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CAUTION: these notes were typed up during the lectures, and so are probably
full of typos along with misheard or misread parts (and perhaps genuine misun-
derstandings).

Section 1. Polish Spaces, standard Borel spaces,
and Borel equivalence relations

1+1. Definition
’7A topological space (X, 7) is Polish iff it admits a complete separable metric d.

Notation: If (X, T°) is a topological space, then 8(7") is the o-algebra of Borel subsets of X. Normally when you talk
about Borel equivalence relations, you don’t care about the topology, but whether something is Borel.

1+2. Definition

Let B be a o-algebra on a set X. Then (X, 8B) is a standard Borel space iff there is a Polish topology 7 on X such
that B = B(7).

To what extent is the topology determined by the Borel subsets? The answer is not at all, by the following theorem,
which has a proof to be found in Kechris’ book.

— 1+3. Theorem

Let (X, T) be a Polish space and let Y € B(7). Then there exists a Polish topology 7y 2 7 on X such that
B(Ty) = B(T)and Y is clopen in (X, Ty ).

And this has a nice corollary.
—— 1+4. Corollary
If (X, B) is a standard Borel space, and Y € B, then (Y, B |'Y) is a standard Borel space.

Here, 8 'Y just means {Z € B : Z C Y}. This follows just because we may make Y into a clopen set,and ¥ C X
being closed implies that the corresponding metric is still complete.

Theorem 1 « 3 suggests that two standard Borel spaces should look alike. In fact, there is a unique uncountable one.

— 1+5. Theorem
There is a unique uncountable, standard Borel space up to isomorphism.

— 1+6. Definition
If X is a standard Borel space, then an equivalence relation £ on X is Borel iff E is a Borel subset of X x X.

So what we care about is comparing the relative complexity of Borel equivalence relations. Three examples we can
define straight away are the following.

1. If X is a standard Borel space, then the identity relation id | X = idy is Borel.
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2. E, is the Borel equivalence relation of 2N defined by
x Ey y < x(n) = y(n) for all by finitely many n € N.

3. The Turing equivalence relation =1 on ®(N) = 2N is defined by A =1 B iff A <t B and B <1 A. And =t is
a Borel equivalence relation.

1+7. Definition
’7A Borel equivalence relation E is countable iff every E-class is countable.

We want to compare the complexity of Borel equivalence relations by way of reduction. Now we don’t allow arbitrary
maps in the sense of reduction, but instead focus on Borel maps.

— 1-+8. Definition
If X, Y are standard Borel spaces, amap f : X — Y is Borel iff graph( f') is a Borel subset of X x Y.

There is an equivalent definition of Borel maps by the following theorem.

— 1+9. Theorem

If X, Y are standard Borel spaces, and f : X — Y, then the following are equivalent:
1. f is Borel.

2. f_l”Z is Borel in X for each Borel subset Z C Y.

— 1+10. Definition

Suppose E, F are Borel equivalence relations on the standard Borel spaces X, Y.
1. E is Borel reducible to F, written E <g F, iff there is a Borel map f : X — Y such that

xEx < f(x)F f(x)).
2. E and F are Borel bireducible, written E =g F iff E <g F and F <g E.
3. E <B F iff both £ <B F and F %B E.

Let E, F be Borel equivalence relations on standard Borel spaces X, Y. f : X — Y is a Borel homomorphism
from E to F iff x E x’ — f(x) F f(x').

For example, if X and Y are uncountable, standard Borel spaces, then idy =g idy. As another example, we can define
a Borel reduction f : 2N — 2N from id,n to Eg by x =/ x M 7™x }127x 37 .-+~ x Pn™ - -+, because any difference
between x and y occurs infinitely often in f(x) and f(y). As a challenge, find an explicit Borel reduction from Eq to
=T.

The following is a theme of the course: Supposing that £ and F are Borel equivalence relations, what techniques are
available to prove that £ £ F? Often a proof that E £ F shows that if f is a Borel homomorphism from E to
F, then there exists a “large set” which is mapped to a single F-class. So the idea is that if the reason is E is too
complicated, then you’d expect the “kernel” to be large, which is similar to this statement. So what we need is suitable
notions of largeness, and in this course, we will use three.

» Category

1+11. Definition

If X is a topological space, then Z C X is comeager iff there exist dense, open subsets {D,, : n € w} such
that ) D, CZ.

new

Soif{Z, : n € w} are comeager sets, then [
a notion of largeness.

new Zn 1s comeager. And this is supposed to motivate that this is

Now if we want to separate id,~n and Ey, i.e. that idyn <p Eo. But it turns out that (provably) the notion of
category can’t be used any further. After category, we have measure.

¢ Measure
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In particular, we look at probability measures.

1+12. Definition

Suppose (X, 8B) is a standard Borel space. Then a Borel probability measure on X is a function u : 8 —
[0, 1] such that

- p@) =0, uX)=1

- If A, € B are disjoint, then (|, 4n) = Y, n(A4n)

Remark: if {Z, : n € w} satisfy u(Z,) = 1, then ()
measure.

Z,) = 1. Note that this depends on the choice of

new

Martin’s measure
1+13. Definition
For each A € ®(N) = 2N, the corresponding cone is
Dy={Be®(N): A<t B}.

As you might expect by now, if {D, : n € w} are cones, then there exists a cone D C (),,c,, Dn. To see this,
choose A, € ®(N) such that D, = Dy, . Then there exists an A € ®(N) such that A, <r A foralln € w.
Clearly D4 € (yew Pan = (new Pn-

We get the following picture illustrating the limitations of these various notions of largeness. In particular, category is
only useful in distinguishing Eq from id,~n. Measure and ergodic theory isn’t able to deal with turing equivalence. It’s
also not yet known whether Eoo =p =r.

Eoo

Martin's measure
determinacy arguments
other notions of largeness

measure
ergodic theory
etc.
id,n
category
Ey

1+14. Figure: Countable Borel Equivalence Relations
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Section 2. Countable Borel Equivalence Relations:
The Feldman—Moore Theorems

So far we’ve learned the language, and it’s time we did more. As a matter of notation, write G » X to indicate a
group action.

— 2+1. Definition
IfG ~ X, then E g is the corresponding orbit equivalence relation:

xEé(yeElgeG(g-xzy).
Suppose I' is a countable group and X is a standard Borel space. An action I' v X is Borel iff for every y € I,
the map x A8 y - x is Borel. In this case, we say X is a standard Borel I'-space.

For example, if E has all of its classes as countable, then we can write £ = E g for a suitable group action from Z.
Of course, to do this naively, we will use choice. But Feldman—Moore tells us that £ = EI{( for some I" and Borel
group action. It turns out in the absence of choice that not every countable Borel equivalence relation can be realized
by a group action from Z.

The theorem itself is the source of a great many of connections between other branches of math.

2+2. Theorem (Feldman—Moore Theorem)

If E is a countable Borel equivalence relation on a standard Borel space X, then there exists a countable group I'
and a Borel action I' ~v X such that E = E¥.

The proof of Feldman—Moore Theorem (2 *2) will use a suitable uniformization theorem. Suppose X and Y are any
sets, and P C X x Y. As a mater of notation,

exeXhas P, ={yeY :(x,y)e P}
eyeYhas P ={xe X :{(x,y) € P};and
* projxy(P) ={x e X :3y e Y({x,y) € P)}.

2+3. Definition

For P € X x Y, P* C P is a uniformization iff for all x € projy(P), there exists a unique y € Y with
(x,y) € P*.

So in essence, P* is the graph of a function f where f : projy(P) — Y such that f(x) € Py holds. So AC implies
every P € X x Y can be uniformized.

Now suppose that X, and Y are standard Borel spaces, and P C X x Y is Borel. Does P necessarily have a Borel
uniformization? The answer is that it need not have one. For example, consider the following, due to Luzin.

2+4. Result
’7With P C X xY and X, Y standard Borel spaces, if P has a Borel uniformization P*, then projy (P) is Borel.

Proof Sketch ...
Suppose that P* is a Borel uniformization. Then projy : P* — X is injective, and so the image is Borel (by a
famous theorem of Luzin). But projy (P) = projy (P*). =

2+5. Corollary

There exists a Borel P € X x Y with X, Y standard Borel spaces, and with no Borel uniformization.

So in general, Borel sets in the plane don’t have Borel uniformizations. But there are several cases where there are, as
can be found (along with others) in Kechris’ book. This is due to Luzin—Novikov.
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— 2+6. Theorem
Suppose X, Y are standard Borel spaces and P € X x Y is a Borel subset such that P, is countable (perhaps
empty) for all x € X. Therefore,

1. projy (P) is Borel, and P has a Borel uniformization; and

2. Moreover, we can express P = |, ., Pn, where each P, is the Borel graph of a partial function; i.e. if
P,(x,y)and P,(x,z),then y = z.

As an application of this, we get the following.

2+7. Corollary

Suppose that X, Y are standard Borel spaces and f : X — Y is a countable-to-one Borel map. Then im f is
Borel, and there exists a Borel map g : im f — X such that f(g(y)) = y forall y € im f.

Proof ...
LApply Theorem 2+6to P = {{y,x) : (x,y) € f}. =

We will continue to use Corollary 2 ¢ 7 with smoothness.

Section 3.  Smooth Countable Borel Equivalence Relations

— 3+1. Theorem
If E is a Borel equivalence relation with uncountable many classes, then id,n <p E.

— 3+2. Definition

A Borel equivalence relation is smooth iff E <pg idz for some (equivalently every) uncountable standard Borel
space Z.

We immediately get the following observation from this definition.

— 3+3. Result
If E is a smooth, countable, Borel equivalence relation on an uncountable Borel space, then £ =p id,n.

We also get a nice, fairly easy theorem.

— 3+4. Theorem
If E is a countable Borel equivalence relation on a standard Borel space X, then the following are equivalent.
1. E is smooth.
2. There exists a Borel set T € X which intersects every E-class in a unique point. (We say T is a Borel
transversal for E.)
3. There exists a Borel map s : X — X such that s(x) E x,and if x £ y then s(x) = s(y). (Wesay s is a
Borel selector for E.)

Proof ...
For (3) — (1), clearly s is a Borel reduction from E to idy.

For (1) — (2), suppose f : X — Y is a Borel reduction from E to idy for some uncountable, standard Borel
space Y. So f is a countable-to-one map. Hence A = im f is a Borel subset of Y, and there is an “inverse”
g : A — X suchthat f(g(a)) = a foralla € A. Then g is injective and so T = im g is Borel and satisfies the
desired property.

For (2) — (3), we can define a Borel selector by s(x) = yiff x E yand y € T. .
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Note that this applies only to countable Borel equivalence relations. For example, there exists a smooth Borel equiv-
alence relation with no Borel transversal. To see this, let X, Y, Z be such that X and Y are standard Borel spaces
while Z € X x Y is Borel with projy (Z) non-Borel. Then Z is also a standard Borel space, and we can define a Borel
equivalence relation E on Z by (x,u) E (y,v) iff x = y. The map (x, u) — x is a Borel reduction from E to idy,
and so E is smooth. But any proposed 7 € Z which is a Borel transversal for £ has {x, u) — x as injective on 7.
Hence projy (T') = projy (E) = projy (Z) is Borel, contradicting construction.

Furthermore, there is a countable Borel equivalence relation which isn’t smooth. At this point, this is easiest to show
using measure, although an argument using category can be given.

3+5. Theorem
’7EO is not smooth
Proof ...
Let 1 be the usual uniform product probability measure on 2N. For each n € N, let 7, : 2N — 2N be the Borel

bijection (xg, -+, Xp,"-*) NN (x0,--+, 1 —xp,---), flipping just the nth entry.
LetT = @,¢,, Cn, where C, = (m,). Then T’ (2N 1) as a group of measure-preserving transformations.

Also clearly Ey = E%N. Furthermore, I acts freely on 2N;ie. if 1 £y € ', theny - x # x forall x € X.

Suppose that E is smooth. Then there exists a Borel transversal 7 € 2N. Since I acts freely, 2N = Llyerv'T.
This is because y1t; = y»t, implies yz_lyltl = 1. So as it’s a transversal, 1; = f,. But as it act’s freely, we get
a contradiction.

Since T is Borel, T is p-measurable. Since I" preserves u, u(y"T) = u(T) forall y € I'. Hence
=p@N) = u@'T) =) w(),
yel yel
which is a contradiction =

Let’s return to Feldman—Moore Theorem (2 *2). So more than just this, we have the following.

3+6. Theorem
Feldman—Moore Theorem (2 ¢ 2) holds, and moreover I" and I" v X can be chosen such that

x E y <> x = yorthereexists 1 # g € I' with g = 1 suchthat g - x = y

Proof ...

Let E be a countable Borel equivalence relationon a standard Borel space X. Clearly we can suppose that X
is uncountable. (Otherwise, the theorem is trivial.) Applying Theorem 2«6, since E € X x X has countable
sections, we can express E = [ J F,, where each F;, is the Borel graph of a partial function. Out of this, we
want to get a group action.

nEwW

For eachn,m € N, let F, , = F, N F,;' where F~! = {{y,x) : (x,y) € F}. Then each F, , is the Borel
graph of an injective partial function; and £ = | J,, ,, Fa.m- Let Ay = {{x,x) : x € X}.

Claim 1
’7We can express X2\ Ay = Upen Ap X Bp where each Ap, By, is a pair of disjoint Borel subsets.

Proof ...
Since X is Borel isomorphic to R, it suffices to work with R. But this is easy for R, since we just take
sufficiently small discs with rational centers and radiuses. —

Foreachn,m, p,let Fy, m.p = Fnm N (Ap X Bp). So we’re getting an injective function from a subset of 4, to a
subset of B, and we can get the inverse just by going back. Explicitly, Fy, m, is the graph f;, ., for some Borel




§4 MATH 569 CLASS NOTES

bijection between disjoint Borel sets Dy, p and R, .. Hence we can define a corresponding Borel bijection
gn.m.p by
Jnmp(x) ifx € Dymp

&nm,p(X) = fn_,ril,p(x) ifx € Rym,p
x otherwise.
Clearly g2, , = 1. Since E\ Ax = U, . pew Fnm.p» We see that T' = (gu.m.p : n.m, p € N) satisfies our
requirements. =

Note that we can’t witness this necessarily by finitely generated groups, nor necessarily by free groups. For example,

F, ~ ®P(F) by S s gS yields a universal relation, and the fact that it can’t be realized by a free group uses something
called Popa super-rigidity.

