begin{aligned}
x^{3}+y^{3} & =\underbrace{3 x y}_{\text {product }} \\
3 x^{2}+3 y^{2} \frac{d y}{d x} & =3 y+3 x \frac{d y}{d x}
\end{aligned}
$$

Substitute pout and solve for $d y / d x$.

$$
\begin{aligned}
3\left(\frac{2}{3}\right)^{2}+3\left(\frac{4}{3}\right)^{2} \frac{d y}{d x} & =3\left(\frac{4}{3}\right)+3\left(\frac{2}{3}\right) \frac{d y}{d x} \\
\frac{y}{3}+\frac{16}{3} \frac{d y}{d x} & =4+2 \frac{d y}{d x} \\
4+16 \frac{d y}{d x} & =12+6 \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{4}{5}
\end{aligned}
$$

So the equation of the tangent line is:

$$
y=\frac{4}{3}+\frac{4}{5}\left(x-\frac{2}{3}\right)
$$

Ex. 4
Let $f(x)=x^{x}$. Find $f^{\prime}(x)$.
Solution:

- Power Rule? No! Exponent not constant
- Exponential Rule? No! Base not constant No rule has x in both base and exponent.
Method 1) (Rewrite function)

$$
f(x)=x^{x}=e^{\sqrt{\ln \left(x^{x}\right)}}=\frac{e^{x \ln (x)}}{\text { Chain Rule! }} \quad \text { Outside: } e^{x}
$$

$$
f^{\prime}(x)=e^{x \ln (x)} \cdot\left(1 \cdot \ln (x)+x \cdot \frac{1}{x}\right)=x^{x}(\ln (x)+1)
$$

Method 2 (Logarithmic differentiation)
original

$$
y=x^{x}
$$

log of both sides $\ln (y)=\ln \left(x^{x}\right)$
log rules $\quad \ln (y)=x \ln (x)$
implicit diff. $\frac{1}{y} \cdot \frac{d y}{d x}=1 \cdot \ln (x)+x \cdot \frac{1}{x}$
Solve for $\frac{d y}{d x} \quad \frac{d y}{d x}=y(\ln (x)+1)$
replace $y \quad f^{\prime}(x)=x^{x}(\ln (x)+1)$
Ex. 5
Suppose $\sin (x+y)=x+\cos (y)$. Find $\frac{d y}{d x}$.
Solution:
Use implicit differentiation.

$$
\cos (x+y) \cdot\left(1+\frac{d y}{d x}\right)=1-\sin (y) \frac{d y}{d x}
$$

Now algebraically solve for $d y / d x$.

$$
\begin{aligned}
& \cos (x+y)+\cos (x+y) \frac{d y}{d x}=1-\sin (y) \frac{d y}{d x} \\
& (\cos (x+y)+\sin (y)) \frac{d y}{d x}=1-\cos (x+y)
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{1-\cos (x+y)}{\cos (x+y)+\sin (y)}
$$

Ex. 6
Suppose $\ln (1+x y)=x^{2}+y$. Find $\frac{d y}{d x}$.
Solution:
Use implicit differentiation:

$$
\frac{1}{1+x y} \cdot\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)=2 x+\frac{d y}{d x}
$$

Now algebraically solve for $\frac{d y}{d x}$.

$$
\begin{gathered}
y+x \frac{d y}{d x}=\left(2 x+\frac{d y}{d x}\right)(1+x y) \\
y+x \frac{d y}{d x}=2 x(1+x y)+(1+x y) \frac{d y}{d x} \\
x \frac{d y}{d x}-(1+x y) \frac{d y}{d x}=2 x(1+x y)-y \\
(x-1-x y) \frac{d y}{d x}=2 x+2 x^{2} y-y \\
\frac{d y}{d x}=\frac{2 x+2 x^{2} y-y}{x-1-x y}
\end{gathered}
$$

Section 3.11: Related Rates
$\frac{d y}{d t}$: rate of change of y with respect to time
Note: All variables are assumed functions of time
Ex. 1
A ladder of length of $l=10 \mathrm{ft}$ is leaning against a wall. Suppose the bottom of the ladder sides away from the wall at $2 \mathrm{ft} / \mathrm{sec}$. How fast is the top of the ladder sliding down the wall chen the top is 8 ft from the ground?
Solution:

Given Information

$$
\frac{d x}{d t}=2 \quad \frac{d y}{d t}=? \quad \text { when } y=8
$$

$$
\begin{equation*}
\text { for all } t: x^{2}+y^{2}=100 \tag{1}
\end{equation*}
$$

To introduce $\frac{d x}{d t}$ and $\frac{d y}{d t}$, we use implicit diff. with respect to time.

$$
\begin{array}{r}
x(t)^{2}+y(t)^{2}=100 \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \tag{2}
\end{array}
$$

Equations (1) and (2) hold for all time t. Now we substitute information specific to described tome

Hold for all t
(1) $x^{2}+y^{2}=100$
(2) $2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$ Substitute $\frac{d x}{d t}=2$ and

Hold for specific time

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+64=100 \\
4 x+16 \frac{d y}{d t}=0
\end{array} \\
& \text { Solve for } \frac{d y}{d t}
\end{aligned}
$$

From (1)*, we get $x=6$. Then from (2)*, we get

$$
24+16 \frac{d y}{d t}=0 \Rightarrow \frac{d y}{d t}=1-\frac{3}{2}(\mathrm{ft} \cdot / \mathrm{sec} .)
$$

The top of the ladder is sliding down at $1.5 \mathrm{ft} / \mathrm{sec}$.
General Strategy for Related Rates
(1) Draw diagram and label variables.
(Distinguish between constants and non-constants.)
(2) Gather all given information, including equations that relate the variables for all time.
(3) Implicity differentiate the relations writ. t.
(4) Substitute all given values.
(5) Solve for desired value (correct units!)

ExT
The total surface area of a cube is changing at a rate of $12{\mathrm{n}^{2}}^{2} \mathrm{sec}$. When the length of one of its sides is $10^{\circ} \mathrm{in}$. At what rate is the volume
of the cube changing at that time?
Solution:

Given Information

$$
\begin{aligned}
& \frac{d S}{d t}=12 \quad \frac{d V}{d t}=? \quad \text { when } x=10 \\
& V=x^{3}, S=6 x^{2}
\end{aligned}
$$

Now we implicitly differentiate:
(1) $\quad V=x^{3}$

$$
\begin{equation*}
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \tag{3}
\end{equation*}
$$

(2) $S=6 x^{2}$

$$
\begin{equation*}
\frac{d S}{d t}=12 x \frac{d x}{d t} \tag{4}
\end{equation*}
$$

Now substitute given values ($x=10$ and $\frac{d S}{d t}=12$):
$(1)^{*} \quad V=1000 \quad \frac{d U}{d t}=300 \frac{d x}{d t}$
(3)*
(2)* $\quad S=600 \quad \begin{aligned} & \text { solve for } \\ & \text { this } \\ & \text { (2) }\end{aligned} 120 \frac{d x}{d t}$
$(4)^{*}$
From (4)*, we get $\frac{d x}{d t}=\frac{1}{10}$. So then from (3) :

$$
\frac{d V}{d t}=300 \cdot\left(\frac{1}{10}\right)=30 \mathrm{~m}^{3} / \mathrm{sec} .
$$

Ex. 3
A 5 ft -tall person stands still 8 feet from point P, which is directly below a lantern. At the moment when the lantern is IS feet above the ground, the lantern is falling at a rate of 4 ft . sec .

At what rate is the length of the person's shadow changing at that moment?
Solution:
Given Information

To find an equation for x and h, we use similar triangles.

$$
\begin{aligned}
\frac{\text { Large length }}{\text { Large height }} & =\frac{\text { small length }}{\text { small height }} \\
\frac{x+8}{h} & =\frac{x}{5}
\end{aligned}
$$

Rearranging the equation gives:

$$
\begin{equation*}
h=5+\frac{40}{x} \tag{1}
\end{equation*}
$$

Now differentiate:

$$
\begin{equation*}
\frac{d h}{d t}=-\frac{40}{x^{2}} \cdot \frac{d x}{d t} \tag{2}
\end{equation*}
$$

Now substitute $d h / d t=-4$ and $h=15$.

$$
(1)^{*} 15=5+\frac{40}{x} \quad-4=-\frac{40}{x^{2}} \cdot \frac{d x}{d t}
$$

(2)

From (1)* we get $x=4$. Then from (2)" we get.

$$
-4=\frac{-40}{16} \cdot \frac{d x}{d t} \Rightarrow \frac{d x}{d t}=\frac{8}{5} \mathrm{ft} \cdot / \mathrm{sec} .
$$

Section 4.1: Extreme Values
Ex. 1
Find the abs. extrema of $f(x)=x^{3}-6 x^{2}+8$ on $[1,6]$.
Solution'.
(Note: f is continuous and $[1,6]$ is closed (bounded.) First find critical numbers of f :

$$
f^{\prime}(x)=3 x^{2}-12 x=3 x(x-4)
$$

- $f^{\prime}(x)$ due: none
- $f^{\prime}(x)=0: \quad \begin{array}{r}x=0, x=4 \\ \text { not in }[1,6]\end{array}$

Now construct list of candidate values.

	\underline{x}
4	$\underline{y=x^{3}-6 x^{2}+8=x^{2}(x-6)+8}$
critical \#	$16(-2)+8=-24$
endpoints $\begin{cases}1 & 1(-5)+8=3 \\ 6 & 36(0)+8=8\end{cases}$	

The abs. min. is -24 and the abs. max. is 8.
Ex. 2
Find the abs. extrema of $f(x)=\left(x^{2}-16\right)^{2 / 3}+20$ on $[-5,5]$.
Solution:
First find the critical numbers:

$$
f^{\prime}(x)=\frac{2}{3}\left(x^{2}-16\right)^{-1 / 3} \cdot 2 x=\frac{4 x}{3\left(x^{2}-16\right)^{1 / 3}}
$$

- $f^{\prime}(x)$ due: $x^{2}-16=0 \Longrightarrow x=-4$ or $x=4$

$$
\text { - } f^{\prime}(x)=0: \quad x=0
$$

Now we make a table of values:

$$
\begin{aligned}
& \underline{x} \\
& \text { critical } \# \begin{cases}-4 & \underline{y}=\left(x^{2}-16\right)^{2 / 3}+20 \\
4 & 20 \\
0 & 20\end{cases} \\
& \text { endpoints }\left\{\begin{array}{cl}
-5 & 9^{2 / 3}+20 \\
5 & 9^{2 / 3}+20
\end{array}\right.
\end{aligned}
$$

The abs. min. is 20 and the abs. max is $16^{2 / 3}+20$.
Ex. 3
Find abs. extrema of $f(x)=x-\frac{4 x}{x+1}$ on $[0,3]$.
Solution:
Find the critical \#1s:

$$
f^{\prime}(x)=1-\frac{4}{(x+1)^{2}}
$$

- $f^{\prime}(x)$ due: none
- $f^{\prime}(x)=0: 1-\frac{4}{(x+1)^{2}}=0 \Rightarrow(x+1)^{2}=4$

$$
\Rightarrow x=-3 \text { or } x=1
$$

not in $[0,3]$
Now make a table of values:

$$
x \quad y=x-\frac{4 x}{x+1}
$$

$$
\text { critical \# } 1 \quad 1-\frac{4}{2}=-1
$$

$$
\text { endpoints } \begin{cases}0 & 0 \\ 3 & 3-\frac{12}{4}=0\end{cases}
$$

The abs. min. is -1 and the abs. max is 0 .
Ex. 4
Find the absolute extrema of $f(x)=x-\ln (x)$ on $\left[\frac{1}{e^{3}}, e\right]$. (Hint: $2<e<3$.)
Solution:
Find critical numbers:

$$
\begin{aligned}
& \text { lumbers: } \\
& f^{\prime}(x)=1-\frac{1}{x}
\end{aligned}
$$

- $f^{\prime}(x)$ due : none

$$
\text { - } f^{\prime}(x)=0: \quad x=1
$$

Now make a table of values:

$$
\begin{aligned}
& \quad \frac{x}{l l} \\
& \text { critical \# } \\
& \text { endpoints } \\
& \begin{cases}1 / e^{3} & \frac{1}{e^{3}}-(-3)=\frac{1}{e^{3}}+3 \\
e & e-1\end{cases}
\end{aligned}
$$

Recall:

$$
2<e<3
$$

The abs. min. is 1 and the abs. max is $\frac{1}{e^{3}}+3$.
Ex. 5
Find the abs extrema of $f(x)=e^{-x} \sin (x)$ on $[0,2 \pi]$.
Solution:
Find critical numbers:

$$
\begin{aligned}
& f^{\prime}(x)=e^{-x} \cdot(-1) \sin (x)+e^{-x} \cdot \cos (x) \\
& f^{\prime}\left(x=e^{-x}(\cos (x)-\sin (x))\right.
\end{aligned}
$$

- $f^{\prime}(x)$ due: none

$$
\text { - } f^{\prime}(x)=0: \quad e^{-x}(\cos (x)-\sin (x))=0
$$

always positive, so cancels out

$$
\begin{aligned}
& \cos (x)-\sin (x)=0 \\
& \cos (x)=\sin (x) \\
& x=\frac{\pi}{4} \quad \text { or } \quad x=\frac{5 \pi}{4}
\end{aligned}
$$

Now make a table of values:

$$
\begin{aligned}
& \text { critical } \begin{cases}\frac{x}{\pi / 4} & \underline{y=e^{-x} \sin (x)} \\
\operatorname{sit/4} & e^{-\pi / 4} \cdot \frac{1}{\sqrt{2}}\end{cases} \\
& \text { endpouts } \begin{cases}0 & 0 \\
2 \pi & 0\end{cases}
\end{aligned}
$$

The abs.min. is $\frac{-e^{-5 \pi / 4}}{\sqrt{2}}$ and the abs. max is $\frac{e^{-\pi / 4}}{\sqrt{2}}$.
Ex. 6
Find abs. extrema of $f(x)=x^{4} e^{-2 x}$ on $[-1,10]$.
Solution:

Find the critical numbers:

$$
f^{\prime}(x)=e^{-2 x} \cdot 2 x^{3} \cdot(2-x)
$$

- $f^{\prime}(x)$ due: none

$$
\text { - } f^{\prime}(x)=0: \quad x=0, x=2
$$

Make table of values.

$$
\begin{aligned}
& \text { critical }\left\{\begin{array}{cc}
\frac{x}{0} & \frac{y=x^{4} e^{-2 x}}{0} \\
2 & 0 \\
\text { endpoints }\left\{\begin{array}{cc}
-1 & 16 \cdot e^{-4}=\frac{16}{e^{4}}=\left(\frac{2}{e}\right)^{4}<1 \\
10 & e^{2>1}
\end{array}\right. \\
& 10000 e^{-20}=\frac{10000}{e^{20}} \approx \frac{10000}{2^{20}} \text { (very } \text { ting }
\end{array}\right.
\end{aligned}
$$

The abs. min. is 0 and the abs. max is e^{2}.
Ex. 7
Find abs. extrema of $f(x)=x-2 \sin (x)$ on $[0,2 \pi]$.
Solution:
Find the critical numbers.

$$
f^{\prime}(x)=1-2 \cos (x)
$$

- $f^{\prime}(x)$ due: none
- $f^{\prime}(x)=0: \quad \cos (x)=\frac{1}{2}$

$$
x=\frac{\pi}{3}, x=\frac{5 \pi}{3}
$$

Now make a table of values:
critical $\begin{cases}\frac{x}{\pi / 3} & \frac{y=x-2 \sin (x)}{} \\ \sin 3 & \frac{\pi}{3}-\sqrt{3} \leftarrow \text { only negative \# }\end{cases}$ endpoints $\begin{cases}0 & 0 \\ 2 \pi & 2 \pi\end{cases}$
The abs. min. is $\frac{\pi}{3}-\sqrt{3}$ and the abs. max is $\frac{5 \pi}{3}+\sqrt{3}$.

Section 4.1 Supplement: Catalog of Non-differenfiable Functions
In Section 3.1, we learned how to recognize non-differentialle functions graphically. The notes below describle how to recognize analytically functions that are continuous but not differentiable. There are three main categories:
(1) Absolute Value: $f(x)=|x|$

The function f is not differentiable at $x=0$. The graph of f has a sharp corner at $x=0$. So the function $h(x)=|g(x)|$ is (possibly) not differentiable where $g(x)=0$.

$y=|x|$

$y=\left|x^{2}-4\right|$

$y=\left(x^{3}\right)$

Ex: The function $h(x)=\left|x^{2}-4\right|$ is not differentiable at $x=-2$ and $x=2 .\left(x^{2}-4=0 \Leftrightarrow x= \pm 2\right)$
(2) Power Functions: $f(x)=x^{n} \quad(0<n<1)$

The function f is not differentiable at $x=0$. The graph has a cusp or vertical tangent at $x=0$. So the function $h(x)=g(x)^{n}$ is (possibly) not differentiable where $g(x)=0$

$y=x^{1 / 3}$
$y=x^{1 / 2}$

Ex: The function $h(x)=\left(x^{2}-4\right)^{2 / 3}$ is not differentiable at $x=-2$ and $x=2 .\left(x^{2}-4=0 \Leftrightarrow x= \pm 2\right)$. Similarly, both $F(x)=\left(x^{2}-4\right)^{1 / 3}$ and $F(x)=\left(x^{2}-4\right)^{1 / 2}$ are not differentiable at $x=-2$ and $x=2$.

(3) Piecewise-defined Functions

Very often (but not always), a precewise-defined function is not differentiable at the transition pants.

$$
y= \begin{cases}-x & \text { if } x<0 \\ x^{2} & \text { if } x \geqslant 0\end{cases}
$$

$$
y=\left\{\begin{array}{cc}
1-\cos (x) & \text { if } x<0 \\
x^{2} & \text { if } x \geqslant 0
\end{array}\right.
$$

not differentiable at $x=0$ differentiable at $x=0$

Section 4.1 Supplement: Conceptual Background
Basic Definitions:

Absolute minimum value of f on $[a, b]$	Relative minimum value of f at $x=c$
$l f f(c)$ is the abs. min.	If $f(c)$ is a relative min.
value of f on $[a, b]$, then	value of f, then $f(c)$ is the least possible value $f(c)$ is the least possible value of f for all x in $[a, b]$.

- similar definitions for absolute maximum and relative maximum (replace "least" with "greatest")
- "global" = "absolute" and "local" = "relative"
- "extremum" means minimum or maximum

Locating local extreme values graphically

Relative Minimum Values : $\underset{T}{f(A), ~} f(C), f(E)$
your textbook does not allow also absolute minimum relative extrema at boundary points
Relative Maximum Values:
$f(B), f(D), f(F)$
your textbook does allow absolute extrema at boundary points
Thu: (Extreme Value Theorem, EVT)
Suppose f is continuous on the closed, bounded interval $[a, b]$. Then the absolute min. and max. of f on $[a, b]$ exist.
What can go wrong if f is not continuous?

domain: $[a, b]$
no absolute min.
no absolute max.