As a nice story, Thomas found this Popper’s super-rigidity result on accident when searching something on Google,
noticing that this was precisely what was needed for this idea about free groups. As he investigated who Popper was,
he found that Popper was going to give a talk on the topic at UCLA, where Kechris works. And as it happened, Thomas
was able to get to the result first.

Section 4. Hyperfinite, and Universal Borel Equivalence Relations

Why do we focus on countable Borel equivalence relations? One big reason is Theorem 3 ¢ 6, suggesting connections
with group theory, which yields lots of applications. In particular, the isomorphism relation on a class of (countable)
structures. As it turns out, this is a countable Borel equivalence relation iff the structures are all “finitely generated”
in a certain sense'. And then from here, it’s a matter of thinking about how complicated these relations can get. To do
this, it’s useful to develop milestones.

4-1. Definition
’7A countable Borel equivalence relation E is universal ift F <p E for every Borel equivalence relation F.

So by definition, for any two universal, countable Borel equivalence relation £, F, E =g F. But this raises the
question, does such a relation exist?

The following result by Friedman—Stanley shows that there is no universal Borel equivalence relation.

— 4+2. Theorem

If E is any Borel equivalence relation, then there exists a Borel equivalence relation E™ such that £ <g E™.

So instead, consider the following definition.

— 4-+3. Definition
Let [, be the free group on 2 generators. Then E is the orbit equivalence relation of the Borel action F, v ®([F5)

ViaSvig"Sz{g-s:seS}.

Equivalently, consider the shift action of F, on 22 defined by (y - £)(x) = f(y~'x) for f : F, — 2.

Note that we have this y ! to preserve that § - (y - £)(x) = (§y) - f(x), as otherwise § - (y - f)(x) = (y - f)(8-x) =
f(y - 8x) which might not be f(§ - yx).

These two actions are the same by the following: consider f = ys. Then (y - ys)(x) = 1iff ys(y~'x) = 1iff
y'x e Siffx € yS. Hencey - xs = xy's.

iin the sense that fixing just finitely many elements gives only one transformation
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We have the following target theorem.

— 4+4. Theorem (Target Theorem)

E is a countable Borel equivalence relation.

Now we look at a more general version of the shift action.
— 4+5. Definition

Let X be a standard Borel space and G a countable group. Then define X¢ = {p : p : G — X} with the product
Borel structure. The shift action G ~ X @ is the Borel action g - p(h) = p(g~' o h). The corresponding orbit
equivalence relation is denoted E(G, X).

For example, Eoc = E(F3,2).

—— 4+6. Proposition

Let G be a countable group and let X be a standard Borel G-space. Then E g <g E(G.2N).

Proof ...

Let {U, : n € o} be a sequence of Borel subsets of X which separates points, meaning for any two points
x # y, there are n,m € w with x € U, \ Uy, and y € Uy, \ Uy,. Define the Borel map f : X — (2N)% by
[f)(@]m) = 1iff g7 (x) € Un.

We claim that f is a Borel reduction from E é{ to E(G,2V). Mostly this consists in going through the definitions.
Firstly, suppose that y = h - x for some & € G. Then

SOWIn) =1 iff [f(hx)()]mn) =1
iff g7 'hx eU,
iff (W lg)7'x e U,
iff [f)(h' ) = 1.
Thus f(y)(g) = f(x)(h"'g) andso f(y) = h- f(x).

Conversely, suppose that f(y) = h - f(x) forsome 7 € G. Then foralln € N,
yeU, iff [f()M]n) =1
iff [h- f)(D](n) =1
iff  [f(x)(hH]l(n) =1
iff hx e U,.
So as {U, : n € w} separates points, y = h - x. =

4-.7. Proposition

Let [F,, be the free group on countably many generators. Then E (F,,, 2IV) is a universal countable Borel equivalence
relation.

Proof ...

Let E be a countable Borel equivalence relation on a standard Borel space X. By Theorem 3 ¢ 6, there exists a
countable group I' and a Borel action I' v X such that E is the corresponding orbit equivalence relation Er)f .

Let 7 : F, — T be a surjective homomorphism. Then we can define a Borel action F,, ~» X by x N w(g) - x.
Clearly, E = E[‘;fu. So by Proposition 4 « 6,

E =Ef <p E(F.2%)
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4-8. Proposition

Suppose that G and H are countable groups and = : H — G is a surjective homomorphism. If X is any standard
Borel space, then

E(G,X)<g E(H,X)
via the Borel reduction p — p* where p*(h) = p(x(h)).

The proof of this is left to the reader that wants to be complete. Intuitively, the result holds since H is bigger than G.
Similarly, although we require a bit of a trick this time, we get the following proposition.

4-9. Proposition

Suppose G, H are countable groups and G < H. If X is a standard Borel space, then
E(G,.X) <g E(H, X).

Proof ...
Fix some x¢ € X and consider the Borel map f : X¢ — XH by p > p* where
" ph) ifheG
pr(h) = :
X0 ifh ¢ G.

We claim that f is a Borel reduction from E(G, X) to E(H, X). Clearly if g - p = ¢ for some g € G, then
g - p* = ¢g*. What we want is the converse.

Conversely, suppose that 1 - p* = g* forsome h € H. If h € G, thenclearly h- p = ¢g. So suppose h € H\ G.
In this case, we must have that forall g € G, q(g) = p(h™'g) = xg since h~'g ¢ G. This means ¢*(h) = xo
forallh € H,and so p* = ¢*,and p = q. =

Applying the (unproved) Target Theorem (4 *4) and Proposition 4 * 9, we see that if G is a countable group with a free
: ®G) _
non-abelian subgroup, then E;""" =p Exo

4-10. Proposition
’;G is a countable group, then E(G,22\M%) <5 E(G x Z,3).

Proof ...
Consider the Borel map f : (ZZ\{O})G —39*Z by p > p* by
* _ Jp(®@m) ifn#0
u (g’”)_{z ith =2.

We claim that f is a Borel reduction from E(G, 22\{0}) to E(G x Z,3). First, suppose that p,q € (ZZ\{O})G
and that g - p = ¢ for some g € G. Then it is easily checked that (g, 0) p* = ¢*.

Conversely, suppose that g* = (g, n)p* for some (g,n) € G x Z. If n = 0, then clearly ¢ = g - p. Suppose
n # 0. Then for all (h,m) € G x Z, g*(h,m) = p*(g~'h,m — n). In particular, g(h)(n) = q*(h,n) =
p*(g7'h,0) = 2, a contradiction. —

One of the issues with E(F,,,2Y) is that it’s basically impossible to visualize. We want to show Eo, = E([F2,2) is
universal countable Borel instead by some reductions.

4-+11. Proposition

Let G be a countable group and let C, = {0, 1} be the cyclic group of order 2. Then
E(G,3) s E(G x(3,2)
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Proof ...

Consider the Borel map f : 3¢ — 29%C2 where p > p* defined by

0 ifp(g) =0

0 ifp(g)=1landi =0

1 ifp(g)=1landi =1

1 if p(g) =2.

We claim that f is a Borel reduction from E(G,3) to E(G x C,,2). First suppose p,q € 3° and there exists

g € G suchthatg = g - p. Then clearly ¢* = (g, 0) p*. Next suppose that ¢* = (g, i) p*. If i = 0, then clearly
q = gp, as you don’t disturb the coding.

pr(g.i) =

So suppose i = 1. First consider the case where there exists an 4 € G such that g(h) = 1. Then g*(h,0) = 0
and ¢*(h, 1) = 1. Note that for all (@, j) € G x Cs,

q*(a.j) = (g.Dp*(a.j)=p*(g  a.j+1).
In particular, p*(g~'%,0) = ¢*(h,1) = 1 and so p(g~'h) = 2 while p*(g~'h, 1) = q*(h,0) = 0, which is a
contradiction. Thus g € {0,2}¢, and it follows thatg = g - p. =

1

Now we can go through to prove Target Theorem (4 « 4).

Proof of Target Theorem (4 +4) ...
Let E be a countable Borel equivalence relation. Then

E <g E(F,.2N) =p E(F,.22M% <3 E(F, x Z,3) <g E(F, X Z x C5,2) <p E(F,.2)
since there is a surjection from [, to [, x Z x C,. And this Borel reduces to E([F5, 2) since [, — [F5.

Recall that by HKL (Harris—Kechris—Louveau?), Eq is the <g-successor of id,n. We next study countable Borel
equivalence relations E such that E =g E,.
4-12. Definition

A Borel equivalence relation E is finite iff every E-class is finite.
A Borel equivalence relation E on a standard Borel space X is hyperfinite iff there exists an increasing chain

FoCFi & CF S

of finite Borel equivalence relations on X such that £ = | J,,¢,, Fn-

Remark: If F is a finite Borel equivalence relation on X, then F is smooth. This is just because X is Borel isomorphic
to R: there is a Borel linear order < of X, and so we can define a Borel selector s by taking s(x) = min([x]g).

Remark: Ej is hyperfinite. To see this, define F,, on 2N by x F,, y iff x(¢) = y(¢) forall £ > n. Then Fy € F; C
-+ CF,C--,and Eg = ,c,, Fn-
4+13. Open Problem

Suppose that E; € E, € --- C E, C --- for n € w are hyperfinite Borel equivalence relations. Is E = Unew E,
hyperfinite?

nEwW

Despite looking trivial, this isn’t so easy. And Simon himself conjectures that it’s probably false. Consider the following
characterization of hyperfinite Borel equivalence relations due to Dougherty—Jackson—Kechris.

4+14. Theorem
’Tf E is a non-smooth hyperfinite Borel equivalence relation, then E =g Ej.

The new target theorem is the following:

10
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4+15. Theorem (Second Target Theorem)

If E is a countable Borel equivalence relation on a standard Borel space X, then the following are equivalent:
(a) E is hyperfinite.
(b) There exists a Borel action Z ~ X such that EX = E.

Proof of (a) implies (D) .:.
First we show that (a) implies (b). Express E = |, c,, Fn as an increasing chain Fp € F; € --- € F, C---of
finite Borel equivalence relations such that Fy = idy. Let < be a Borel linear ordering of X. Then we can define
an increasing sequence of Borel partial orderings <, of X as follows:

e <o =0.
* X <p41 yiff x <, y or (x Fy41 y and min([x]Fr,) < min([y]F,)).
Then we see inductively that
1. <y linearly orders each F;,-class.
2. If C # D are Fy-classes such that [C]F, , = [D]F,,,, theneither C <,4; D or D <,41 C.

Let < = Un< » <n. Then <, is a Borel partial order which linearly orders each E-class. Furthermore, the order
type of each E-class is either

(i) n forsomen > 1;
(i) ;
(iii) w™, the reverse of w; or
(iv) o* + w, the order type of Z.
We obtain a Z-action by defining a Borel bijection 7 : X — X as follows.

Case i. Suppose [x]g has order type 1 < n < w under <, say, Xg < X1 <@ *** <o Xn—1. Then we define
X; ifi <n-—1
T(x)=4"'""" l :
Xo ifi =n—1

Case ii. Suppose that [x]g has order type w under <4, say, Xg <@ X1 <@ *** <@ Xn <@ -+ Then T acts on
[x]Eg as the infinite cycle

(- x3x1 X0 X2 X4 “++)
Case iii. If [x] has order type w* under <,,, we handle it similarly to (Case ii).

Case iv. Finally, if [x] g has order type ®* + @ under <,,, then we define 7'(z) to be the <,-successor of z.

The proof that (b) implies (a) needs some preparation. First note that if £ is a countable Borel equivalence relation on
X, then

Y = {x € X : [x]g is finite}
is Borel and E |'Y is finite and hence hyperfinite.

Hence we can restrict our attention to aperiodic equivalence relations, i.e. those equivalence relations such that every
class is infinite.

—— 4+16. Definition

Let E be an aperiodic countable Borel equivalence relation. Then a vanishing sequence of markers is a decreasing
sequence Ag 2 A; D --- 2 A, D ---such that
1. Each A, is a complete Borel section for £, i.e. A, N [x]g # @ forall x € X; and

2. Nyew An = 0.

—— 4+17. Lemma (The Marker Lemma)

Every aperiodic countable Borel equivalence relation admits a vanishing sequence of markers.

11
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Proof ...
Without loss of generality, E is a relation on 2N. For each x € 2N, and n € w, let S, (x) be the lexiographic-least
s € 2" such that |[x]g N Us| is infinite, where Uy = {f € 2" : s = f'}. Then we define x € A4, iff x In = S, (x).
Then (A, : n € w) is a decreasing sequence of Borel subsets which intersects each E-class in infinitely many
elements. Note that A = (1), ¢, A» intersects each E-class in at most one element. Thus {4, \ A :n € w}isa
vanishing sequence of markers. —

Now we prove that (b) implies (a) from above.

Proof of (b) implies (a) from Second Target Theorem (4 +15) .:.
We want to show that if Z 3 X is a Borel action on a Standard Borel space, then £ = E% is hyperfinite.

So without loss of generality, E is aperiodic. Let T : X — X be a Borel bijection which generates the Z-action
and let < be the Borel partial order on X defined by

x <y iff In>0(T"(x)=y).
Then < gives a Z-ordering of every E-class. By The Marker Lemma (4 +17), let {4, : n € w} be a vanishing
sequence of markers for E. Define
Y = {x € X : thereis an n € w such that A, N [x]g hasa < -least or greatest element}.

Then Y is an E-invarant Borel subset such that £ |'Y is smooth, because we have a Borel selector f : ¥ — Y
for E. Now for each n € w, we can define a finite Borel equivalence relation F;, by

x F, y iff x:ny,yG{Te(f(x)):—nfﬁfn}.
Then Fp < F; <+ <F,<---;and E = F,. Thus E Y is hyperfinite.

new
So without loss of generality, Y = @. Thus for each x € X and each n € w, 4, N [x]g is unbounded in both
directions. Hence we can define a finite Borel equivalence relation by

xF,y iff x=yvA,N[x,y]=20.
Then Fp CF; C---CF,C---and E = F,. Thus E is hyperfinite. -

new

Now we get some closure operations on the class of hyperfinite Borel equivalence relations.