Def: A number c in the interior of the domain of f is a critical number of $f^{\prime}(c)$ DNE or $f^{\prime}(c)=0$.
Thu: (Fermat)
If $f(c)$ is a local extremum, then c is a critical number.

* Why do we need to check where $f^{\prime}(x)$ due?
possible for local extremum to ocour at corners or cusps

Algorithm for finding absolute extrema of f on $[a, b]$
(i) Is f continuous on $[a, b]$?

- If no, stop. (EVT concludes nothing.)
- If yes, continue to (2).
(2) Find critical numbers of f in (a, b).
- find where $f^{\prime}(x)$ due
- Solve the equation $f^{\prime}(x)=0$
(3) Make a table of candidate extreme values of $f(x)$:
- values of f at critical numbers
- values of f at endpoints $(x=a$ and $x=b$
(4) Least candidate value is absolute min. Greatest candidate value is absolute max.
* Discard other values
* Okay for abs. extremum to occur at more than one x-value.

Sections 4.3/4.4: Graphing functions
Ex. 1
Graph $f(x)=x^{3}-12 x^{2}$ on $[-1,9]$.
Solution:

$$
\begin{aligned}
& f(x)=x^{3}-12 x^{2}=x^{2}(x-12) \\
& f^{\prime}(x)=3 x^{2}-24 x=3 x(x-8) \\
& f^{\prime \prime}(x)=6 x-24=6(x-4)
\end{aligned}
$$

(1) Information from $f(x)$:

- vertical asymptotes: none
- horizontal asymptotes: none
(2) Information from $f^{\prime}(x)$:
- construct sign chart for $f^{\prime}(x)$:
cut points: $x=0, x=8$
f is decreasing on: $[0,8]$
f is increasing on: $(-\infty, 0],[8, \infty)$
f has a local min@ $x=8$
f has a local max @ $x=0$
(3) Information from $f^{\prime \prime}(x)$:
- construct a sign chart for $f^{\prime \prime}(x)$:
cut points: $x=4$

$$
\begin{aligned}
& f^{\prime \prime}(x)=6(x-4) \\
& f^{\prime \prime}(0)=\Theta \\
& f^{\prime \prime}(s)=\Theta
\end{aligned}
$$

f is concave down on: $(-\infty, 4]$
f is concave up on: $[4, \infty)$
f has an inflection pt @ $x=4$
(4) Summary and graph

$$
f(x)=x^{2}(x-12) \text { on }[-1,9]
$$

Important	Points	
\underline{x}	\underline{y}	type
-1	-13	endpt.
0	0	local max
4	-128	infl.pt.
8	-256	local min
9	-243	endpt.

Shape of Graph

Ex. 2

Graph $f(x)=\frac{x}{x^{2}-4}$.
Solution:

$$
f^{\prime}(x)=\frac{-\left(x^{2}+4\right)}{\left(x^{2}-4\right)^{2}} \quad f^{\prime \prime}(x)=\frac{12 x\left(x^{2}+12\right)}{\left(x^{2}-4\right)^{3}}
$$

(1) Information from $f(x)$:

- vertical asyouptotes: $x=-2, x=2$
- horizontal asymptotes: $y=0$
$(-\infty) \lim _{x \rightarrow-\infty}\left(\frac{x}{x^{2}-4}\right) \stackrel{H}{=} \lim _{x \rightarrow-\infty}\left(\frac{1}{2 x}\right)=\frac{1}{-\infty}=0$
(昗) $\lim _{x \rightarrow \infty}\left(\frac{x}{x^{2}-4}\right) \stackrel{H}{=} \lim _{x \rightarrow \infty}\left(\frac{1}{2 x}\right)=\frac{1}{\infty}=0$
(2) Information from $f^{\prime}(x)$:
- construct a sign chart for $f^{\prime}(x)$ cut points: $x=-2, x=2$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{-\left(x^{2}+4\right)}{\left(x^{2}-4\right)^{2}} \\
& f^{\prime}(-3)=\frac{\theta}{\oplus}=\Theta \\
& f^{\prime}(0)=\frac{\Theta}{\varnothing}=\Theta \\
& f^{\prime}(3)=\frac{\Theta}{\theta}=\Theta
\end{aligned}
$$

f is decreasing on: $(-\infty,-2),(-2,2),(2, \infty)$
f is increasing on: \varnothing
f has a local min @ nowhere
f has a local max @ nowhere
Bonus: $\lim _{x \rightarrow-2^{+}} f(x)=\infty$ (why?)
(3) Information from $f^{\prime \prime}(x)$:

- construct a sign chart for $f^{\prime \prime}(x)$: cut points: $x=-2, x=0, x=2$

$$
f^{\prime \prime}(x)=\frac{\left(2 x\left(x^{2}+12\right)\right.}{\left(x^{2}-4\right)^{3}}
$$

shape off

$$
f^{\prime \prime}(-3)=\frac{\Theta \oplus}{\Phi}=\Theta \quad f^{\prime \prime}(1)=\Theta^{\oplus} \Theta^{\oplus}=\Theta
$$

$-3 \quad-1 \quad 1 \quad 3$ test pouts

$$
\begin{equation*}
f^{\prime \prime}(-1)=\frac{\odot \oplus}{\Theta}=\oplus \quad f^{\prime \prime}(3)=\frac{\oplus \oplus}{\Theta}= \tag{1}
\end{equation*}
$$

f is concave down on: $(-\infty,-2),[0,2)$
f is concave up on: $(-2,0],(2, \infty)$
f has an infl. pt $@ x=0$
(4) Summary and graph:

Important Features:
$(0,0)$: inflection point

$$
\begin{array}{ll}
y=0: & H A \\
x=-2: & \text { VA } \\
x=2: & \text { VA }
\end{array}
$$

me.
Summary

Ex. 3
Graph $y=x^{2} e^{-x}$.
Solution:

$$
f^{\prime}(x)=x(2-x) e^{-x} \quad f^{\prime \prime}(x)=\left(x^{2}-4 x+2\right) e^{-x}
$$

(1) Information from $f(x)$:

- vertical asymptotes: none
- horizontal asymptotes: $y=0$
(a) $\lim _{x \rightarrow-\infty}(\underbrace{x^{2}}_{\infty} \underbrace{e^{-x}})=\infty$
(b) $\lim _{x \rightarrow \infty}({\underset{\infty}{\infty}}^{x^{2}} \underbrace{e^{-x}})=\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{e^{x}}\right) \stackrel{H}{=} \lim _{x \rightarrow \infty}\left(\frac{2 x}{e^{x}}\right) \stackrel{H}{=} \lim _{x \rightarrow \infty}\left(\frac{2}{e^{x}}\right)=0$
(2) Information from $f^{\prime}(x)$:
- Construct a sign chart for $f^{\prime}(x)$: cut points: $x=0, x=2$

f is decreasing on: $(-\infty, 0],[2, \infty)$
f is increasing on: $[0,2]$
f has a local min@ $x=0$
f has a local max@ $x=2$
(3) Information from $f^{\prime \prime}(x)$:
- construct a sign chart for $f^{\prime \prime}(x)$:
cut points: $x=2-\sqrt{2}, x=2+\sqrt{2}$

shape of f

$$
\begin{equation*}
f^{\prime \prime}(x)=\left(x^{2}-4 x+2\right) e^{-x} \tag{0}
\end{equation*}
$$

$f^{\prime \prime}(2)=\Theta \oplus=\Theta$
$f^{\prime \prime}(4)=\Theta$
f is concave down on: $[2-\sqrt{2}, 2+\sqrt{2}]$
f is concave up on: $(-\infty, 2-\sqrt{2}],[2+\sqrt{2}, \infty)$
f has inflection points @: $x=2-\sqrt{2}, x=2+\sqrt{2}$
(4) Summary and graph:

Important Features:
Summary:
$x=0$: local min
$x=2-\sqrt{2}$: infl.pt.
$x=2: \quad$ local \max
$x=2+\sqrt{2}:$ lnfl.pt.

$y=0: \quad H A$

Graph $f(x)=\frac{x^{3}}{x-1}$.
Solution:

$$
f^{\prime}(x)=\frac{x^{2}(2 x-3)}{(x-1)^{2}} \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3 x+3\right)}{(x-1)^{3}}
$$

(i) Information from $f(x)$:

- vertical asymptotes: $x=1$
- horizontal asymptotes: none

$$
\lim _{x \rightarrow \pm \infty}\left(\frac{x^{3}}{x-1}\right) \stackrel{H}{=} \lim _{x \rightarrow \pm \infty}\left(\frac{3 x^{2}}{1}\right)=\infty
$$

(2) Information from $f^{\prime}(x)$:

- construct a sign chart cut points: $x=0, x=1.5, x=1$
shape of f
$\stackrel{-1}{\circ} \Theta_{1} \ominus_{1.5 \oplus}^{1}$ sign of f^{\prime}

$$
f^{\prime}(x)=\frac{x^{2}(2 x-3)}{(x-1)^{2}}
$$

$$
f^{\prime}(-1)=\frac{\Theta \Theta}{\Phi}=\Theta \quad f^{\prime}(1.25)=\frac{\Theta \Theta}{\Theta}=\theta
$$

$-1 \quad 0.5 \quad 1.25 \quad 2$ test pouts $f^{\prime}(0.5)=\Theta(\oplus)=\Theta \quad f^{\prime}(2)=\Theta(\oplus)=(4)$
f is decreasing on: $(-\infty, 1),(1,3 / 2]$
f is increasing on: $[3 / 2, \infty)$
f has local min@: $x=3 / 2$
f has local max@: none
(3) Information from $f^{\prime \prime}(x)$:

- construct a sign chart for $f^{\prime \prime}(x)$:
cut paints: $x=0, x=1$
$x^{2}-3 x+3=0 \Rightarrow x=\frac{3 \pm \sqrt{3-4(3)(1)}}{2}$ (no solution)

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{2 x\left(x^{2}-3 x+3\right)}{(x-1)^{3}} \\
f^{\prime \prime}(-1) & =\frac{\Theta \Theta}{\Theta}=\Theta \quad f^{\prime \prime}(2)=\frac{\oplus \oplus}{\Theta}=\Theta \\
f^{\prime \prime}(0.5) & =\frac{\oplus \oplus}{\Theta}=\Theta
\end{aligned}
$$

f is concave dour on: $[0,1)$
f is concave up on: $(-\infty, 0],(1, \infty)$
f has inflection ports \& $x=0$
(4) Summary and Graphs:

Important Features
$(0,0)$: inflection pt.
$x=1:$ VA
$x=1.5$: local min

$$
\lim _{x \rightarrow \pm \infty} f(x)=\infty
$$

Summary:

Ex. 5
Graph $f(x)=x(x-2)^{3}$ on $[-1,3]$.