— 4+18. Theorem
Let E, F be countable Borel equivalence relations on standard Borel spaces X, Y.
(a) If X =Y,and E C F with F hyperfinite, then E is hyperfinite (trivial).
(b) If F is hyperfinite and E <pg F, then E is hyperfinite (non-trivial).
(c) If E is hyperfinite and A C X is Borel, then E |4 is hyperfinite (trivial).
(d) If A is a complete Borel section for £ and E A is hyperfinite, then E is hyperfinite (non-trivial).
(e) If E and F are hyperfinite, then E X F on X x Y is hyperfinite (trivial)

Proof ...

(d) By Feldman—Moore Theorem (2 * 2), there exists a countable group G = {g, : n € w} and a Borel action
G ~ X such that £ = Eé( For each n € w, let n(x) be the least n € w such that g, - x € A. Let
E A =, e, Fn Where {F,, : n € w} is an increasing sequence of finite Borel equivalence relations.

Let E, be the finite Borel equivalence relation such that x E, y iff either x = y or n(x),n(y) < n and
8n(x) " X Fu gneyy - y. Clearly, E = |, ., En is hyperfinite.

(b) Let f : X — Y be a Borel reduction from E to F. Since f is countable-to-one, A = f"X is a Borel
subset of Y, and there exists a Borel inverse ¢ : A — X. By (c), F ['A is hyperfinite. Also, since g
is injective, it follows that B = g"A is Borel, and it is clearly a complete section, since each x € X is
mapped to something in A, which is taken to another representative by g. Since E | B = F | A, it follows
that E [ B is hyperfinite. By (d), E is also hyperfinite. —

12
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Recall Open Problem 4+ 13: if E = | J,,,, En is the union of hyperfinite Borel equivalence relations, is £ hyperfinite?
Consider a related idea using the domination order.
4-19. Definition

If f,g € NN then f <* giff f(n) < g(n) for all but finitely many n € N. Write f =* g iff f(n) = g(n) for
all but finitely many #, so that f =% giff f <* gand g <* f.

Note that =* is clearly a countable Borel equivalence relation, and it is easily checked that =*=p FEj,. Observe that
if {f, : n € N} € NN, then there exists a g € NN such that f,, <* g forall n € w. To see this, just define
g(l) = 1+ max,<¢ fn(0).

Observe also that if E is a countable Borel equivalence relation on a standard Borel space X, and ¢ : X — NN isa
Borel map, then there exists amap 6 : X — NN such that

« ifx E y, then 6(x) = 6(y);
* p(x) <*O(x) forall x € X.
Note that we can’t ensure that 8 is Borel unless E is smooth.
4-20. Theorem
There exists a Borel map ¢ : 2N — NN such that there doesn’t exist a Borel map 6 : 2N — NN satisfying
e x Eg y implies 8(x) = 6(y);
« ¢(x) <* O(x) forall x € 2N,

The proof of this will be delayed until the next section. Suppose we have this map ¢. When we look at 6, mapping
to the Baire space, we are sending Eq things to identical things. Since E, isn’t smooth, this shouldn’t be a Borel
reduction. So this map must have a huge kernel in the sense that we get a counter example to the second property. To
show this, we will use category. Why not use measure? Because it cannot work here.

We will make use of one of the only two theorems Simon knows from probability theory: the Borel-Cantelli Lemma
below.

— 4+21. Lemma (Borel-Cantelli)

Suppose (X, ) is a standard Borel probability space, and E, C X is a Borel subset for each n € N. If
Y neN M(Ep) < oo, then

w({x € X : x € E, for infinitely many n € N}) = 0.

— 4+22. Theorem

Let (X, 1) be a standard Borel probability space. Let ¢ : X — NN be any Borel map. Then there exists a fixed
h € NN such that

p({xeX ox)<*h}) =1

Proof ...
Foreachn € N, there exists an (n) € N suchthat u({x € X : ¢(x)(n) > h(n)}) < 2=+ _ By Borel-Cantelli
(4+21),
pwx e X tpx)<*h) =1

— 4+23. Definition
Let E be a countable Borel equivalence relation on a standard Borel space. Then E is Borel-Bounded iff for every

Borel map ¢ : X — NN, there exists a Borel homomorphism 6 : X — NN from E to =* such that p(x) <* 0(x)
forall x € X.

— 4+24. Theorem
If E is hyperfinite, then E is Borel-Bounded.

13
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Proof ...
Express E = |J,,c,, Fn as the union of a chain of finite Borel equivalence relations. Define 6 : X — NN by

0(x)(n) = max{e(y)(n) : y Fp x}.
Then 6 is a homomorphism from E to =*, and ¢(x)(n) < 6(x)(n) foralln € w =

4+25. Open Problem

Is every Borel-Bounded countable Borel equivalence relation hyperfinite?
Does there exist a non-Borel-Bounded, countable Borel equivalence relation?

Remark: assuming Martin’s Conjecture, =t isn’t Borel-Bounded'. In fact, it’s enough to show that if 6 : 2N — 2N jg
a Borel homomorphism from =t to Ej, then 6 sends a cone to a single E class.

Exercise 1

Suppose E and F are countable Borel equivalence relations. If £ <g F and F is Borel-Bounded, then FE is also
Borel-Bounded.

Section 5. Baire Category Methods

— 5+1. Definition
Let X be a Polish space.
* C C X is comeager iff there are dense open subsets D, forn < w such that (., Dn € C.

e M C X is meager iff X \ C is comeager.

Recall the following theorem.

—— 5+2. Theorem (Baire Category Theorem)

If C is a comeager subset of a Polish space, then C is dense in X .

Usually, we only require C to be non-empty.

— 5+3. Definition

Let X be a Polish space. Then A C X has the Baire property (BP) iff there exists an open U C X suchthat A A U
is meager.

Which sets have the Baire property? The following theorem tells us that we get the Borel sets together with the meager
sets, in the sense that the c-algebra generated by these has the Baire property.

— 5+4. Theorem

Let X be a Polish space and C be the set of subsets of X with the Baire property. Then C is the o-algebra generated
by the open sets and the meager sets.

—— 5+5. Corollary
If A C X is Borel, then A has the Baire property.

Using this and the following couple of results, it’s very easy to see that Ey isn’t smooth.

— 5+6. Theorem

Suppose X, Y are Polish and f : X — Y is Borel. Then there exists a comeager C C X such that f [C is
continuous.

iiMartin's Conjecture is that the only homomorphisms from =t to =r are the jumps on cones.

14
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Proof ...
Let {U, : n < w)} be an open basis for the toppology of Y. Since each f~!"U, is Borel, there exists an open
 such that M, = f~1"U, A V, is meager. Let C, = X \ M,,. Then C = (Mnew Cn is comeager. Also
f~1"U, N C =V, N C. But this is saying precisely that f |C is continuous. =

5+7. Proposition

Suppose that I' v X is a continuous action of a countable group I" on a Polish space X. If A C X is comeager,
then {x € X : T'" - x C A} is comeager.

Proof ..
Since I' ~ X is continuous, for each g € ', g7! 4 is also comeager. Hence B = ) gel g A is also comeager.
Ifx € B,thenx € g7 'Aforallg € . Andsog-x € Aforallg € T. .

We next give a category proof of the fact that id,n <p Ejy. In fact, we prove the following, stronger result sometimes
called “generic ergodicity” theorem.

5+8. Theorem (Generic Ergodicity Theorem)

If X is a Polish space and @ : 2N — X is a Borel homomorphism from Ej to idy, then there exists a comeager
C < 2N such that @ | C is a constant. In particular, id,n <g E.

Proof ..
For each n € w, let 7, : 2N — 2N be the Borel bijection defined by

T
(XO,"' axn—laxnaxn—&-l,"') s (Xo,"' s Xn—1,1 —Xn,xn+1,"').

Take I' = @),,c,, (7n). Then I' v 2N is continuous and the orbit equivalence relation is Eo. Also notice that for
all x € 2N, the orbit T" - x is dense in 2N

Suppose that @ : 2N — X is a Borel homomorphism from Ej to idy: Then there exists a comeager C C 2N
such that 0 }'C is continuous. Since I' v 2N s continuous, there exists a comeager D C C suchthatI'-x C C
forall x € D. So fix some x € D. Then

* fisconstantonI" - x.
e I'-xisdensein C.
* 6 is continuous on C.
Hence 6 [C is constant. .

5+9. Theorem

There exists a Borel map ¢ : 2N — NN such that there doesn’t exist a Borel map 6 : 2N — NN sych that
o Ifx Eg y then 8(x) = 0(y);
« ¢(x) <* (x) forall x € 2N,

Proof ...
We define ¢ : 2N — NN as follows. If x € 2N, then there exists A € N such that x = y4.

Case 1. If A is finite, let ¢(x) be the identically zero function.

Case 2. Otherwise let {a, : n € w} be the increasing enumeration of A. Then we define ¢(x)(n) = a,.

Claim 1
’:or eachh € NN, D) = {x € 2V : o(x) £* h} is comeager.

15
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Proof ...
Foreachm € w,
D! = {x 2N :3n = m(p(x)(n) > h(n))}
is clearly dense open. Hence Dy 2 (),,c, Df{l is comeager. —

Suppose such a map @ : 2N — NN exists, i.e. a Borel homomorphism from Eq to idyw~. Then there exists a
comeager C C 2N and a fixed &7 € NN such that (x) = h forall x € C. Also, D, N C is comeager; and so
there exists an x € Dy, N C. But then ¢(x) £* h = 6(x), a contradiction. =

The next target theorem is that category isn’t useful for anything else.

—— 5+10. Theorem (Third Target Theorem)

If E is a countable Borel equivalence relation on a Polish space X, then there exists a comeager E-invariant Borel
subset C C X such that E |'C is hyperfinite.

Fortunately, this is false using measure instead of category. To prove this, we will use the Kuratowski—Ulam theorem.

— 5+11. Definition

ith each A C X, we associate the property A(x) iff x € A, and we write V*x A(x) iff 4 is comeager. Here ‘V*’ is
sometimes known as a category quantifier.

In essence, the Kuratowski—Ulam theorem says that category quantifiers commute: V*x € XV*y € Y(A(x, y)) iff
V*y € YV*x € X(A(x, y)).

— 5+12. Theorem (Kuratowski—Ulam)
Suppose that X, Y are Polish and A € X x Y has the Baire property. Therefore
Ais comeager iff V*x € X(A, is comeager) iff V*y € Y(A” is comeager).

Despite looking rather unimportant, the usefullness of this theorem is immense.

— 5+13. Definition

Let E be a countable Borel equivalence relation on a Polish space X. Then a cascade is a sequence
X=828128228%2:-

of Borel complete sections for E together with Borel retractions f, : S, — Sy+1. (Here retraction means
JnISn+1 =ids,, ., and f,(x) E x forall x € S,.)

Given a cascade {S,, f, : n € w}, we can define a sequence of Borel equivalence relations E, by x E, y iff
fno fumr10...0 fo(x) = fpo fu—10...0 fo(y). Then each E, is smooth;and Egy C E; C---C E, C---C E.

neEw

5+14. Lemma
’7With the above hypothesis, if each f;, is finite-to-one, then E,, = | J,,c,, En is hyperfinite.

So the plan will be to construct a suitable cascade such that for most elements of the space, the union of these equivalence
relations is the whole space E.

Proof of Third Target Theorem (5 10) ...
Applying Theorem 3+ 6, let {g, : n € w} be a sequence of Borel bijections. g, : X — X with g2 = 1 such that
go = idy and x E y iff In(g,(x) = y). Also, fix some Borel linear ordering < of X. For each Borel subset
S € X,andeachn € o, let FnS be the Borel equivalence relation on S defined by

anSy iff x=yvg,(x)=y.
As involutions, this is symmetric. Here each FnS -class has at most 2 elements. Hence the set &, (.S) of <-minimal
elements of each Fns -class is also Borel. Also, if S is a complete section, so is ®,(.S).
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Let fns : S > &,(S) be the Borel map which sends each x € S to the <-minimal element of [x] FS- The
strategy for the rest of the proof is to define for each element of Baire space, there is a a corresponding cascade
that uses these ingredients, and then use Kuratowski—Ulam (5 ¢ 12).

For each o € NN, we define a cascade {S%, % : n € w} by
* S§§ = X;
* Sy = Pam(Sy); and
. fo= foig 8
Let {EY : n < w} be the corresponding sequence of finite Borel equivalence relations and let ES = | J,,c,, E5 <
E be the corresponding hyperfinite Borel equivalence relation. The theorem follows from the following series of
claims.

— Claim 1
There exists an @ € NN and a comeager E-invariant Borel C € X such that E }1C = EZ|C.

In fact, we prove the stronger claim below.
— Claim 2
V*a € NN Vx € X ([x]g = [x]g2).

By Kuratowski—Ulam (5 ¢ 12), it is enough to show the following claim instead.

Claim 3
’7\7’)6 e X V*a e NN ([x]g = [x]E2).

Proof ...
Fix some x € X. It is enough to show that for each y € [x]g,
A={ae NNy exgg = | Jxleg)

new

is dense open, since then the countable intersection is comeager.

Claim 4
’7A is open.
Proof ..
Suppose that & € A. Then there exists an n € w such that y € [x]ge. It follows that
Nogpns1 ={BeNN Bt l=atn+1}C A
is a neighborhood of o, and so A is indeed open. —

Claim 5
’: is dense.
Proof ...
Fix some basic open Ty where s € N”*1. Consider the “finite cascade” defined by
So, fo, S1, f1,+++ s Sus Jur Sn+1-
Where these are the functions determined by the initial values. Let x’ = f, o---0 fo(x) and y' =

fno---0 fo(y). Since x’ E y’, there exists a k € w such that g¢ (x') = y’. Let € N be such that
s Caanda(n + 1) = k. Then o € A. And so A is also dense. =
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Section 6. Measure theoretic methods

Question: suppose that G is a countable group and G » X is a Borel action on a standard Borel space. Does the
complexity of E g reflect the complexity of G?

To some extent, there is some truth here. For example, if G = Z, we can only get hyperfinite things. Unfortunately,
there is an easy counterexample. So let G be any countable group, and let G ~ G x [0, 1] be the Borel action

g - (h,r) = (gh,r). Then the Borel map (g, r) — (1, r) shows that EgX[O’I] is smooth.

So what is wrong with this, and how can we eliminate this kind of triviality? One issue with the above idea is that the
action is free, but also there is no invariant probability measure.

6+1. Proposition

Suppose G is a countable group and G ¥ X is a free Borel action on a standard Borel space X. If there exists a
G-invariant, Borel, probability measure p on X, then E é( isn’t smooth.

Proof ...

Suppose that Eé is smooth. Then there exists a Borel transversal T € X. Since G ¥ X is free, X = |_|geG g'"T.
Sol = deG w(g'T) = deG w(T), which is a contradiction.

6+2. Definition

Let G be countable and let X be a standard Borel G-space. A G-invariant probability measure p is ergodic iff
whenever A C X is a G-invariant Borel subset, then (4) = 1 or u(A4) = 0.

We have another characterization due to the following theorem. Note that f : X — Y is G-invariantiff f(g-x) = f(x)
forallx € X and g € G.
6-3. Theorem

If  is a G-invariant, Bore, probability measure, then the following are equivalent:
1. p is ergodic;

2. If Y is a standard Borel space, and f : X — Y is G-invariant, then there is a G-invariant Borel M C X
with (M) = 1 and such that f } M is constant.

Proof ...
(2) = (1). Suppose A € X is a G-invariant, Borel subset. Define f : X — 2 by f(x) = 1 iff x € A. Since

A is G-invariant, f is G-invariant. Hence there exists a G-invariant Borel M € X with u(M) = 1
such that /' | M is constant. So u(A) = 1 or u(A) = 0.

(1) = (2). Without loss of generality, Y = [0, 1], since we can expand to an uncountable space if necessary, and
it will be isomorphic to [0, 1]. Let Zo = [0, 1]. Suppose inductively that we have defined an interval

a, a—+1
Zn=[2n—_17w}

for some 0 < a, < 2"~ ! such that u(f~1"Z,) = 1. Let

_ 2a, 2a, +1 _ 2a, +1 2a, +2
Iny1 = ETRANET Jn+1 = T on .
Then f~1"I,4; and f~!"J,,, are G-invariant, Borel subsets. And so either u(f~'"I,,+1) = 1 or
w(f~1"Jy11) = 1. In the former case, let Z,, | = I, 1; in the latter, set Z,; = J,, 11, the closure
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of Jn+1.

Clearly, M = (e, / ~'"Zn is a G-invariant, Borel subset with (M) = 1, and such that f | M is
constant. -

Now we want something stronger than merely being ergodic.

— 6+4. Definition

Let G be a countable group, and let X be a standard Borel G-space. The action G ¥ X is uniquely ergodic iff
there is a unique G-invariant probability measure p on X .

Clearly, we should have the following.

— 6°+5. Theorem
If G ~ (X, u) is uniquely ergodic, then G "~ (X, ) is ergodic.

Proof ...

Suppose that G ~ (X, u) isn’t ergodic. We need to find two different probability measures. Then there exists a
Borel A C X suchthat 0 < pu(A4) < 1,and 0 < u(X \ A) < 1 with both 4 and X \ A G-invariant. Then we can
define G -invariant probability measures v; # v, by

_p¥nA4
n =T

_ p(Y N(X\ A)
R =T

— 6°+6. Example (Abstract Example)

Let K be a separable, compact group. Then there exists a unique probability measure p on K such that p is K-
invariant under the left-translation action of K v K; namely, the Haar measure. If I' < K is a countable, dense
subgroup, then I' ~» (K, ) is uniquely ergodic.

—— 6°+7. Example (Concrete Example)

Let K = [],e, Cn Where each C, = {0, 1} of order 2. Then K is compact and the Haar measure is the usual
uniform product probability measure. Let I' = @, ., Cn, which is a dense subgroup. Then E1£< = Ep and
I' » (K, u) is uniquely ergodic.

new

This then gives a theorem about E¢, which is a third proof that Eq isn’t smooth. In some sense, this states that the
kernel is large in terms of measure, whereas last time we proved that the kernel is large in terms of category.

— 6°+8. Theorem

Let  be the usual product measure on 2N, If f : 2N — 2N is a Borel homomorphism from Ej to id, , then there
exists an Eg-invariant Borel subset M C 2N with (M) = 1 such that f } M is constant.

We often want every infinite subgroup H < G to act ergodically. Here’s a non-example of this happening.
— 6°+9. Example (Non-example)

Let K = [],¢, Cn be as above. Let A = P, Cy and H = [, Cy,. Then H is A-invariant and pu(H) = %,
since it’s an index 2-subgroup.
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— 6+10. Definition
Let G be a countable group and let X be a standard Borel G-space with invariant probability measure p. Then
G ~ (X, ) is strongly mixing iff for any Borel subsets 4, B € X, and any sequence (g, : n € w) of distinct
elements of G, either u(B) = 0 or

n(gn"ANB)

TR

Note that if w(B) = 0 we still have lim, 0o £(g"A N B) = 0 = w(B) - £(A). Note further that the literature often
has “weakly mixing” in addition to “strongly mixing”, so one must be careful with which version is referred to if just
“mixing” is used.

With the above hypotheses, if H < G is an infinite subgroup, then H v (X, u) is also strongly mixing. It also follows
that if you’re strongly mixing, then you’re ergodic, just by taking A = B for a G-invariant A.

6+11. Theorem
’TfG ~ (X, p) is strongly mixing, then G ~~ (X, u) is ergodic.

Proof ..
Suppose A € X is Borel and G-invariant. Let G = {g, : n € w}. Thus
pw(A)? = lim p(g,"AN A) = lim u(A) = u(A).
n—00 n—oo
This implies p(a) is either O or 1. —.

As a convention, if G is countably infinite, then the uniform product probability measure on 2 is denoted by u.
Clearly G ~» (29, i) is measure-preserving. This is usually called the Bernoulli action.

6°12. Theorem
’7G ~ (29, u) is strongly mixing.

Proof ...
First suppose that there exist finite S, 7 € G and subsets ¥ C 25 , #¢ < 27 such that
A={fe20:f1Se¥F) B={fe20:f\Teci).

Suppose (g, : n € w) is a sequence of distinct elements of G. Since G ~ G is free, for all but finitely many
ne€w,g,(S)NT = 0; and so the events g, (A) and B are independent:

wu(gn"AN B)

—— o = j(gn"A) = pu(A).

1(B) "

Thus the limit lim, oo ((gn"A N B) = u(A)u(B). In general, if C C 29 is Borel, then for every & > 0, there
exists a finite S € G and an ¥ C 25 such that

p(CAaflfe2l:f1SeF)) <e
The result follows easily. .

— 6°+13. Definition
If G is countably infinite, then

)% ={x €29 : Vg e G \{lg}(g x # x)}
is the free part of G v 2¢. We define Eg = E(GZ)G.

Fortunately, we keep the probability measure around.

—— 6°+14. Proposition

1((2)%) = 1, where  is the uniform product probability measure on 26
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Proof ...
It is enough to show that for each 1 # g € G,
u@xe26:g.x=x)=0.
Let H = (g) be the subgroup generated by g. Then g - x = x iff x is constant on each coset Hz. The result
follows easily. =

Note that if H < G, then E <g Eg. To see this, we can define a Borel reduction x > x* by
" x(g) ifgeH
x*(g) = ,
0 otherwise.

Here’s a question: to what extent does the converse hold? The answer is that it doesn’t hold in general, since it’s
obviously false for hyperfinite things, but we will move to a setting where the it is almost true. In particular, we will
move to the world where we can apply Popa superrigidity, and in particular, groups with a normal, Kazhdan group.

— 6+15. Definition

A countable Borel equivalence relation £ on a standard Borel space X is free iff there is a free Borel action G & X
of a countable group such that E = EX.

For example, E¢ is clearly free.

— 6°+16. Definition
E is essentially free if there exists a free countably Borel equivalence relation F such that £ <p F.

For example, take (2)% LI {xo}, since we can just add a few elements to make sure the action on xy is free. A question
is now brought up: is everything essentially free? In particular, is E essentially free? This was answered by Simon
using an easy consequence of Popa Superrigidity. First some definitions.

— 6+17. Definition

Let E be a countable Borel equivalence relation on a standard Borel space X. A probability measure £ on X is
E-invariant if for some (equivalently every) Borel action G ~ X of a countable group such that E = EX, u is
G-invariant.

— 6+18. Definition

Suppose E, F are countable Borel equivalence relation on X, Y, and u is an E-invariant probability measure.
Then a Borel homomorphism f : X — Y from E to F is u-tivial iff there exists a Borel Z € X with u(Z) = 1
such that f sends Z to a single F'-class.

— 6+19. Definition
If G, H are countable groups, then a homomorphism 7 : G — H is a virtual embedding iff | ker | < Rg.

The following is an easy consequence of Popa Superrigidity.

— 6°+20. Theorem (Black Box)

Let S be any countable group and let G = SL3(Z) x S.
Let H be any countable group and let H ~ Y be a free Borel action on a standard Borel space Y.

Therefore, if there exists a j1-nontrivial Borel homomorphism from Eg to E ¥, then there exists a virtual embedding
from G to H.

Now we give a theorem that shows how we use this, as we are not yet prepared to prove it yet.

— 6°21. Theorem
If E is an essentially free, countable Borel equivalence relation, then there exists a countable G such that Eg £p E.

—— 6+22.  Corollary

E isn’t essentially free.
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In fact, this says that of the essentially free Borel equivalence relations, there isn’t a universal one. To prove Theorem
6+ 21, we will make use of two group-theoretic results.

— 6°+23. Theorem (B.H. Neumann)

There exist uncountably many finitely generated groups up to isomorphism.

—— 6°24. Proposition

If L is any group, then the free product L * Z has no nontrivial, finite, normal subgroups.

Proof of Theorem 6+21 ...

Without loss of generality, we can suppose that £ = E 1}:1 for some free Borel action H <~ Y. Since there are
uncountably many finitely generated groups. Up to isomorphism, there exists a finitely generated L such that L
doesn’t embed in H, since H has only countably many finitely generated subgroups. Let S = L % Z. Then S
has no nontrivial finite normal subgroups. Finally, let G = SL3(Z) x S.

Suppose f : (2)¢ — E I’; is a Borel reudction from Eg to EI{, = E. Then f is a u-nontrivial Borel homomor-
phism. Hence by Black Box (6 ¢ 20), there exists a virtual embedding 7 : G — H. Since ker & = 1, it follows
that S embeds in H; and hence L embeds in G, a contradiction. =

— 6°25. Theorem
There exist uncountably many (continuum) free, countably Borel equivalence relations up to Borel bireducibility.

In fact, we have a rich supply of non-essentially free ones.

— 6°26. Theorem
There exist uncountably many non-essentially-free countable Borel equivalence relations up to Borel bireducibility.

First we prove Theorem 6+25. What examples of essentially free things do we know? So far, Eg. One issue we
encounter is to make sure our coding S from Black Box (6 *20) doesn’t embed in SL3(Z). To proceed, we will make
use of the following theorem

6°+27. Theorem
’:L3 (Z) contains a torsion-free subgroup of finite index.

Proof ...
To quote a famous theorem, by Selberg’s theorem, every finitely generated, linear group over a field of charac-
teristic O contains a torsion-free subgroup of finite index. =

One last thing we require (which it just so happens is something we can prove) is the following.

6°28. Lemma
FH,K < G are any groups, then [K : KN H] < [G : H].

Proof ...

Let {t; : i € I} be coset representatives for K N H in K. It is enough to show that if i # j, then Ht; # H¢;.
Suppose Ht; = Ht;. Then there exist a,b € H such that at; = bt; and so t,-tj_l =a b € HN K. So that
(H N K)t; = (H N K)t;, a contradiction. =

Proof of Theorem 625 ...

Let [P be the set of primes. For each p € P, let A, = €P,,,, Cp be the direct sum of countably many copies of
the cyclic group C,, of order p.

ForeachC C P,letGe = SL3(Z)® @pec
enough to get uncountably many of these.

Ap. We will show that Eg,. <p Eg, iff C € D, which s certainly
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If C € D, then G¢ < Gp, andso Eg. < Eg,. Conversely, suppose Eg. <p Eg,. Then there exists a
virtual embedding (by Black Box (6« 20))

7 : SL3(Z) x @) 4, — SLa(2) x P 4.
peC qeD

To make sure the coding actually works, let N <0 SL3(Z) be a torsion-free subgroup of finite index, and let
F = SL3(Z)/ N, a certain finite group. Let

¢ :SLa(Z) x P A, > F x P 4,
qeD qgeD
be the canonical surjection. The kernel of this will be N, and so it will be torsion free. Fix some p € C, and

let B, = n"Ap < SL3(Z) x P ep Ag- Then there exists a possibly trivial finite subgroup N, < Ap such that
B, = A,/N, = A,. Also note that B, Nker ¢ is trivial, and hence E, = ¢"B, = A,. Finally, note that

[E,,:E,,m@Aq] < [Fx@Aq : @Aq] = |F| < Ro
geD geD qgeD
Thus E, N @ ep Ag = Ap. In particular, there is an element of order p, meaning p € D and thus C € D.

Now we want to show Theorem 6 ¢ 26. Doing this isn’t so simple as with Theorem 6  25. The proof of it makes use of
the following group theoretic concept and fact.
— 6°+29. Definition

The groups G, H are isomorphic up to finite kernels iff there exist finite normal subgroups N < G, M < H such
that G/N =~ H/M.

— 6+30. Theorem (Group Theoretic Fact)

There exists a Borel family {Sy : x € 2N} of finitely generated groups such that if G, = SL3(Z) x Sy, then for

all x # y,
(1) Gx, Gy are not isomorphic up to finite kernels; and

(if) Gx doesn’t virtually embed in G,.

(1) is only used in showing the non-essentially free part, and (ii) is only used in showing the Borel bireducibility part.