Solution:

$$
f^{\prime}(x)=2(2 x-1)(x-2)^{2} \quad f^{\prime \prime}(x)=12(x-1)(x-2)
$$

(1) Information from $f(x)$:

- vertical asymptotes: none
- horizontal asymptotes: none
(2) Information from $f^{\prime}(x)$:
- construct a sign chart for $f^{\prime}(x)$ cut pants: $x=\frac{1}{2}, x=2$

f is decreasing on: $(-\infty, 1 / 2]$
f is increasing on: $[1 / 2, \infty)$
f has a local min@ $x=1 / 2$
f has a local max@nouhere
(3) In formation from $f^{\prime \prime}(x)$:
- construct a sign chart for $f^{\prime \prime}(x)$:
cut points: $x=1, x=2$

f is concave dour on: $[1,2]$
f is concave up on: $(-\infty, 0],[2, \infty)$
f has inflection points @ $x=1, x=2$
(4) Sumonary and graph

$$
f(x)=x(x-2)^{3} \text { on }[-1,3]
$$

Important pornts:

\underline{y}	\underline{y}	type
-1	27	endpt
$1 / 2$	$-27 / 16$	local min
1	-1	infl.pt.
2	0	infl.pt.
3	3	endpt.

Summary:

Section 4.3 Supplement: Conceptual Background
First Derivative $f^{\prime}(x)$
What f^{\prime} says about the graph of f :

- $f^{\prime}(x)>0$ (tangents have positive slope)
- f is increasing (as x increases, y increases)

- $f^{\prime}(x)<0$ (tangents have negative slope)
- f is decreasing (as x increases, y decreases)

What about local extreme values? Suppose $x=c$ is a critical point of f. (So $f^{\prime}(c)=0$ or $f^{\prime}(c)$ die.)

- f^{\prime} does not change sign at $x=c$
- f has no local extremum at $x=c$

- f^{\prime} changes from \oplus to Θ at $x=c$
- local max

- f^{\prime} changes from Θ to \oplus at $x=c$
- local min

Summary of information from $f^{\prime}(x)$:

Sign of $f^{\prime}(x)$ on (a, b)	Shape of $f(x)$ on (a, b)
Θ	decreasing
\oplus	increasing

Sign change of f^{\prime} at $x=c$	Classification of $f(c)$
Θ to \oplus	local minimum
\oplus to Θ	local maximum
no change	not a local extremum

* Assume $x=c$ is a critical point $\left(f^{\prime}(c)=0\right.$ or $\left.f^{\prime}(c) d n e\right)$

Second Derivative $f^{\prime \prime}(x)$
What $f^{\prime \prime}$ says about the graph of f :
Note: $f^{\prime}(x)>0$ in both graphs but how is $f^{\prime}(x)$ changing?

- $f^{\prime}(x)$ is decreasing (slope gets less positive)
- $f^{\prime \prime}(x)<0$ (concave down)
- graph of f is below tangent lines

- $f^{\prime}(x)$ is increasing (slope gets move positive)
- $f^{\prime \prime}(x)>0$ (concave up)
- graph of f is above tangent lines

What about local extreme values? Suppose $x=c$ is a critical point of f and $f^{\prime \prime}$ is continuous at $x=c$.

- $f^{\prime}(c)=0$
- $f^{\prime \prime}(c)>0$
- $f(c)$ is a local minimum

- $f^{\prime}(c)=0$
- $f^{\prime \prime}(c)<0$
- $f(c)$ is a local maximum

Summary of information from $f^{\prime \prime}(x)$:

Sign of $f^{\prime \prime}(x)$ on (a, b)	Shape of $f(x)$ on (a, b)
Θ	concave down
\oplus	concave up

$f^{\prime}(c)=0$, sign of $f^{\prime \prime}(c)$	Classification of $f(c)$
Θ	local maximum
Θ	local minimum
zero	un known

* Inflection points occur where $f(x)$ is continuous and $f^{\prime \prime}(x)$ changes sign

inflection from concave
inflection from concave down to concave up up to concave down

Graphing $y=f(x)$
(1) Info from $f(x)$:

- points on graph
- vertical asymptotes
- horizontal asymptotes
(2) Info from $f^{\prime}(x)$:
- find where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ due
- construct sign chart for $f^{\prime}(x)$
- infer intervals of increase /decrease
- determine local extrema
(3) Info from $f^{\prime \prime}(x)$:
- find where $f^{\prime \prime}(x)=0$ or where $f^{\prime \prime}(x)$ due
- construct sign chart for $f^{\prime \prime}(x)$
- infer intervals of concavity
- determine inflection points
- (optional: verify local extrema)
(4) Graph $y=f(x)$:
- list important points (local extrema, inflection pts, etc.)
- summarize all info from f, f^{\prime}, and $f^{\prime \prime}$
- use chart below to sketch graph:

Section 4.5: Optimization
Ex. 1
The difference of two numbers is 10. Find their minimum possible product.
Solution:
Goal: Rephase as "find absolute extremum of f on I." let x and y be the two numbers. Then The function we want to minimize is:

$$
p(x, y)=x y \quad \text { objective function }
$$

(The function f has two variables!) However, x and y are not independent of each other. Instead,

$$
x-y=10 \quad \text { constraint equation }
$$

We use the constraint to write the objective in terms of one variable.

$$
x=y+10 \leftarrow \operatorname{substitute~for~} x^{\text {in objective }}
$$

So our objective is now:

$$
p(y+10, y)=(y+10) y=y^{2}+10 y
$$

Goal: Find the absolute minimum value of:

$$
f(y)=y^{2}+10 y
$$

on the interval $(-\infty, \infty)$.
Find the critical pocults:

$$
f^{\prime}(y)=2 y+10=0 \Rightarrow y=-5
$$

Since the interval $(-\infty, \infty)$ is unbaunded, f is not guaranteed to have both a min and a max value. We construct a Sign chart for $f^{\prime \prime}(y)$.

$$
\begin{aligned}
& f^{\prime}(y)=2(y+5) \\
& f^{\prime}(-10)=\Theta \\
& f^{\prime}(0)=\oplus
\end{aligned}
$$

So $y=-5$ gives a local minimum. Since there is only one critical point, $y=-5$ gives an absolute minimum. So the minimum product is

$$
f(-5)=\left.\left(y^{2}+10 y\right)\right|_{y=-5}=-25
$$

Bonus: What is the maximum possible product?
There is no local max, hence no absdute max. Additionally, $\lim _{y \rightarrow \pm \infty} f(y)=\infty$, so the product can be arbitranly large.

Ex. 2
A cylindrical tank has volume $2000 \pi \mathrm{~m}^{3}$. Find the dimensions of the tank with the smallest possible surface area.

Hint:

$$
\begin{aligned}
& \bar{A}=2 \pi r^{2}+2 \pi r h \\
& V=\pi r^{2} h
\end{aligned}
$$

Solution:
We want to minimize the function:

$$
A(r, h)=2 \pi r^{2}+2 \pi r h
$$

subject to the constraint:

$$
2000 \pi=\pi r^{2} h
$$

Solving h in terms of r gives:

$$
h=\frac{2000}{r^{2}}
$$

So now our objective is:

$$
A\left(r, \frac{2000}{r^{2}}\right)=2 \pi r^{2}+2 \pi r\left(\frac{2000}{r^{2}}\right)=2 \pi\left(r^{2}+\frac{2000}{r}\right)
$$

Goal: Find value of r that gives abs. min. of

$$
f(r)=2 \pi\left(r^{2}+\frac{2000}{r}\right)
$$

on the interval $(0, \infty)$.
r close to O large $h \quad r$ very large, small height

Find the critical points:

$$
f^{\prime}(r)=2 \pi\left(2 r-\frac{2000}{r^{2}}\right)=0 \Rightarrow r=10
$$

Observe that $f^{\prime \prime \prime}(r)=2 \pi\left(2+\frac{4000}{r^{3}}\right)$, which is positive for all $r>0$. So $f(r)$ is concave up on $(0, \infty)$, so $r=10$ gives a local minimum. Since there is only one critical point, $r=10$ must give an absolute minimum. So the dimensions of the tank are $r=10$ and $h=20$.