Proof of Theorem 6+ 26 ...

Using the G s from Group Theoretic Fact (6 *30), for each Borel subset A C N let B4 = |_|xe 4 Eg, bethe
smooth disjoint union of {Eg, : x € A}, i.e. E4 is the countable Borel equivalence relation on the standard
Borel space X4 = {(x, f) : x € A, f € (2)%~} defined by (x, f) E4 (x, f)iff x =x" A f Eg, f'.

Claim 1
’Tf A € 2N is an uncountable Borel subset, then E4 isn’t essentially free.

Proof ...

Suppose E4 <g E 11-/17 where G ¥ Y is a free Borel action of a countable group H. Then for each x € 4,
Eg, <s E};, just by restricting to each piece. This allows us to use Black Box (6+20), and so there
exists a virtual embedding 7 : G, — H. Since A4 is uncountable, and each Gy is finitely generated (H
has only countably many finitely generated subgroups), there exist x # y such that 7, (Gx) = 7,(Gy),
contradicting that Gy, G, aren’t isomorphic up to finite kernels. =

Claim 2
’7EA <g Epiff A C B.
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Proof ...
Clearly if A € B then E4 <g Ep. So suppose E4 <p Ep and there exists an x € A\ B. Then there exists
a Borel reduction f : (2)¢* — |_|ye B(Z)Gy from Eg, to Ep. Since G, v ((2)%~, iy is ergodic, there
exists Z C (2)C~ with u,(Z) = 1 such that f"Z C (2)° for some fixed y € B. But then f }Z yields a
i x-nontrivial Borel homomorphism from Eg, to Eg, . (Everything outside of Z, we can send to a single
element.) And so by Black Box (6 *20), G virtually embeds in G, which is a contradiction =

Finally we sketch the proof of Group Theoretic Fact (6 ¢ 30).

Proof sketch of Group Theoretic Fact (6 +30) ...

— 6+31. Definition
An infinite group G is quasi-finite iff every proper subgroup of G is finite.

—— 6+32. Theorem (Ol'shanskii)

Let & be the standard Borel space of strictly increasing sequences of primes x = (p, : n € w) such
that po > 107°. Then there exixts a Borel family {7y : x €} of 2-generator groups such that for each
X ={pn:ncw)

» T, contains a cyclic subgroup of order p, for eachn € w.

+ Every proper subgroup of T} is cyclic of order p, for some n € w.

» T, is simple.

Provint the above theorem takes a huge amount of work, as Ol’shanskii’s book shows. Using this result, though,
Group Theoretic Fact (6 ¢ 30) follows from the following.
6+33. Proposition

For each x € P, let G, = SL3(Z) x Ty. Then the Borel family {G, : x € #} satisfies that if x # y, then
* Gy, Gy are not isomorphic up to finite kernels; and

* Gy doesn’t virtually embed in G, .

Proof ...
Since each T is simple and SL3(7Z) has no nontrivial, finite, normal subgroups; it follows that G, has no
nontrivial, finite, normal subgroups. Thus it is enough to show that if x # y, then G, doesn’t embed in G,.
Suppose that & : Gy — Gy is an embedding. Certainly & isn’t an isomorphism, since we have different
primes. In particular, "Gy is an infinite, proper subgroup of Gy, which contradicts Ol’shanskii (6 * 32), as
they are all quasi-finite. =

§6A. The Black Box

Now we should attempt to understand why Black Box (6« 20) is true. To do this, we will need to introduce cocycles.
Until further notice, let G "~ (X, ) be a Borel action of a countable group G on a standard Borel space X with
G-invariant probability measure p.

6A-1. Definition

If H is a countable group, then a Borel map « : G x X — H is a cocycle iff for all g, h € G, a(hg,x) =
a(h, g - x)a(g, x) for p-almost every x € X.

These are somewhat disgusting, but the theme will be to make these less disgusting, and Popa says you can.

To explain where these come from, cocycles arise naturally as follows. Suppose H ~~ Y is a free Borel action of a
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countable group H and that f : X — Y is a Borel homomorphism from E g to EII; Then we can define a Borel
cocyclea : G x X — H by

a(g,x) = theunique h € H suchthath- f(x) = f(g-x).
Since H ~ Y is free, this is how we get uniqueness, as per the following diagram: f(x) must be in the same orbit as
f(gx) viaa(g, x). f(gx) must be in the same orbit as f(hgx) iva a(h, gx). And so f(x) must be in the same orbit
as f(hgx) viaa(hg, x).

°X « f(x)
g (g, x)
hg *8-X a(hg, x) « f(g-x)
h a(h,g-x
*hg-x “ f(hg - x)
X Y

We are lucky that the following holds. If (g, x) = «(g) depends only on the g variable, then the cocycle identity
reduces to a(hg) = a(h)a(g), meaning « : G — H is a group homomorphism. Also, in this case using the same
setup as the above example, if we look at (G, X) — (H,Y) using @ and f, we get that a(g) f(x) = f(gx)isa
homomorphism of permutation groups. So if we can take a function and perturb it to get a function of one variable,
then we are in good shape: not only is there a group homomorphism in play, but there’s one that respects the group
actions. So we’ll try to eliminate variables.

Quesetion: can we “adjust” f : X — Y so that « becomes a group homomorphism? (And what does this “adjusting”
mean?)

Suppose that b : X — H is a Borel map. Then we can define f/: X — Y by f'(x) = b(x) f(x) € Hf (x). Then f’
is also a Borel homomorphism from E g to £ }_’I (we haven’t changed the orbit). If f is a Borel reduction, then so is
f'. Similarly, if f is u-nontrivial, then sois f'. Let 8 : G x X — H be the Borel cocycle corresponding to /.

/(x) b(x) f1(x)
o X
lg a(g. x) B(g.x)
Y b(g - x) Y
°g-X
f(g-x) J'(g-x)
X Y

Thus B(g.x) = b(gx)a(g, x)b(x)~!. This motivates the following definition.

6A+2. Definition

The cocycles o, B : G x X — H are equivalent, written o ~ B, iff there exists a borel b : X — H such that for
all g € G,

B(g.x) = b(gx)a(g, x)b(x)~!

for p-almost every x € X.
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—— 6A+3. Theorem (Popa Superrigidity)

Let I' be a countable infinite Kazhdan group (defined later) and let G, K be countable groups suchthatI' << G < K.
Therefore, If H is any countable group, then every Borel cocycle o : G x (2)K — H is equivalent to a group
homomorphism from G into H.

In most applications, G = K, and so we have a cocycle o : G x (2)¢ — H and the corresponding orbit equivalence
relation is Eg. In many (not all, e.g. Black Box (6 ¢ 20)) applications, I' = G as well.

— 6A-4. Definition
Let I" be a countable group. Then I is a Kazhdan group iff there exists a finite subset F C I" and ¢ > 0 such that
the following holds.

(*) If & : T — U(JC) is any unitary representation such that there is a unit vector v € # with ||z (y)v—v| <&
forally € F,

then there exists a '-invariant unit vector v € J.

Note that every countable Kazhdan group is finitely generated, and we can let F' be any finitely generating set. Fur-
thermore, any homomorphic image of a Kazhdan group is Kazhdan.

— 6A-+5. Example
SL,(Z) is Kazhdan for all n > 3.

Recall Black Box (6 ¢ 20), restated below. We now are in a position to prove it.

— 6A+6. Theorem (The Black Box)

Let S be any countable group and let G = SL3(Z) x S. Let H be any countable group and let H ~~ Y be a fiee
Borel action. If there exists a p-nontrivial Borem homomorphism f : X — Y from Eg to E}_;, then there exists
a virtual embedding 7 : G — H.

Proof ...

Suppose that f : X — Y is a p-nontrivial Borel homomorphism from Eg to E }_} Then we can define a Borel
cocycle @ : G x (2)¢ — H by taking a(g, x) to be the unique # € H such that h1f(x) = f(hx). By Popa
Superrigidity (6 A «3), there exists a Borel map b : (2)¢ — H, a group homomorphism ¢ : G — H and a
subset X C (2)¢ with u(X) = 1 such that forall g € G, ¢(g) = b(gx)a(g, x)b(x)"! forall x € X.

Solet f/: X — Y be the borel map f’'(x) = b(x) f(x). Then f’ is also a u-nontrivial Borel homomorphism
from Eg to E}; Also forallg € G and x € X,

f'(gx) = b(gx) f(gx) = b(gx)a(g, x) f(x) = b(gx)a(g, x)b(x)™" f'(x) = ¢(g) f(x). **)
To see that ¢ is a virtual embedding, suppose that N = ker ¢ is infinite. By (**), forall g € N and x € X,
f'(gx) = f'(x). Thus f' : X — Y is N-invariant. Since G ¥ (X, u) is strongly mixing, N & (X, u) is
ergodic; and so there exists a Z C X with u(Z) = 1 such that f’ sends Z to a single point yo € Y. But then f
sends Z into the single E 1{1 class containing y¢ (we’ve only adjusted within the same class), which contradicts
the fact that f is p-nontrivial. =

The next application uses the following definition.

6A-+7. Definition

Let E be a Borel equivalence relation on a standard Borel space X andlet1 <n < w. ThennE = E & --- D E
(n times) is the Borel equivalence relation on X x n defined by

(i,x)nE (j,y) iff i=jAxEYy

Clearly nE <g mE for n < m. But it’s difficult to show that £ = 1 E <g 2F is possible.
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6A-8. Theorem
There exists a countable Borel equivalence relation £ such that

E<BE@E<BE®E®E<B~~<BnE<B-~<Ba)E.

Proof ...
We require two more facts.
Fact 1a. SL3(Z) has no nontrivial, finite, normal subgroups.

Fact 1b. If w : SL3(Z) — SL3(Z) is an injective homomorphism, then 7 is surjective; i.e. SL3(Z) is coHopfian.
As a corollary, if w : SL3(Z) — SL3(Z) is a virtual embedding, then 7 is an automorphism.

Fact 2. Suppose G is a countable group and (X, u) is a standard Borel G-space with invariant probability
measure j. If p is ergodic, then there exists a G-invariant, Borel subset Xy € X with u(Xo) = 1 such
that G ¥ X is uniquely ergodic (with unique invariant probability measure u [ Xo).

Solet G = SL3(Z) and let X € (2)¢ be a G-invariant Borel subset with ;(X) = 1 such that G ~ (X, i)
is uniquely ergodic. Let £ = E g . Thenclearly E <g E @ E <g ---. So we want to show that there are no
reductions holding in the opposite direction.

Claim 1
’Tf f X — X is a u-nontrivial Borel homomorphism from E to E, then u(G - f"X) = 1.

Assuming the claim, suppose ¢ : X x (n + 1) — X x n is a Borel reduction from (n + 1)E to nE. For each
0<i<mnletX; =X x{i};andforeach0 < j < n,letgp; = ¢ 'X;. Since G ¥ (X, u) ergodically, and
each is isomorphic to (X, u), foreach 0 < j < n, there exists 0 < k; < n —1and Z; C X;; with measure
pu(Zj) = 1 such that 9,"Z;j < Xg;. By the claim, u(G - f"Z;) = 1.

There exist by the pigeon-hole principle i # j with k; = k;. But then

/L(G . f”Zi naG- f"Zj) =1,
andso G- f"Z; NG - f"Z; # §, which is a contradiction: elements which are non-equivalent going into the
same class. -

So all that remains to show is the claim. To do this, we make use of some basic observations in measure theory.

— 6A+9. Observation

If (X, u) is a standard Borel probability space and f : X — Y is a Borel map, then we can define a probability
measure v = f  u defined by v(4) = (/1" 4).

— 6A-+10. Observation

With the above hypotheses, suppose G ¥ (X, u) is a measure-preserving Borel action, H ¥ Y is a Borel action
and ¢ : G — H is a group homomorphism such that ¢(g) f(x) = f(gx). Thenv = f * u is ¢(G)-invariant.

Proof ..
Let AC Y beBoreland g € G. Let B = f~1"A. Then f(gB) = ¢(g) f(B) = ¢(g)A. Hence v(p(g)A) =
1(gB). Since u is G-invariant, u(gB) = w(B) = v(A). =

Using these observations with Popa Superrigidity (6 A « 3) gives this result easily.

6A-11. Result

With X, G, and E as in the proof of Theorem 6 A+ 8, if f : X — X is a u-nontrivial Borel homomorphism from
E to E,then u(G - f"X) = 1.
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Proof ...

Suppose f : X — X is a pu-nontrivial Borel homomorphism from E to E. Then we can define a Borel cocycle
a: G x X — G by taking a(g, x) to be the unique 2 € G such that 2 f(x) = f(gx). Now we want to adjust
this to become a homomorphism. Since G is Kazhdan, by Popa Superrigidity (6 A «3), there exists a Borel map
b : X — G, a group homomorphism ¢ : G — G, and a Borel subset Z C Z with u(Z) = 1 such that—letting
f'(x) = b(x)f(x)—forallg € G,and x € Z, f'(gx) = ¢(g) f'(x) (so we are unravelling the cocyle to get
the homomorphism). Furthermore, we can suppose that Z is G-invariant (otherwise we take the intersection of
all of the translates). Note that G ¥ (Z, ) is (still) strongly mixing.

Claim 1
’To is a virtual embedding.

Proof ...
Suppose N = kerg is infinite. Since G ¥ (Z, ) is strongly mixing, N ~ (Z, u) is ergodic. Since
f':Z — X is N-invariant, it follows that f” is u-almost everywhere constant. But this means p-almost
every x € Z is sent by f to a single E-class, a contradiction with p-nontriviality. —

Thus ¢ : G — G is an automorphism. Let v = f’ % u be the probability measure on X defined by v(4) =
M(f/—l |YA).

Since f'(gx) = ¢(g)f'(x), it follows that v is ¢(G)-invariant. But ¢(G) = G, so v is G-invariant. Since
G ~ (X, ) is uniquely ergodic, it follows that v = p. Thus u(f'"(Z)) = v(f'"Z) which, by definition of the
push-forward, is just u(Z) = 1. Since f'"Z € G - f"X, we have that u(G - f(x)) = 1. =

§6B. Weak Borel reductions

6B-1. Definition

Suppose that E, F' are countable Borel equivalence relations on X, Y. Then E is weakly Borel reducible to F,
written £ <} F, iff there exists a countable-to-one Borel homomorphism f : X — Y from E to F.

We remark the following about this definition.
1. If f is a Borel reduction, then f is a weak Borel reduction.
2. IfE < E'and E’ <] E”, then E <§ E”.
3. If E C F are countable Borel equivalence relations on X, then idy is a weak Borel reduction from E to F'.
In essence, this is all that weakly Borel reductions are: Borel maps with inclusions.
6B+2. Theorem
If E, F are countable Borel equivalence relations on X, Y, then the following are equivalent:
() E <g F;
(i) There exists a countable Borel equivalence relationR 2 E on X such that R <g F.

Proof ...
For (ii) implies (i), we have that £ <} R and R <g F. Hence E <J F. For the other direction, suppose
f : X — Y is a weak Borel reduction from E to F. Let R = f~!'(F). Then R 2 E is a countable Borel
equivalence relation and £ is a Borel reduction from R to F. =

So we explore the connection between <j and <g.

6B-+3. Definition

A countable Borel equivalence relation E is weakly smooth iff there is a smooth, countable, Borel F such that
E < F.

We clearly have that all smooth Borel equivalence relations are weakly smooth, but we also have the reverse.
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6B+4. Theorem
’7A countable Borel equivalence relation E is smooth iff it is weakly smooth.

Proof ..

Let £ be weakly smooth on X, and let ' be a smooth countable Borel equivalence relation such that £ <y F.
Then there exists a countable Borel R O E on X such that R <g F. Thus R is smooth.

Hence there exists a Borel transversal 7 for R. By Feldman—Moore Theorem (2 ¢2), there exists a countable
group G = {g, : n € w} and a Borel actionG 3 X such that R = Eé( . Hence we can define a Borel selector
s:X — X for E by s(x) = g, -t where T N [x]g = {¢t} and n is minimal such that g, -t E x.

Thus E has a selector and so is also smooth. —

— 6B-+5. Definition

A countable Borel equivalence relation E is weakly hyperfinite iff there is a hyperfinite, countable, Borel F such
that £ <§ F.

Again, we have the same characterization as before.

— 6B+6. Theorem
If E is a weakly hyperfinite Borel equivalence relation on X, then E is hyperfinite.

Proof ...
Let F be a hyperfinite, Borel equivalence relation such that £ <g F'. Then there exists a countable Borel R © E
on X such that R <g F. Hence R is hyperfinite, and thus E is too. =

So for idy, there’s no difference between <g and <}. Similarly, there’s no difference for Ej.

6B+<7. Theorem

A countable Borel equivalence relation E is weakly universal iff for every countable Borel equivalence relation F,
F <} E;equivalently Eoo < E.

This yields to the following conjecture from 2001.

6B-8. Open Problem (Hjorth's Conjecture)
’7Every weakly universal countable Borel equivalence relation is universal.

After this, we arise at Thomas’ question in the early 2000s: do there exist countable Borel equivalence relations £ C F
such that E &g F? It turns out that there are.

— 6B+9. Theorem
There exist countable Borel equivalence relations £, F on a standard Borel X such that £ C F and E &g F.

Hence <g and <} are in fact distinct notions. In proving this, as usual, the point is to find/Google suitable “big guns”.

— 6B+10. Theorem

Suppose that G is a proper subgroup of finite index in SL3(Z). Therefore,
1. G is a Kazhdan group.

2. G has no nontrivial, finite normal subgroups.
3. SL3(Z) does not embed in G.

— 6B+11. Theorem

Suppose H v (X, ) is a strongly mixing, Borel action on a standard Borel probability space. Then there exists
an H-invariant Borel subset Xo € X with u(Xo) = 1 such that the action of every infinite, finitely generated
subgroup of H is uniquely ergodic.
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Proof of Theorem 6 B+ 9 ...

Let S = SL3(Z) and let T = ker ¢ where ¢ : SL3(Z) — SL3(IF;) acts surjectively and where F5 is the field
with 7 elements (the ‘7’ is unimportant, we just want a finite index). Then 1 < [S : T] < Ry. It follows that T is
also finitely generated. Note that T is also a Kazhdan group.

Let X C (2)5 be an S-invariant Borel subset with ;(X) = 1 such that the action of every infinite, finitely
generated subgroup of S on X is uniquely ergodic. Let E & F be the orbit equivalence relations of 7 <3 X and
S ~ X. We will show that £ £ F.

Suppose that f : X — X is a Borel reduction from E to F'. Then we can define a Borel cocycleo : T x X — §
by taking «(¢, x) to be the unique s € S such that s f(x) = f(tx). By Popa Superrigidity (6 A+3),since T C S
is Kazhdan, after deleting p-null subset and adjusting f if necessary, we can suppose that o : T — S is a group
homomorphism.

Claim 1
’705: T — S is an embedding.

Proof ...
Suppose not. Since [SL3(Z) : T] < Rg, T has non non-trivial, finite, normal subgroups. Thus N = ker« is
infinite. Since S ~ ((2)5, 1) is strongly mixing, N ~ (X, u) is ergodic. But then the N -invariant Borel
map f : X — X is u-almost everywhere constant, contradicting that we have a Borel reduction. —

Also, since T % S, it follows that «" T is a proper subgroup of S. Since the actions of S, T on (X, ) are free and
a(t)f(x) = f(tx) fort € T, x € X, it follows that f : X — X is an injection. Thus we have an embedding of

. o, f . . .
permutation groups: (7, X) — (S, X). We more or less want f to be surjective, and to do this, we use unique

ergodicity.

Hence we can define an «"7T -invariant probability measure v = f * u on X by v(4) = u(f~1"A). Since
a"T is finitely generated and infinite, "7 ~ (X, i) is uniquely ergodic. Thus v = u and hence u(f"X) =
v(f"X) = u(f~1"(f"X)) = u(X) = 1. So the map is onto.

As a proper subgroup of S, lets € S \ «"T. Then u(f"X Ns(f"X)) = 1. Hence there exist x, y € X such
that f(x) = sf(y) € f"X Ns(f"X). Thus f(x) F f(y)andso x E y. Hence there exists at € T such that
x = ty. Itfollows that a(¢) £ () = f(ty) = f(x) = sf(y). Butthen s~ 'a(z) f(y) = f(y), which contradicts
the fact that S ~ X is free. -

So that was the last consequence of Popa Superrigidity (6 A « 3) we will look at.
6B-12. Theorem (Miller)

If E is a countable, Borel equivalence relation on a standard Borel space X, then the following are equivalent.
(i) There is a universal countable Borel F on X such that F C E.

(i) E is weakly universal.

Proof ...
LShowing (1) implying (ii) is easy, but (ii) implying (i) is very technical and never used. .

6B+13. Corollary

’:T is weakly universal.

Proof ...
Let F = (a, b) be the free group on two generators. Then E, is the orbit equivalence relation of the shift action
F, ~ 22, We can identify the left translation action F, ~~ [F, with the action I' » N of a suitable group of
recursive permutations. With this identification, Es, C =r. —
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For later use, we record the following.

6B+14. Theorem
’I‘ E is a weakly universal, countable Borel equivalence relation, then E isn’t essentially free.

Proof ...

Otherwise, we can suppose that £ = FE }; for some free Borel action H ~» Y. But then there exists a countable
G such that there’s no p-nontrivial Borel homomorphism from Eg to E = E }; And in this case, Eg £} E.

—— 6B+15. Open Problem

Is =1 countable universal?

For a more vague open problem, we have the following.

—— 6B+16. Open Problem

Is there a “natural” action I' » 2N of a countable group such that EI%N is =1?

We next try to develop an analog of ergodicity for =r.

Section 7. Martin's Measure

Recall the following definition.

7+1. Definition
’:or each r € 2N, the corresponding cone is C = {s € 2N : r <r s).

Note that if {C,, : n € w} is a countable set of cones, then ﬂn<w C,, contains a cone. The following can be regarded
as the analogue of ergodicity for =7. We have the following theorem due to Martin.

7+2. Theorem (Martin's Theorem)
’I‘X C 2N is a =p-invariant Borel subset, then either X contains a cone, or 2N \ X contains a cone.

Asaremark, X is =p-invariant iff whenever y =t x € X, then y € X. Before we prove this (from Borel determinacy),
we state a few corollaries.

7+3. Corollary
F(p : 2N — 2N s a =q-invariant Borel map, then there exists a cone C C 2N such that ¢ }C is a constant map.

Proof ..
For each n € w, there exists an &, € {0, 1} such that X, = {x € 2% : ¢(x), = &,} contains a cone C,,. Then
C = (,eq Cn contains a cone and ¢ | C is a constant function. —

7+4. Corollary

If X € 2N is a =q-invariant Borel subset, then the following are equivalent.
1. X contains a cone.

2. X is a <p-cofinal.

Proof ...
Ul) implies (2) obviously. For (2) implies (1), clearly 2N \ X cannot contain a cone. .
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Proof of Martin's Theorem (7+2) ...

Suppose X is a =r-invariant Borel subset of 2N. Consider the 2 player game Gy where I wins iff (s, 1 n € w) €
X (here I plays s2, € {0, 1}, and I plays s2,+ € {0, 1} forn < w). Suppose, for example, that I has a winning
strategy o : 2<N — 2. onsider the cone C = {t € 2N : o <r t}. We claim that C C X.

Lett = (t, : n < w) € C. Consider the play of Gy, where
* Il plays s1, 53, 85, -+, where t = (2541 : 11 < ®);
* T uses o and plays s¢, 52, - -

Then s = (s, : n € w) € X as o is a winning strategy. Clearly ¢ <t 5. Also, since 0 <r ¢, s <r t. Thus
t<rseX,andsot € X. —

We will explore some consequences of Martin’s Conjecture (MC).

7+5. Open Problem (Martin's Conjecture)

If f: 2N 5 2Z s a Borel homomorphism from =t to =r, then exactly one of the following holds:
1. There exists a cone C C 2N such that  maps C into a single =r-class.

2. There exists a cone C € 2N such that x <t f(x) forall x € C.

There is a stronger version (namely, the actual version), where (2) is replaced by

2. There exists a cone C € 2N and a countable @ < w; such that f(x) = x@ forall x € C, where x® is the
ath Turing jumnp.

Since the 1980s, there’s been a single instance of progress on MC. Namely, the following theorem, proven some time
in the 80s.

7+6. Theorem (Slaman-Steel)

Suppose that f : 2N — 2N is a Borel homomorphism from =t to =r. If there exists a C € 2N such that
f(x) <t x forall x € C, then there exists a cone D C C such that f sends D to a single =r-class.

Combining Martin’s Theorem (7 »2) and Slaman—Steel (7+6), if f : 2N — 2N is a counterexample to MC, then there
exists a cone C such that f(x) and x aren’t <p-comparable for all x € C.

— 7+7. Theorem
(MC) If £ : 2N — 2N is a Borel homomorphism from =t to =r, then exactly one of the following holds:
i. There exists a cone C such that f maps C to a single =p-class.

ii. There exists a cone C such that f }C is a weak Borel reduction from =1 | C to =r. Furthermore, if D € 2N
is any cone, then [ /" D]=, := U eplf(d)]=, (the saturation of f) contains a cone.

—— 7°+8. Corollary

MO =r<p=r@=r<g=rP=r@®=r<p- -

Proof of Theorem 77 ...

Suppose that (i) fails. By MC, there exists a cone C such that x <g f(x) forall x € C. Clearly f |C is countable
to one (since there are only countably many predecessors to any turing degree). Hence f [C is a weak Borel
reduction from =1 | C to =r.

Now we let D be any cone, and let Dy = C N D. Since f ['C is countable to one, it follows that "D is Borel.
Hence [ f"Do]=, is also Borel. Since [f"Dy]=, is a =r-invariant, <r-confinal, Borel subset of 21N, Martin’s
Theorem (7 2) implies that [ /" Dy]=, contains a cone. .

As a matter of notation, for x, y € 2N, then x @ y is the usual recursive join: x is placed on the evens while y is placed
on the odds.
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7+9. Corollary

(MC)IfA C 2N i a =r-invariant, Borel subset, then the following are equivalent.
1. =1 A4 is weakly universal.

2. A contains a cone.

Proof ...

For (ii) — (i), suppose that A contians the cone C = {r € 2N : z <r r}. We want to show that this is weakly
universal. We can define an injective, weak Borel reduction from =t to =7 A by x > x & z.

For the other direction, suppose that =t [ A is weakly universal. Let f : 2N — A be a weak Borel reduction
from =t to =1 P 4. By Theorem 7+ 7, [ f"2N]=, C 4 contains a cone. =

Remark: there are currently no naturally occurring Borel sets of Turing degrees D for which it is known that =1 | D
isn’t weakly universal. In particular, it is not known when D is the set of minimal degrees.
7+10. Definition

Let E be a countable Borel equivalence relation on a standard Borel space X . Then =t is E-m-ergodic iff for every
Borel homomorphism f : 2N — X from =t to E, there exists a cone C such that f maps C to a single E-class.

So by Martin’s Theorem (7  2), =t is id,~ -m-ergodic. One can also see that if £ <g F and =t is F'-m-ergodic, then
=7 is E-m-ergodic.

—— 7°+11. Open Problem

Is =1 E¢-m-ergodic?

But assuming MC, we understand everything.

— 7+12. Theorem

(MC) If E is a countable Borel equivalence relation, then exactly one of the following holds:
a. E is weakly universal.

b. =1 is E-m-ergodic.

Proof ..
If E is weakly universal, then there exists a weak reduction from =t to E; and so = isn’t E-m-ergodic. So (a)
and (b) are mutually exclusive.

So it suffices to show that if =t isn’t E-m-ergodic, then E is weakly universal. So suppose the Borel map
f 2N — X witnesses the failure of (b): a nontrivial, Borel homomorphism from =1 to E. Since =7 is weakly
universal, there exists a weak Borel reduction g : X — 2N from E to =r. Leth = g o f. Then h is a Borel
homomorphism from = to =r.