Ex 3
A rectangular box has total surface area $450 \mathrm{in}^{2}$, and the length is three times its width. Find the dimensions of such a box with the largest possible volume.
Solution:
let l, w, and h be the length, width, and height of the box, respectively. We want to maximize:

$$
V(l, w, h)=l w h \quad \text { objective function }
$$

subject to the two constraints:
(1) $l=3 w$
("length is three times width")
constraint
(2) $450=2(l w+l h+w h)$
("total surface area is 450 ")

Use the constraints to write l and h in terms of w :
(2)

$$
\begin{aligned}
450 & =2(l w+l h+w h) \\
225 & =(3 w) w+3 w h+w h \\
225 & =3 w^{2}+4 w h \\
h & =\frac{225-3 w^{2}}{4 w}
\end{aligned}
$$

So our objective in terms of w is:

$$
V\left(3 w, w, \frac{225-3 w^{2}}{4 w}\right)=3 w \cdot w \cdot \frac{225-3 w^{2}}{4 w}=\frac{3}{4}\left(225 w-3 w^{3}\right)
$$

What is the interval of interest?

$$
\begin{aligned}
& l \geqslant 0 \Longrightarrow 3 \omega \geqslant 0 \Longrightarrow \omega \geqslant 0 \\
& \omega \geqslant 0 \Rightarrow \quad \omega \geqslant 0 \\
& h \geqslant 0 \Rightarrow \frac{225-3 \omega^{2}}{4 \omega} \geqslant 0 \Rightarrow\left\{\begin{array}{l}
\omega \neq 0 \\
\omega \leqslant \sqrt{225 / 3}=\sqrt{75}
\end{array}\right.
\end{aligned}
$$

So our interval is $(0, \sqrt{75}]$.
Goal: Find the value of w that gives abs. max of

$$
f(w)=\frac{3}{4}\left(225 w-3 w^{3}\right)
$$

on the interval $(0, \sqrt{75}]$.
Find the critical points:

$$
f^{\prime}(\omega)=\frac{3}{4}\left(225-9 \omega^{2}\right)=0 \quad \Longrightarrow \quad \omega=5 \text { or } \omega=5
$$

Observe that $f^{\prime \prime}(w)=\frac{3}{4}(-18 w)$, which is negative for all $w>0$. So f is concave down for $w>0$. Hence $w=5$ must give a local max. There is only one critical point, so $w=S$ gives abs. max. The dimensions of the box are $w=5, l=15, h=7.5$.

Section 4.6: Linear Approximation

If f is differentiable at $x=a$, then the tangent line to f at $x=a$ approxionates f near the pout of tangency.

Ex. 1
Use linear approximation to estimate $\tan \left(\frac{\pi}{4}+0.01\right)$.
Solution:
Put $f(x)=\tan (x)$. We use the tangent line at $x=\pi / 4$.
Point: $\quad\left(\frac{t}{4}, 1\right) \quad$ Slope, $\left.\sec (x)^{2}\right|_{x=\pi / 4}=2$
Equation: $\quad y=1+2(x-\pi / 4)$
Note: This means that if x is near $\frac{\pi}{4}$, then

$$
\tan (x) \approx 1+2(x-\pi / 4)
$$

So we have:

$$
\tan \left(\frac{\pi}{4}+0.01\right) \approx 1+2\left(\frac{\pi}{4}+0.01-\frac{\pi}{4}\right)=1.02
$$

Ex. 2
Use linear approximation to estimate 181/4.
Solution:

Put $f(x)=x^{1 / 4}$. Find the tangent line at $x=16$.
Point: $(16,2) \quad$ Slope: $\left.\frac{1}{4} x^{-3 / 4}\right|_{x=16}=\frac{1}{32}$
Equation: $y=2+\frac{1}{32}(x-16)$
Note: This means that if x is near 16, then

$$
x^{1 / 4} \approx 2+\frac{1}{32}(x-16)
$$

So we have:

$$
18^{1 / 4} \approx 2+\frac{1}{32}(18-16)=2+\frac{1}{16}=2.0625
$$

Ex. 31
Concentration of a drug in bloodstream t hours offer injection is modeled by

$$
C(t)=\frac{100 t}{t^{2}+1}
$$

Use linear approximation to estimate the change in the concentration in the period from 2 to 2.1 hours after injection. Did the concentration increase or decrease?
Solution:
The exact change in concentration is:

$$
\Delta c=c(2.1)-c(2)
$$

Find tangent line to $((t)$ at $t=2$.

Point: $(2, C(2))$
Slope $\cdot C^{\prime}(t)=\frac{\left(t^{2}+1\right) \cdot 100-100 t \cdot 2 t}{\left(t^{2}+1\right)^{2}}=\frac{100\left(-t^{2}+1\right)}{\left(t^{2}+1\right)^{2}}$

$$
C^{\prime}(2)=\frac{100(-4+1)}{(4+1)^{2}}=-12
$$

Equation: $y=c(2)-12(t-2)$
Note: This means that if t is near 2, then

$$
C(t) \approx C(2)-12(t-2)
$$

So now we have:

$$
\Delta C=C(2.1)-C(2) \approx-12(2.1-2)=-1.2
$$

Since $\Delta C<0$, the concentration decreased.
Terminology in Business $\&$ Economics
x : \# of units sold/produced
$p(x)$: price per unit if x units sold
(demand function)
$R(x)$: total revenue from selling first x units

$$
\left(\begin{array}{c}
\text { revenue }
\end{array}\binom{\text { \# of units }}{\text { sold }} \cdot\binom{\text { price per }}{\text { int }}=x p(x)\right)
$$

$C(x)$: total cost of first x units $C(0)$: sunk cost

Marginal Quantities
$M Q(x)$: additional amount of " Q " achieved if 1 more unit is produced/sold, assuming x units are currently produced/sold.

$$
M Q(x)=Q(x+1)-Q(x)
$$

There is a standard approximation for $\operatorname{MQ}(x)$: The tangent line to $Q(x)$ at $x=a$ is:

$$
y=Q(a)+Q^{\prime}(a)(x-a)
$$

Note: If x is near a, then

$$
Q(x) \approx Q(a)+Q^{\prime}(a)(x-a)
$$

Since $a+1$ is near a,

$$
Q(a+1) \approx Q(a)+Q^{\prime}(a)(a+1-a)
$$

Rearranging gives:

$$
\frac{Q(a+1)-Q(a)}{=M Q(a)} \approx Q^{\prime}(a)
$$

Summary:

$$
\begin{aligned}
& \text { - Marginal Cost }\left\{\begin{array}{cc}
C(x+1)-C(x) & \text { exact } \\
C^{\prime}(x) & \text { approximate }
\end{array}\right. \\
& \text { - Marginal Revenue }\left\{\begin{array}{cc}
R(x+1)-R(x) & \text { exact } \\
R^{\prime}(x) & \text { approximate }
\end{array}\right.
\end{aligned}
$$

Ex. 4
The total revenue from selling x widgets is

$$
R(x)=40-\frac{200}{x+5}
$$

(a) Write an expression for the exact revenue from the 6th unit.
(b) Using marginal analysis, estimate the revenue from the 6 th unit.
Solution:
(a) $R(b)-R(s)$
(b) We use the approximation

$$
R(6)-R(s) \approx R^{\prime}(5)
$$

We have:

$$
R^{\prime}(5)=\left.\frac{d}{d x}\left(40-\frac{200}{x+5}\right)\right|_{x=5}=\left.\left(\frac{200}{(x+5)^{2}}\right)\right|_{x=5}=2
$$

Ex. 5
The position of a particle on the x-axis is:

$$
x(t)=100+8 t^{3 / 4}-5 t
$$

Use linear approximation to estimate the partide's change in position between $t=81$ and $t=83$.
Solution.
The exact change in position is:

$$
\Delta x=x(83)-x(81)
$$

We use the tangent line at $t=81$.
Point: ($81, x(81)$)
Slopes. $x^{\prime}(81)=\left.\left(6 t^{-1 / 4}-5\right)\right|_{t=81}=2-5=-3$
Equation'. $y=x(81)-3(t-81)$
So now we have:

$$
x(83)-x(81) \approx[x(81)-3(83-81)]-x(81)=-6
$$

use tangent line
to estimat

Section 4.7: L'Hô'sital's Rule
Indeterminate Forms
Undefined expressions which do not give information on their own to calculate the limit.

Quotients

$$
\frac{0}{0}, \frac{\infty}{\infty}
$$

L'Ho spital's Pule (LR) applies directly only to quotients

Products

$$
0 \cdot \infty
$$

Differences

$$
\infty-\infty,-\infty+\infty
$$

Exponents

$$
1^{\infty}, 0^{0}, \infty^{0}
$$

Thu: (ℓ "Hôspital's Rule)
Suppose $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ (or both infinite). Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

as long as the limit on the right sides exists or is infinite.