Suppose there exists a cone C C 2N such that 4 sends C to a single = class, say [x]=,. Then f sends a cone
to the countable preimage of a single class: f maps C into the countable set ¥ = g~ !"[x]=,. We’d like to have
the inverse image of one of the points is large, but this follows from the fact that there must be some y € Y with
f~1(y) as <r-cofinal. By Martin’s Theorem (7 *2), it follows that [ f ~!(y)]=, contains a cone D. But then f
maps D into [y]g, a contradiction.

It follows that there exists a cone C such that 4 | C is countable to one. Thus f [C is countable to one, and f |C
is a weak Borel reduction from =1 ['C to E. Since =1 [C is weakly universal, E is weakly universal. =

Finally, we give two striking applications of MC, which don’t mention =t. Recall Definition 4«23, that a Borel
equivalence relation £ on X is Borel-Bounded iff every Borel ¢ : X — NN has a Borel homomorphism 6 : X — NZ
from E to =* (eventual equality) which dominates ¢ for all x: ¢(x) <* O(x) forall x € X.

Also recall Open Problem 4 25, where it’s an open problem whether there exist any countable Borel equivalence
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relations that are not Borel-Bounded. MC answers the open problem by saying that any weakly universal one isn’t
Borel-Bounded.

7+13. Theorem
HAC) If E is weakly universal, then E is not Borel-Bounded.

Note that even assuming MC, nothing is known when Ey <g E isn’t weakly universal. The theorem, however, only

uses the fact that =t is Ey-m-ergodic under MC. So we’re not even using the full power of MC. We will first prove

the following special case.

— 7+14. Theorem
(MC) = isn’t Borel-Bounded.

— 7+15. Lemma
=" isn’t weakly universal.

Proof ...
It is easily seen that =* is Borel bireducible with Ey. Since Ey is free, E¢ isn’t weakly niversal. -

Proof of Theorem 7+ 14 ...

Identifying each r € 2N with the corresponding subset of N, let ¢ : 2N — 2N be the Borel map such that
« if r N 2N is infinite, then ¢(7) is the strictly increasing enumeration of » N 2N;
* otherwise ¢(r) is the identically zero function.

Now we claim the following.

Claim 1

For each i € NN, the =q-invariant Borel set S, = {r € 2N : 35 € 2N (s = r A1 < ¢(s))} contains a
cone.

Proof ...
First fix a strictly increasing e € NZ such that 1 < e. Now suppose r € 2% satisfies ¢ <r r. Consider
s C N defined by
s ={2e(n):neN}U{2L+1:Ler}.
Then clearly s =1 r,and h < e < ¢(s). =

Finally, suppose that # : 2N — NN is a Borel homomorphism from =t to =* such that ¢(s) <* 6(s) for all
s € 2N, Since =* isn’t weakly universal, =t is —*-m-ergodic, and so there exists a cone C such that  maps C
to a single =*-class, say, [i]=*. But this is a problem, because then ¢(s) <* h foralls € C andso C NSy, = 4,
which is a contradiction. =

To see that every weakly universal E isn’t Borel-Bounded from MC, we we prove the following lemma.

7+16. Lemma

Suppose E, F are countable Borel equivalence relations, and that £ is Borel-Bounded. Therefore,
(1) If F <g E, then F is Borel-Bounded.

(i) If F C E, then F is Borel-Bounded.

Proof ..

For (ii), suppose that F C E are equivalence relations on X. Let ¢ : X — NN be any Borel map. Therefore
there exists a Borel homomorphism 6 : X — N from E to =* such that ¢(x) <* 0(x) forall x € X. So 6 is
also a Borel homomorphism from F to =*.

For (i), suppose f : X — Y is a Borel reduction from F to E. Then Z = im f is a Borel subset of Y and there
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exists a Borelmap g : Z — X suchthat f o g =id | Z.

Suppose that ¢ : X — NN is Borel. Ideally, we’l like to consider the function g o ¢ (and 0 elsewhere on Y'), but
this won’t work. Let ' = {y, : n € w} be a countable group with a Borel action I' v X such that £ I)‘( = F by
Feldman-Moore Theorem (2+2). Let ¢ : ¥ — NN be the Borel map defined by

5 _ Jmax{p(yig(2)):i <n} ifzeZ
v = {O otherwise.

And now we just check that this works. Let 6 :Y — NN be a Borel homomorphism from E to =* such that
@(z) <* O(z) forall z € Y (since E is Borel-Bounded). Define 6 : X — NZ by f(x) = (A o f)(x). Clearly 0
is a Borel homomorphism from F to =*. Now we just check domination.

Fix some x € X and let z = f(x) € Z. Then there exists an n € w such that x = y,,g(z). So if m satisfies
e m > n;and
- m = max{l: §(z)(0) > 6()(O)};

then

P(x)(m) = @(yng(2))(m) < (2)(m) < O(z)(m) = H(f(x))(m) = O(x)(m).
Thus ¢(x) <* O(x) forall x € X. =

So the following theorem tells us that measure is useless near the top of the countable Borel equivalence relations.

— 7+17. Theorem
(MC) Let E be a countable Borel equivalence relation on a standard Borel space X and let u be a (not necessarily
E-invariant) probability measure on X. Then there exists a Borel Y € X with u(Y) = 1 such that E 'Y isn’t
weakly universal.

We will make use of the following consequence of Borel-Cantelli (4 +21).

— 7+18. Lemma

If (X, j1) is a standard Borel probability space and 6§ : X — NN is Borel, then there exists an 2 € NN such that
u{xe X :0(x)<*h}) =1.

Proof ..
Let ¢ : 2N — NN be the Borel map such that

« if r N 2N is infinite, then ¢(r) is the strictly increasing enumeration of r N 2N; and

* otherwise, ¢(r) is identically 0.
By Feldman—Moore Theorem (2 « 2), there exists a countable group I' = {y,, : n € w} and a Borel action " v 2N
such that EIZ,N is =1. Let ¢ : 2N — NN be the Borel map defined by

¥ (x)(n) = max{e(y,x) : m < nj}.

Then for all r, s € 2N with s =1 r, o(s) <* V¥ (r).

Let f : X — 2N be a weak Borel reduction from E to =t. Define § : X — NY by 6(x) = ¥ (f(x)). Then
there exists an 1 € NN such that Y = {x € X : 6(x) <* h} satisfies that .(Y) = 1 by Borel-Cantelli (4 +21).

Let Z = [f(x)]=,. Therefore Z is Borel as f is countable-to-one, and saturation is Borel. Moreover, for each
r € Z,¢(s) <* hforall s =r r. By an earlier claim, there exists a cone C C 2N\ Z. Hence Z doesn’t contain
a cone. By MC, =t | Z isn’t weakly universal. Since E <j =t 'Z, it follows that £ isn’t weakly universal.

Now return to consequences ZFC, where the remainder of the course takes place.

§7A. Actual Theorems of ZFC
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7A+1. Definition

f E, F are Borel equivalence relations on Polish spaces X, Y; write E <. F iff there exists a continuous (in the
sense of X and Y) reduction from E to F.

A problem of Kanovei is to find nontivial instances of countable Borel equivalence relations E, F such that £ <g F
and £ €. F. What we mean by trivial is given by the following example.

—— 7A-+2. Example (Trivial Example)

Consider id[o,1] and id,~ . Then idjg 1] <p id,n, butide,1] &c id,n, just because of topological reasons.

Now in descriptive set theory, almost every equivalence relation is on a totally disconnected space.

—— 7A+3. Theorem (Target Theorem 4)
=T ‘%c Ey.
— 7A-+4. Definition

et =, be the relation of recursive isomorphism on 2N (regarded as ®(N); i.e. if x, y € 2Z, then

x =1y iff thereis arecursive permutation of N such that ¢"x = y.

—— 7A+5. Theorem (Folklore Theorem)

The map x +— x’ is a Borel reduction from =t to =;.

Note that the following theorem implies that the above map is not continuous (as we will see later).
—— 7A+6. Theorem (Target Theorem 5)

=7 L. =1.

It is an open problem whether =; is universal. However, let Rec(N) be the group of recursive permutations of N.
Marks has shown that EgeNC(N) is universal (the question is then why we can’t with Eﬁi(N)).

Both Target Theorem 4 (7 A « 3) and Target Theorem 5 (7 A ¢ 6) are immediate consequences of the following.
7A+7. Theorem (Theorem AA)

Suppose G is a group of recursive permutations of N and £ = E éN. Then whenever 6 : 2N — 2N is a continuous
homomorphism from =t to E, then there exists a cone C C 2N such that § maps C into a single E-class.

This is more generally true when G < Sym(N) is any countable subgroup. The proof just gets more technical, and less
transparent.
7A-+8. Theorem

If £ :2N — 2N then the following are equivalent:
i. f is continuous.

ii. There existe € N and z € 2N such that f(x) = @Z® forall x € 2N,

To introduce some notation, g, is the eth oracle Turing machine. If € 2N, then ¢” /e is the (partial) function computed
by ¢, with oracle r.
Before proving it, we have the following corollary.

7A-9. Corollary
’I‘ f 2N — 2N is continuous, then there exists a cone C C 2N such that f(x) <t x forall x € C.
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Proof of Theorem 74 +8 ...

To show that (ii) implies (i), suppose that f(x) = y. We need to show that if you’re close to x, then you’re close
to y. In particular, for n € N, there exists an m € N such that xo 'm = x |'m, then (because we’re only using
finitely many values from the oracle)

fxo) tn = %0 tn = 97 tn = f(x) In.
Then f is continuous.

Now suppose f : 2N — 2N is continuous. Let
z={(r,0) e 2N x2=N. r=l'y_c U,)

(here the Ugs re basic open sets). Since f is continuous, for all x € 2N if f(x) = y, then for all n € Z, there
exists an m € N such that (x |m, y [n) € Z. Thus y is computable from z & x as follows.

Given £ € N, we search through z, x until we find (z,0) € z such that t C x and |o| > £. Then y({) = o (£).H

The following definition is deceptively disgusting, but it is the proper notion to prove Theorem AA (7 A 7).

7A-10. Definition

If T € 2<N is a tree, then [T] S 2N s the set of infinite branches.
Atree T C 2=V is perfect iff every t € T has incompatible extensions.
Atree T C 2<N is pointed iff T is perfect and T <t x for every x € [T].

For example, T = 2<N

observe the following

is clearly pointed, and so is every other recursive tree. Why do we care about such trees? Well,

7A-11. Result
’TfT c 2=N is pointed, then for every T <rz e 2N there exists x € [T] such that x =7 z.

Proof ...
For each T <t z € 2N, let x, € [T] be the branch which goes “left” at the nth branching point iff z = 0. Then

T <t x; and so z <t x; (just by checking the path you take with respect to 7', which x, also computes). Also,
since 7" <t z, we have that x, <t z and thus x, <t z. —

Thus, if T is a pointed tree, then [T] is a “natural example” of a Borel set which contains a complete section of a
cone. Now due to Martin, we have the following which gives examples of pointed trees. Note that this relies on Borel
determinacy.

7A+12. Theorem
’TfA c2Nisa <r-cofinal Borel subset, then there exists a pointed tree T C 2<N gyuch that [T] C A.

Proof ...

Consider the game where I and II alternate. I plays x (0) then II plays y(0), and then I plays x (1), and so on: each
turn I plays x(n) and I plays y(n) where x(n), y(n) € {0, 1}. Here, Il wins iff y € A and x <t y. Using Borel
determinacy, we have the following.

Claim 1
’7Hhas a winning strategy.

Proof ...
\:f not, then by Borel determinacy, I has a winning strategy 7 : — 2. But then II can play any

2<N

T <7y € A. Andthen x = 7% y <t y and so Il wins this play, contradicting that t is a winning strategy.—

Let o : 2<N — 2 be a winning strategy for II. Let & € 2N be such that & =1 0. For each u € 2<N U 2% (as an
abuse of notation) let o * u be the corresponding play of Il using o.
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Foru € 2<N U 2N and x € 2V, say that the even part of u agrees with x if u(2i) = x (i) for all 2i < |u].

We first define a perfect binary tree 73 € 2<N as follows. This tree will not be pointed, but when we look at the
responses of II to plays in 77, this will be the tree we’re after.
o Letug = 0.
* Next, let ug), u(1) be the lexicographically least binary sequences whose even parts agree with & such that
o * u(g) and o * u(y) are incompatible.
To see that u gy and u(j) exist, note that if x € 2% then x <t o * x and so the map x > ¢ * x isn’t constant on
any <p-unbounded set of reals, and so it must eventually split into some u ) and uy).
* Next, let ugg) and u(o1) be the lexicographically least extensions of ug) whose even parts agree with &
such that o * u(gg), 0 * U(p1) are incompatible.
* And continue in this fashion to create a binary tree.
Define
Ty ={se2~N:3r € 2N(s Cu,)}, and
T ={o*u:ueT}
Clearly T is a perfect binary tree by construction. Moreover, every branch of T is in A, since o is a winning
strategy for II: [T] € A. Also, T <t 0 as ¢ was all that was used in the construction. Suppose that y € [T]. We
have to show that T <t y. One can see that y = o *x for some x € [T}]. So the even part of y agrees with 6 and
hence o <t x. Butsince o is winning for I, we have that x <t o%xx = y,andso 7 <r o <prx <ro*xx <t y,
meaning 7 is pointed. =

When we apply this theorem, we have something unbounded, and a pointed tree inside it But sometimes we want an
“intelligent” pointed tree, which can do something for us in a proof. So now we show that we can do this.

7A-13. Result
’TfT c2<Nisa pointed tree, and T <t z € 2N then there exists a pointed subtree Ty € T such that Ty =7 z.

Proof ...
Let Ty be the subtree such that at each 2nth branching point, we always go left if z(n) = 0, and always go right
if z(n) = 1. Then clearly Ty <7 z. Let y € [Tp] be the leftmost branch. Then y <t Ty; and since y € [T], it
follows that T <t y and therefore T <t Ty. And it follows that z <t T} just by looking at what happens at the
even levels compared to 7'. Therefore Ty =t z. Finally, suppose that x € [Ty] € [T']. Therefore T <r x, and so
by the same idea (considering the even branching points compared to 7), z <t x and therefore Ty <t x. =

So just by refining the pointed tree given by Theorem 7 A » 12, we can get as complicated a pointed tree as we’d like.