Calculate each limit:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-3 x}{x^{3}-3 x^{2}-x+3}$
(b) $\lim _{x \rightarrow 1} \frac{e^{x}-e}{\ln (x)}$

Solution:
D.S. of the respective value of x gives $\frac{O}{O}$ for both parts. So we may use LR.
(a) $\lim _{x \rightarrow 3}\left(\frac{x^{2}-3 x}{x^{3}-3 x^{2}-x+3}\right) \stackrel{H}{=} \lim _{x \rightarrow 3}\left(\frac{2 x-3}{3 x^{2}-6 x-1}\right)=\frac{3}{8}$
(b) $\lim _{x \rightarrow 1}\left(\frac{e^{x}-e}{\ln (x)}\right) \stackrel{H}{=} \lim _{x \rightarrow 1}\left(\frac{e^{x}}{1 / x}\right)=\frac{e^{1}}{1}=e$

Ex. 2
Calculate each limit.
(a) $\lim _{x \rightarrow \pi / 2^{+}}\left(\frac{\cos (x)}{1-\sin (x)}\right)$
(b) $\lim _{x \rightarrow 0} \frac{\sin (3 x)-3 x+\frac{9 x^{3}}{2}}{x^{5}}$

Solution:
D.S. of the respective value of x gives $\frac{O}{O}$ for both parts. So we may use LR.
(a) $\lim _{x \rightarrow \frac{\pi}{2}^{+}}\left(\frac{\cos (x)}{1-\sin (x)}\right) \stackrel{H}{=} \lim _{x \rightarrow \frac{\pi}{2}^{+}}\left(\frac{-\sin (x)}{-\cos (x)}\right)=\lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan (x)$

From the graph, we see that

$$
\lim _{x \rightarrow \frac{\pi}{2}^{+}} \tan (x)=-\infty
$$

$$
\begin{aligned}
& \text { (6) } \lim _{x \rightarrow 0}\left(\frac{\sin (3 x)-3 x+\frac{9 x^{3}}{2}}{x^{5}}\right) \stackrel{H}{=} \lim _{x \rightarrow 0}\left(\frac{3 \cos (3 x)-3+\frac{27 x^{2}}{2}}{5 x^{4}}\right) \\
& \stackrel{H}{=} \lim _{x \rightarrow 0}\left(\frac{-9 \sin (3 x)+27 x}{20 x^{3}}\right) \stackrel{H}{=} \lim _{x \rightarrow 0}\left(\frac{-27 \cos (3 x)+27}{60 x^{2}}\right) \\
& \stackrel{H}{=} \lim _{x \rightarrow 0}\left(\frac{81 \sin (3 x)}{120 x}\right) \stackrel{H}{=} \lim _{x \rightarrow 0}\left(\frac{243 \cos (3 x)}{120}\right)=\frac{243}{120}
\end{aligned}
$$

Ex. 3
Calculate $\lim _{x \rightarrow \infty}\left(\frac{\sqrt{x^{2}+1}}{x}\right)$.
Solution:
We have the indeterminate form "㐌". So we use LR.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}+1\right)^{1 / 2}}{x}\right) \stackrel{H}{=} \lim _{x \rightarrow \infty}\left(\frac{\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x}{1}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{\left(x^{2}+1\right)^{1 / 2}}\right) \\
& \stackrel{H}{=} \lim _{x \rightarrow \infty}\left(\frac{1}{\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot 2 x}\right)=\lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}+1\right)^{1 / 2}}{x}\right)
\end{aligned}
$$

So LR gives us an endless loop. So what do we do? Use techniques from Section 2.5.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{\left(x^{2}+1\right)^{1 / 2}}{x}\right)=\lim _{x \rightarrow \infty}\left(\frac{|x|}{x} \cdot\left(1+\frac{1}{x^{2}}\right)^{1 / 2}\right)=\lim _{x \rightarrow \infty}\left(\left(1+\frac{1}{x^{2}}\right)^{1 / 2}\right) \\
& =(1+0)^{1 / 2}=1 \quad \begin{array}{l}
\text { Since } x \rightarrow \infty ;|x|=x \\
\text { Hence }|x| \mid x=1
\end{array}
\end{aligned}
$$

Ex. 4
Calculate each limit.
(a) $\lim _{x \rightarrow \infty}\left(x^{2} e^{-x}\right)$
(b) $\lim _{x \rightarrow 0^{+}}(x \ln (x))$

Solution:
Both limits give " $0 . \infty$ ". So we rewrite each limit as a quotient before using LR.
(a)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x^{2} e^{-x}\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{e^{x}}\right) \stackrel{H}{=} \lim _{x \rightarrow \infty}\left(\frac{2 x}{e^{x}}\right) \stackrel{H}{=} \lim _{x \rightarrow \infty}\left(\frac{2}{e^{x}}\right) \\
& =\frac{2}{\infty}=0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}(x \ln (x))=\lim _{x \rightarrow 0^{+}}\left(\frac{\ln (x)}{x^{-1}}\right) \stackrel{H}{=} \lim _{x \rightarrow 0^{+}}\left(\frac{1 / x}{-x^{-2}}\right) \\
& =\lim _{x \rightarrow 0^{+}}(-x)=0
\end{aligned}
$$

Ex. S
Calculate $\lim _{x \rightarrow 0}(\cos (x))^{3 / x^{2}}$.
Solution:
D.S. of $x=0$ gives the indeterminate form "100". So we must write the limit as a quotient.

$$
L=\lim _{x \rightarrow 0}(\cos (x))^{3 / x^{2}}
$$

We will calculate $\ln (L)$ instead.

$$
\ln (l)=\ln \left[\lim _{x \rightarrow 0}(\cos (x))^{3 / x^{2}}\right]=\lim _{x \rightarrow 0}\left[\sqrt{\ln \left(\cos (x)^{3 / x^{2}}\right)}\right]
$$

$\ln (x)$ is continuous, so lImit can be moved

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left[\frac{\frac{3}{x^{2}} \cdot \ln (\cos (x))}{(\infty \cdot 0)}\right]=\lim _{x \rightarrow 0}\left[\frac{\frac{3 \ln (\cos (x))}{x^{2}}}{(0 / 0)}\right] \\
& =\lim _{x \rightarrow 0}\left[\frac{3 \cdot \frac{1}{\cos (x)} \cdot(-\sin (x))}{2 x}\right]=\lim _{x \rightarrow 0}\left[\frac{-3 \tan (x)}{2 x}\right] \\
& (0 / 0) \\
& =\lim _{x \rightarrow 0}\left[\frac{-3 \sec (x)^{2}}{2}\right]=\frac{-3}{2}
\end{aligned}
$$

So we have $\ln (L)=-\frac{3}{2}$, whence $L=e^{-3 / 2}$.
Ex. 6
Calculate $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$.
Solution:
We have the indeterminate form " $-\infty-(-\infty)$ ". We first rewrite the limit as a quotient.

$$
\lim _{x \rightarrow 0^{-}}\left(\frac{1}{(-\infty)-(-\infty)}-\frac{1}{x}\right)=\lim _{x \rightarrow 0^{-}}\left(\frac{x-\sin (x)}{x \sin (x)}\right) \stackrel{H}{(0 / 0)}=\lim _{x \rightarrow 0^{-}}\left(\frac{1-\cos (x)}{\sin (x)+x \cos (x)}\right)
$$

$$
\stackrel{H}{=} \lim _{x \rightarrow 0^{-}}\left(\frac{\sin (x)}{\cos (x)+\cos (x)-x \sin (x)}\right)=\frac{0}{1+1-0}=0
$$

Section 4.9: Antiderivatives
Def: We say F is an antidbrivative of f on (a, b) if $F^{\prime}=f$ on (a, b).

Ex:
Suppose $f(x)=\sin (x)$ on $(-\infty, \infty)$. Then what is an antiderivative of f ?

$$
\begin{aligned}
& F_{1}(x)=-\cos (x) \\
& F_{2}(x)=-\cos (x)+C \quad(C=\text { const. }) \\
& F_{3}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{2 n}}{(2 n)!} \text { ? yes } \\
& F_{4}(x)=\tan ^{-1}\left(\frac{\sin (x)}{1-\cos (x)}\right) \text { ? no }
\end{aligned}
$$

Thu: Suppose F and G are Goth antiderivatives of f on (a, b). Then there is a constant C such that $G(x)=F(x)+C$ for all x in (a, b).

Special Notation
$\int f(x) d x$ means the most general antiderivative of $f(x)$ writ. x. (The interval (a, b) is understood.) (Your textbook calls this an indefinite integral.)
Ex. 1
Calculate each antiderivative.

Solution:
(a) $\int x d x=\frac{1}{2} x^{2}+C$
(b) $\int x^{2} d x=\frac{1}{3} x^{3}+C$

Do we see
(c) $\int x^{17} d x=\frac{1}{18} x^{18}+C$
(d) $\int x^{-1 / 3} d x=\frac{3}{2} x^{2 / 3}+C$ a pattern?
(e) $\int x^{-1} d x=\ln (x)+C$

This antiderivafive works only on $(0, \infty)$
$(-\infty, 0) \cup(0, \infty) \quad(0, \infty)$
Thu:, (Power Rule)
If $n \neq-1$, then $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$. If $n=-1$,

$$
\int \frac{1}{x} d x= \begin{cases}\ln (x)+C_{1} & \text { for } x>0 \\ \ln (-x)+C_{2} & \text { for } x<0\end{cases}
$$

We usually write $\int \frac{1}{x} d x=\ln (|x|)+C$.
Ex. 2
Calculate each antiderivative:
Solution:
(a) $\int \frac{1}{x^{3}} d x=-\frac{1}{2} x^{-2}+C$
(b)

$$
\begin{aligned}
& \int\left(3 x^{4}-5 x^{2 / 3}-x^{-1}\right) d x= \\
& \frac{3}{5} x^{5}-3 x^{5 / 3}-\ln (|x|)+C
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int \frac{x^{3}+\sqrt{2 x}+x}{x^{3}} d x=\int\left(1+\sqrt{2} x^{-5 / 2}+x^{-2}\right) d x \\
& =x+\sqrt{2} \cdot \frac{x^{-3 / 2}}{-3 / 2}+\frac{x^{-1}}{-1}+C
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int\left(x^{2}-4\right)^{2} d x=\int\left(x^{4}-8 x^{2}+16\right) d x \\
& =\frac{x^{5}}{5}-\frac{8 x^{3}}{3}+16 x+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) } \int \sec (\theta)(\sec (\theta)+\tan (\theta)) d \theta \\
& =\int\left(\sec (\theta)^{2}+\sec (\theta) \tan (\theta)\right) d \theta=\tan (\theta)+\sec (\theta)+C \\
& (f) \int\left(e^{\omega}+2 \cos (\omega)-3 \sin (\omega)\right) d \omega \\
& =e^{\omega}+2 \sin (\omega)+3 \cos (\omega)+C
\end{aligned}
$$

Initial Value Problems (IUP's)
Goal: find an unknown function $f(x)$ given two pieces of information:

- $f^{\prime}(x) \longleftarrow$ gives $f(x)+C$
- $f(a)=b \leftarrow$ gives values of C

Summary of Particle Motion
Position:
Velocity:
Acceleration: $\frac{d}{d t}\binom{v(t)}{a(t)} \int(\ldots) d t$
Ex. 3
A particle moves along the x-axis with velocity $v(t)=9 t^{2}-4 t$. If the particle is at $x=4$ when $t=2$, find the position of the particle when $t=3$.
Solution:
This is an IVP for the position. We are given:

$$
\text { - } \frac{d x}{d t}=9 t^{2}-4 t
$$

(1)

$$
\begin{equation*}
\text { - } x(2)=4 \tag{2}
\end{equation*}
$$

Antidifferentiating (1) gives

$$
x(t)=\int \frac{d x}{d t} d t=\int\left(9 t^{2}-4 t\right) d t=3 t^{3}-2 t^{2}+C
$$

Now use (2) to find C.

$$
\begin{gathered}
\left.\left(3 t^{3}-2 t^{2}+C\right)\right|_{t=2}=x(2)=4 \\
16+C=4 \\
C=-12
\end{gathered}
$$

So we have:

$$
x(t)=3 t^{3}-2 t^{2}-12
$$

Hence $x(3)=51$.
Ex. 4
Suppose the marginal revenue is

$$
R^{\prime}(x)=-3 x^{2}+4 x+84
$$

Assume $R(0)=0$.
(a) Find the demand function $p(x)$.
(b) What is the market price if revenue is at a maximum?
Solution:
(a) Recall: $R(x)=x \cdot p(x)$

First find $R(x)$ by solving an IVP.

$$
\begin{equation*}
\text { - } R^{\prime}(x)=-3 x^{2}+4 x+84 \quad \text { • } R(0)=0 \tag{2}
\end{equation*}
$$

(1)

Antidifferentiate (1) to get:

$$
R(x)=\int\left(-3 x^{2}+4 x+84\right) d x=-x^{3}+2 x^{2}+84 x+K
$$

Now use (2) to find the value of C.

$$
\begin{gathered}
\left.\left(-x^{3}+2 x^{2}+84 x+k\right)\right|_{x=0}=R(0)=0 \\
0+k=0 \Rightarrow k=0
\end{gathered}
$$

So our revenue and demand functions are:

$$
R(x)=-x^{3}+2 x^{2}+84 x \Rightarrow p(x)=\frac{R(x)}{x}=-x^{2}+2 x+84
$$

(b) The maximum of $R(x)$ occurs where $R^{\prime}=0$.

$$
\begin{gathered}
R^{\prime}(x)=-3 x^{2}+4 x+84=0 \\
x=-11 / 3 \quad \text { or } \quad x=6
\end{gathered}
$$

So the price is $p(6)=60$.

Sections 5.1/5.2: The Integral
We want to approximate the area under the graph of $y=f(x)$ and above the interval $[a, b]$ an x-axis. (We assume f is contincions and non-negative.)

(1) Use rectangles whose bases lie on the x-axis to estimate the area.
(2) Divide $[a, b]$ into N equal-length subintersals. These subintervals ave the bases of the N rectangles. (3) Choose height of rectangle so top intersect graph. We will choose the height of each rectangle to be the function value at the right endpoints of each subinterval.
(4) Total area of rectangles estimates area under graph.

* If we use N rectangles with right-endpoint heights, the total area of rectangles is R_{N} and call it The right-endpoint Riemann sum.

If we increase N, we seem to get a better estimate of the area under the graph.

$$
A_{\text {exact }}=\lim _{N \rightarrow \infty} R_{N}
$$

Notation and Terminology
We define the exact area cinder the graph of $y=f(x)$ and above the interval $(a, b]$ an the x-axes to be the limit of the associated Riemann sums as $N \rightarrow \infty$. This exact area is denoted:

$$
\int_{a}^{b} f(x) d x
$$

(your textbook calls this a definite integral.)
Note: The limit $\lim _{N \rightarrow \infty} R_{N}$ exists for all functions that are continuous on $[a, b]$, except possibly at finitely many jump discontinuities.

Properties of Integrals

$$
\text { - } \int_{a}^{a} f(x) d x=0
$$

lIne segments have O area

- Interpretation of integral if $f(x)$ has negative values.

$$
\int_{a}^{b} f(x) d x=\binom{\text { area above }}{x \text {-axis }}-\binom{\text { area below }}{x \text {-axis }}
$$

Ex:

$$
\text { E Ex: } \int_{0}^{2 \pi} \sin (x) d x=0
$$

- Linearity

$$
\begin{aligned}
& \rightarrow \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& \rightarrow \int_{a}^{b} c \cdot f(x) d x=c \cdot \int_{a}^{b} f(x) d x
\end{aligned}
$$

- Additivity

$$
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
$$

Ex. 1
Use the graph of $y=f(x)$ to calculate each integral.

Note': graph consists of line segments and semicirdes.
(a) $\int_{0}^{3} f(x) d x$
(b) $\int_{0}^{7} f(x) d x$
(c) $\int_{7}^{13} f(x) d x$
(d) $\int_{7}^{14} f(x) d x$
(e) $\int_{3}^{13}|f(x)| d x$

Solution:
(a) $\int_{0}^{3} f(x) d x=\frac{9}{2}$
(b) $\int_{0}^{7} f(x) d x=\frac{9}{2}-4=\frac{1}{2}$
(c) $\int_{7}^{13} f(x) d x=\frac{9 \pi}{2}$
(d) $\int_{7}^{14} f(x) d x=\frac{9 \pi}{2}-\frac{\pi}{4}=\frac{17 \pi}{4}$
(e) If you are given the graph of $y=f(x)$, how do you get the graph of $y=|f(x)|$?

Ex. 2
Calculate each integral.
(a) $\int_{0}^{4}(8-2 x) d x$
(d) $\int_{-5}^{3}(|x|-2) d x$
(6) $\int_{-4}^{2}(2 x+4) d x$
(e) $\int_{1}^{10} g(x) d x$ where
(c) $\int_{-1}^{5} \sqrt{9-(x-2)^{2}} d x$

$$
g(x)= \begin{cases}3 x, & 0 \leq x \leq 2 \\ -5 x+10, & 2<x \leq 3 \\ -5, & x>3\end{cases}
$$

Solution:
(a)

$$
\int_{0}^{4}(8-2 x) d x=\frac{1}{2}(4)(8)=16
$$

(b)

$$
\begin{aligned}
& \int_{-4}^{2}(2 x+4) d x= \\
& =-\frac{1}{2}(2)(4)+\frac{1}{2}(4)(8)=12
\end{aligned}
$$

(c) If $y=\sqrt{9-(x-2)^{2}}$, then

$$
(x-2)^{2}+y^{2}=9\left\{\begin{array}{l}
\text { Radicus: } 3 \\
\text { Center: }(2,0)
\end{array}\right.
$$

(d)

$$
\int_{-5}^{3}(|x|-2) d x=
$$

$$
=\frac{1}{2}(3)(3)-\frac{1}{2}(4)(2)+\frac{1}{2}(1)(1)=1
$$

(e)

$$
\begin{gathered}
\int_{1}^{10} g(x) d x=\frac{1}{2}(3+6) \cdot 1-\frac{1}{2}(8+7) \cdot 5=-33 \\
A_{\text {taxp }}=\frac{1}{2}\left(b_{1}+b_{2}\right) h
\end{gathered}
$$

Section 5.3: Fundamental Theorem of Calculus

Theorem: Fundamental Theorem (Part 1)
Suppose f is continuous on $[a, b]$ and F is an antiderivative of f on $[a, b]$. Then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Recall Notation:

$$
\int_{a}^{b} f(x) d x
$$

$$
\int f(x) d x
$$

- integral of f on $[a, b]$
- area under graph
- The most general antiderivative of f
- a number
- a family of functions

So FTC1 tells us that if we have an antidrivative of f, then we can use it to find integrals of f.
Q: Does a general function have an antiderivative?
(A: No. (Continuous functions do.)
Q: If the antiderivative exists, how do you find a useful formula for it?
A: Very difficult. (Calculus II.)
Theorem: Fundamental Theorems (Part 2)
Suppose f is continuous on $[a, b]$. Let $x \in[a, b]$ and define

$$
A(x)=\int_{a}^{x} f(t) d t
$$

Then $A^{\prime}(x)=f(x)$. That is,

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

Notation: $\left.\quad g(x)\right|_{a} ^{b}=g(b)-g(a)$
Ex. 1
Calculate the following integrals.
Solution:
(a) $\int_{1}^{3} x^{3} d x$

$$
\int_{1}^{3} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{1} ^{3}=\frac{3^{4}}{4}-\frac{1^{4}}{4}=20
$$

(b) $\int_{-\pi / 4}^{\pi / 4} \sec (\theta)^{2} d \theta$

$$
\begin{aligned}
& \int_{-\pi / 4}^{\pi / 4} \sec (\theta)^{2} d \theta=\left.\tan (\theta)\right|_{-\pi / 4} ^{\pi / 4}= \\
& =\tan (\pi / 4)-\tan (-\pi / 4)=2
\end{aligned}
$$

(c) $\int_{0}^{\pi} \sin (\theta) d \theta$

$$
\begin{aligned}
& \int_{0}^{\pi} \sin (\theta) d \theta=-\left.\cos (\theta)\right|_{0} ^{\pi}= \\
& =(-\cos (\pi))-(-\cos (0))=2
\end{aligned}
$$

(d) $\int_{0}^{2 \pi} \sin (\theta) d \theta$

$$
\begin{aligned}
\left\{\times X \lambda^{\pi}\right. & 2 \pi \\
& \int_{0}^{\pi} \sin (\theta) d \theta=-\left.\cos (\theta)\right|_{0} ^{2 \pi} \\
& =-\cos (2 \pi)-(-\cos (0))=0
\end{aligned}
$$

(e) $\int_{0}^{3 \pi} \sin (\theta) d \theta$

(f) $\int_{1}^{2} \frac{1}{x} d x=\left.\ln (x)\right|_{1} ^{2}=\ln (2)-\ln (1)=\ln (2)$
$(g) \int_{0}^{2} \frac{1}{x+1} d x=\left.\ln (x+1)\right|_{0} ^{2}=\ln (3)-\ln (1)=\ln (3)$
(h) $\int_{0}^{2} \frac{1}{2 x+1} d x=\left.\frac{1}{2} \ln (2 x+1)\right|_{0} ^{2}=\frac{1}{2} \ln (5)$

Check: $\frac{d}{d x}(\ln (2 x+1))=\frac{1}{2 x+1} \cdot 2$

$$
\frac{d}{d x}\left(\frac{1}{2} \ln (2 x+1)\right)=\frac{1}{2} \cdot \frac{1}{2 x+1} \cdot \not 2=\frac{1}{2 x+1}
$$

(i) $\int_{0}^{1}(3 x+5)^{18} d x=\left.\frac{(3 x+5)^{19}}{19} \cdot \frac{1}{3}\right|_{0} ^{1}=\frac{8^{19}}{57}-\frac{5^{19}}{57}$

$$
\begin{aligned}
& \text { (j) } \int_{8 / 27}^{1} \frac{4 t^{4 / 3}-10 t^{1 / 3}}{t^{2}} d t=\int_{8 / 27}^{1}\left(4 t^{-2 / 3}-10 t^{-5 / 3}\right) d t \\
& =\left.\left(4 \cdot \frac{t^{1 / 3}}{1 / 3}-10 \cdot \frac{t^{-2 / 3}}{-2 / 3}\right)\right|_{8 / 27} ^{1}=\left.\left(12 t^{1 / 3}+15 t^{-2 / 3}\right)\right|_{8 / 27} ^{1} \\
& =(12+15)-\left(12 \cdot \frac{2}{3}+15 \cdot \frac{9}{4}\right)=-\frac{59}{4}
\end{aligned}
$$

Ex. 2
Let $f(x)=\left\{\begin{array}{ll}e^{x}, & x<0 \\ 1-x^{2}, & x \geqslant 0\end{array}\right.$. Calculate $\int_{-1}^{1} f(x) d x$.
Salution:

$$
\begin{aligned}
& \int_{-1}^{1} f(x) d x= \\
& =\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x
\end{aligned}
$$

Compute each integral separately.

$$
\begin{aligned}
& \cdot \int_{-1}^{0} f(x) d x=\int_{-1}^{0} e^{x} d x=\left.e^{x}\right|_{-1} ^{0}=e^{0}-e^{-1}=1-e^{-1} \\
& \cdot \int_{0}^{1} f(x) d x=\int_{0}^{1}\left(1-x^{2}\right) d x=\left.\left(x-\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\left(1-\frac{1}{3}\right)-(0-0)
\end{aligned}
$$

So we have?

$$
\int_{-1}^{1} f(x) d x=1-e^{-1}+1-\frac{1}{3}=\frac{5}{3}-e^{-1}
$$

ExT)
Let $G(x)=5+\int_{1}^{x} \sqrt{t^{3}+1} d t$.
(a) Compute $G(1)$.
(b) Compute $G^{\prime}(z)$.

Solution:
(a) $G(1)=5+\int_{1}^{1} \sqrt{t^{3}+1} d t=5$
(b) Use FTC 2 to get $G^{\prime}(x)$. Recall:

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

bottom limit is constant

So we have:

$$
G^{\prime}(x)=\frac{d}{d x}\left(5+\int_{1}^{x} \sqrt{t^{3}+1} d t\right)=\sqrt{x^{3}+1}
$$

Hence $G^{\prime}(2)=\sqrt{8+1}=3$.

Optional: Intermediate Value Theorem \& Applications
Thu: (IVT) Suppose f is continuous on $[a, b]$. Then given any number d between $f(a)$ and $f(b)$, there exists a number c in (a, b) such that $f(c)=d$.

What does this mean graphically?

Our intuitive notion of continuity implies that continuous functions cannot skip any y-values.

Challenge: Given $(a, f(a))$ and $(b, f(b))$, can we draw The graph of f so that some y-values between $f(a)$ and $f(b)$ are skipped?
 Easy! As long as we are allowed to make f not continuous on $[a, b]$!

The IVT says this challenge is impossible if f has to be continuous.

Proving an equation has a solution
Suppose we knew the following:

- f is continuous on $[a, b]$
- $f(a)$ and $f(b)$ have opposite signs (one is positive and the other is negative)
What can we say about the equation " $f(x)=0$ "?

The IVT tells us that there must be at least one solution to " $f(x)=0$ " in the interval (a, b) !

Ex. 1
Prove that the equation $\cos (x)=x^{3}-x$ has a solution in $[\pi / 4, \pi / 2]$.
Solution:
Equivalently, we show $\cos (x)-x^{3}+x=0$ has a solution. let $f(x)=\cos (x)-x^{3}+x$. Then observe:

- f is continuous on $[\pi / 4, \pi / 2]$

$$
\left.\begin{array}{l}
\text { - } f(\pi / 4)=\frac{1}{\sqrt{2}}-\frac{\pi^{3}}{64}+\frac{\pi}{4} \approx 1.008 \\
\text { - } f(\pi / 2)=0-\frac{\pi^{3}}{8}+\frac{\pi}{2} \approx-2.305
\end{array}\right\}
$$

opposite signs
So by the IVT, the equation $f(x)=0$ has a solution in $(\pi / 4, \pi / 2)$.
Solving nonlinear inequalities
Suppose we want to solve " $f(x)>0$ " where f is a rational function (ratio of two polynomials, with
no common factors). Recall the general method.
Ex. 2
Solve $\frac{2 x-1}{x+2}>1$.
Solution:
$\left.\frac{2 x-1}{x+2}-1>0\right\}$ move all terms to ane side
$\left.\frac{x-3}{x+2}>0\right\}$ simplify left side; write as quotient
$(x=3, x=-2)\} \begin{aligned} & \text { determine "cut points" by setting each of } \\ & \text { numerator and denominator to } 0\end{aligned}$
$\left.\begin{array}{l}\text { (3) } \\ \text { (0) }^{-2} \text { (4) }\end{array}\right\}$ draw a number line and mark cut points

$$
\left.\begin{array}{l}
x=-3: \frac{x-3}{x+2}=6>0 \\
x=0: \frac{x-3}{x+2}=-\frac{3}{2}<0 \\
x=4: \frac{x-3}{x+2}=\frac{1}{6}>0
\end{array}\right\}
$$

in each interval, test the frith of the inequality using ane test port only.
$x \in(-\infty,-2) \cup(3, \infty)$ \} final answer is union of intervals
Why does this work? Specifically, why can we test only one point per interval?
Q: At what values of x can a function f change sign?
A: The IVT tells us $f(x)$ can change sign at $x=c$ only if either $f(c)=0$ or f is not continuous at c. Otherwise, $f(x)$ has a single sign in each interval
determined by these values of c.
When we find cut points for rational functions, we are finding these values of c where f can change sign.

- $f(c)=0$
\longrightarrow set numerator to 0 , solve for x
- f is not continuous at c
\rightarrow set denominator to 0 , solve for x
So we only test one point per interval because IVT tells us $f(x)$ has just one sign for the entire interval!

Optional: Mean Value Theorem
Thu: (MVT) Suppose f is continuous an $[a, b]$ and differentiable on (a, b). Then there exists c in (a, b) such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Graphical interpretation of MVT:

MUT says there is a tangent line parallel to the secant line

Ex. 1
Let $f(x)=x^{2 / 3}$. For each interval, determine whether the hypotheses of the MVT are satisfied. If yes, find all values of c decribed by the MVT.
(a) $[-1,1]$
(b) $[0,8]$

Solution:

- Where is f continuous?

Power functions are continuous on their domain, so $f(x)=x^{2 / 3}$ is continuous on $(-\infty, \infty)$. So the continuity hypothesis of MVT is satisfied on all intervals.

- Where is f differentiable?

Since $0<2 / 3<1$, we know $f(x)=x^{2 / 3}$ is differentiable everychere except $x=0$. So any open interval with $x=0$ does not satisfy the MVT hypotheses.
(a) Since $x=0$ is in $(-1,1)$, the MVT hypotheses are not satisfied.
(6) Since $x=0$ is not in $(0,8)$, the MVT hypotheses are satisfied. Hence there is some c in $(0,8)$ with:

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(8)-f(0)}{8-0} \\
\frac{2}{3} c^{-1 / 3} & =\frac{8^{2 / 3}-0}{8-0}=8^{-1 / 3}
\end{aligned}
$$

Solving for c gives

$$
c=\left(\frac{3}{2}\right)^{-3} \cdot 8=\frac{64}{27}
$$

Important special case of MNT:
Tum: (Rolle's Theorem) Suppose f is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)$. Then there exists c in (a, b) with $f^{\prime}(c)=0$.