— 7A-14. Definition
If E C F are Borel equivalence relations on X, then F is smooth over E iff there exists a Borel homomorphism
0 : X — X from F to E such that 6(x) F x for all x € X. (This implies 6 is a Borel reduction from F to E).

In the proof of Theorem AA (7 A« 7), we will use the following. (For example, = C=rt.)
—— 7A+15. Theorem (Theorem BB)

If H < Sym(N) is any countable subgroup and D < 2N is a cone such that E121N D € =7 ID. Therefore =1 ' D
isn’t smooth over EIZLIN MD.

Proving this is where pointed trees will come into play. But assuming this theorem, we can prove Theorem AA (7 A+ 7).

Proof of Theorem AA (7A*7) ..

Suppose G < Sym(N) is a group of recursive permutations and 6 : 2% — 2N is a continuous homomorphism
N . N .
from =t to Eé . Since Eé C =7, we can also regard 6 as a homomorphism from =t to =r.
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Since @ is continuous, € is computable on a cone. Explicitly, there exists a cone C C 2% such that 6(x) <t x
for all x € 2. Applying Martin’s Theorem (7 * 2), there exists a cone D C C such that either

(i) 8(x) =r x forallx € D;or

(ii) A(x) <t x forall x € D.
By Theorem BB (7 A ¢ 15), (i) cannot occur and thus (ii) holds. But then Slaman—Steel (7 * 6), there exists a cone
D' C D such that § maps D’ into a fixed =p-class; say, [z]=,. Hence there exists a y € [z]=, such that 671(y)
is <7-cofinal. Now we can apply Martin’s Theorem (7 *2) to see that there exists a cone D” C [071(y)]=,. It
follows that  maps D" into [y] 2N which is what we wanted. =

G

There are two major pieces of content: this nonsmoothness result of Theorem BB (7 A ¢ 15) and of course Slaman—Steel
(7+6).

Proof of Theorem BB (7A+15) ...

Let H < Sym(N) be a countable subgroup and D < 2% be a cone such that ElziN PD € =rD. Suppose
0 : D — D is a Borelhomomorphism from =1 | D to E;_IN M D such that 8(x) =7 x forall x € D.

Since 6 is countable to one (since it’s going inside it’s own equivalence class) it follows that 8" D is a Borel subset
of 2N, Also it is clear that 8" D is <p-cofinal. Applying Theorem 7 A » 12, there exists a pointed tree 7 < 2<N
such that [T] € 6"D. In particular, it follows that if x, y € [T'] then

x=ry iff xElziNy.
Let H = {h, : n € w}and lets € 2N code the sequence (/, : n € w). Then after replacing T by a suitable

pointed subtree by Result 7A 13, we can suppose that s <t 7. Now we can do a simple diagonalization
argument.

Let x € [T] be the leftmost branch. Then clearly x =1 T as T <t x as a pointed tree, and x <t T as just the
leftmost branch. Now define an increasing sequence of nodes y, € T as follows.
* Yo = d.
* For y, defined, y,! is such that y, C y,™ € T is the next branching node. Let |y,F| = £,. If hy(£y) ¢ x,
then let y,4+1 = y,/ 1. Otherwise, let y,+1 = y,/~ 0.

Takingy = U,<p, ¥n €[T]. Then T <ry <1 T @ x ® s =¢ T. Thus y =7 T. But by construction, y ¢ Hx,
a contradiction. —.

Now we give some open pproblems before looking at some Borel combinatorics. First, consider the following definition
and question due to Marks.

— 7A-+16. Definition

A countable Borel equivalence relation E is measure universal iff for every countable Borel equivalence relation
F on a standard Borel space X and any Borel probability measure i on X, there exists a Borel subset Y € X with
u(Y) = 1suchthat F Y <g E.

—— 7A+17. Open Problem

Does there exist a measure universal £ which isn ¥ universal?

There are two results that suggest this might be interesting. The first, also due to Marks, is really quite weird.
— 7A-18. Theorem

(i) Recursive isomorphism on 3N is countable universal.

(ii) Recursive isomorphism on 2N is measure universal.

Using MC, Thomas has shown the following.
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7A-19. Theorem

(MC) If F is any countable Borel equivalence relation on X and u is any Borel probability measure, there exists a
Y € X with u(Y) = 1 such that F 'Y isn’t weakly universal.

Eventually, we will prove Theorem 7 A ¢ 18, but it will require some Borel combinatorics.

Another open problem, practically an open area, is due to Marks.

— 7A-+20. Observation
There are very few countable Borel equivalence relations E for which it is known that £ <g=r.

— 7A-+21. Definition
Let ET be the orbit equivalence relation for F, ~ (2) F2,

The following conjecture due to Marks is open.
—— 7A+22. Open Problem
EToo B =T.

A slightly stronger conjecture of Thomas is the following.
—— 7A+23. Open Problem

If E is a nonhyperfinite countable Borel equivalence relation, then there exists a weakly universal countable Borel
F suchthat E &g F.

Section 8. Borel Combinatorics

8+1. Definition
’:Borel graph (X, R) consists of a standard Borel space X and a symmetric, irreflexive, Borel relation R € X x X.

The first thing we will look at with these is chromatic number.

8+2. Definition

Let 4 = (X, R) be a Borel graph. Then the Borel chromatic number xp($) is the least cardinality of a standard
Borel space Y such that there exists a Borel map ¢ : X — Y such that if x R y then ¢(x) # c¢(y). Such amap ¢
is called a Borel coloring.

We need the Y to be contained in X so that we have a notion of Borel. Note that clearly y(4%), the actual chromatic
number, is no more than yg($%).

—— 8+3. Example

Let X = (2)Z and let o = (X, E) where x E y iff T(x) = y or T~!(x) = y where T generates the action
Z~X.

We can actually calculate the Borel chromatic number of G¢.

— 8+4. Theorem
For G as in Example 83,2 = x(%o) < x8(%0) = 3.

Proof ...
Since every connected component of G is a copy of Z, it’s clear that y(Go) = 2.

To see that yg(%0) > 2, supposethatc : X — 2isaBorel 2-coloring. Fori = 0,1,letX; ={x € X : c(x) =i}.
Therefore the restriction of ¢ to each connected component gives alternating colors on Z. Thus X = X U X is
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a partition of X into two Borel subsets, each of which is invariant under 2Z ~ X. Let u be the usual uniform
product probability measure on X. Since Z ¥ (X, u) is strongly mixing, 27 acts ergodically on X. Therefore
either X or X; has measure 1. But then pu(Xo) = (7T (Xo)) = n(X1) implies both have the same measure of
1, a contradiction.

The fact that yg(%0) = 3 follows from the next theorem. =

As far as we know thus far, yg(Go) € [3,2%°]. To prove that it is exactly 3, we need some notation for the next theorem.

— 8+5. Definition
If (X, E) is a graph and x € X, then
c E(x)={yeX:yE x}

* deg(x) = [E(x)].

The next theorem is fairly easy if we leave out the “Borel”.

— 8+6. Theorem
If ¢ = (X, R) is a Borel graph such that deg(x) < k forall x € X. Then yg(%) < k + 1.

First we need some basic results in Borel combinatorics.
— 8+7. Definition
A graph T' = (V, E) is locally finite iff deg(v) < oo forallv € V.

— 8+8. Result
If ¢ = (X, R) is a locally finite Borel graph, then yg(%) < w.

Proof ...
Let (X, T) be a Polish space realizing the standard Borel structure of X. Let {U, : n € w} be a basis for

the topology 7. Then we can define a Borel w-coloring by taking c(x) to be the least n such that x € U, and
R(x)NnU, = 0. =

This, of course, is not the most efficient way of proceeding, since the null graph (X, @) would use up countably many
colors, for example.

— 8°9. Definition
Let ' = (V, E) be a graph.
(i) A subset D C V is discrete iff no two elements of D are joined by an edge.
(i1) A maximal discrete subset D C V is called kernel

Of course, there is always a kernel, but the issue is whether there is a kernel that is Borel.

— 8:10. Result
If ¢ = (X, R) is a locally finite Borel graph, then there exists a Borel kernel D C V.

Proof ..
For each Borel subset Y C X,let R(Y)={x €Y :dy €Y (y R x)}.

Claim 1
’TY C X is Borel, then R(Y) is Borel.

Proof ...
Let P = RN (X xY). Then P is a Borel subset of X x X, and each section P, countable (and actually
finite as § is locally finite). By Theorem 2+ 6, R(Y) = projy (P) is Borel =
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Next, let ¢ : X — o be a Borel w-coloring; and for eachn € w, let X;, = {x € X : ¢(x) = n}. Then
X =||,ep Xn is a partition of into discrete Borel subsets. We use this to inductively define our Borel kernel.

Define inductively Borel subsets ¥,, € X by

s Yo = Xo;

* Vo1 = Yo U (Xng1 \ R(Yn)).
Then Y = |J, ¢, Y is a discrete Borel subset. To see that Y is a kernel, letx € X \ Y. Then x € X, 4 for some
n > 0. Since x ¢ Yy11, it follows that x € R(Yy). =

And now we can prove Theorem 8« 6.

Proof of Theorem 8 +6 ...

We argue by induction on k& > 0. The result is clear when k = 0. Suppose the result holds for some k > 0.
Let § = (X, R) be a Borel graph such that deg(x) < k + 1 forall x € X. Let Y C X be a Borel kernel, and
let Z = X \ Y. Then deg,(v) < k for all v € Z (since everyone needs to be connected to someone in Y as
otherwise Y wouldn’t be maximal). Hence there exists a Borel (k + 1)-coloring ¢g : Z — {0,--- ,k}. Extend
co toa (k + 2)-coloring of X by c(y) =k + 1forally e Y. =

Let 4o = (X, R) be the graph associated with Z 3 (2)Z as before. Let Y C X be a kernal. Then each connected
component of X \ Y is either an isolated point, or else a pair. So it is very easy to define a Borel 3-coloring of G.

Next we start working towards the following theorem of Marks, which uses Borel determinacy.

— 8+11. Theorem
For each n > 1, there exists an n-regular acyclic Borel graph ¢ with yg(%) =n + 1

— 8+12. Definition
A marked group is a group with a specified set ST C I" \ 1 of generators.

— 8+13. Definition
For I' a marked group and X a standard Borel space, G(I", X) is the Borel graph with vertex set
Free(XT) ={y e XU :yy # yforall1 # y € '}
and edge set E defined by x £ y iff 3y € St (yx =y Vv yy = x).

— 8+14. Definition
If " and A are marked groups, then I" * A is the free product with generating set St U Sa.

— 8°+15. Theorem
If ', A are finitely generated marked groups, then
x8(G(I" x A,N)) = y(G(I',N)) + xs(G(A.N)) — L.

To try to understand this, consider ' = A = C,. Then each connected component of G(I", N) is just a pair. Thus
xs(G(I',N)) = x(G(I',N)) = 2. Each connected component of G(I" * A, N) looks like Z: it’s just a line (but
generated in a different way). By Theorem 8 15,

(G« A,N))>2+4+2—-1=3.
Since each vertex has degree 2, yg(G(I" * A,N)) = 3.
The only thing mysterious or “yucky” abou thte theorem is the appearance of N. Fortunately, Seward—Tucker-Drob

have shown that every finitely generated group I" and all n > 2 have yg(G(T',n)) = yg(G(T', N)). We, however, rely
on N for the proof of Theorem 8 « 15.
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8-16. Corollary

Foreachn > 1,let [, = C; * --- x Cy (n times). Therefore G(I'y, N) is a cyclic n-regular graph with
(G, N)=n+1.

Proof ...
Clearly the Cayley graph of [, is the n-regular tree. It is also clear that yg(G(I'1, N)) = yg(G(Cz2,N)) = 2.
Suppose inductively that yg(G(I',, N)) = n + 1. Therefore by Theorem 8« 15,

18(G(Tn+1.N)) = B(G(T, * C2,N))
> x8(G(I'y, N)) + xs(G(C2,N)) —1
>m+1)+2—-1=n+2.

Since the graph of [',, 41 is (n + 1)-regular, it follows that yg(G(I',+1,N)) < n + 2. Hence yg(G(I'y+1,.N)) =
n+ 2. -

Theorem 8 « 15 is a consequence of the following main theorem of Marks.

— 8+17. Theorem (Marks' Main Theorem)

If T, A are nontrivial countable groups and A C Free(NT*2) is Borel, then at least one of the following holds:
(i) There exists a continuous, injective I'-equivariant (yx = y implies yf(x) = f(y)) map f : Free(NT) —
Free(NT*2) such that im f C A.
(ii) There exists a continuous injective A-equivariant (§x = y implies §f(x) = f(y)) map f : Free(N2) —
Free(NT*4) such that im f € NT*4\ 4.

The proof of Marks’ Main Theorem (8 ¢ 17) uses Borel determinacy. In fact, Marks’ Main Theorem (8 ¢ 17) is equivalent
to Borel determinacy modulo Z~ 4 X;-Replacement 4 DC.

Before proving Marks’ Main Theorem (8 ¢ 17), we derive some consequences.

Proof of Theorem 815 ...
Suppose that
1e(GLN) = n + 1
x(G(A,N)) =m + 1.
Suppose that ¢ : G(I" * A,N) — (n + m) is a Borel (n + m)-coloring. Let
A={xeGIT*xA,N):0<c(x) <n-—1}.

Case 1. Suppose there exists a continuous, injective, I'-equivariant f : G(I',N) — G(T" % A, N) such that
im f C A. Suppose that x,y € Free(NT) = G(I', N) are adjacent. Then without loss of generality,
there exists a y € St such that y = y - x. Since f is ['-equivariant, f(y) = f(y-x) =y - f(x) and
so f(x), f(y) are adjacent and so c(f(x)) # c(f(y)). But this means ¢ o f is a Borel n-coloring of
G(T', N), a contradiction with the fact that yg(G(I',N)) = n + 1.

Case 2. By Marks’ Main Theorem (8  17), there then exists an injective, continuous, A-equivariant map f :
G(A,N) — G(T * A, N) such that

imf CGT*xAN)\A={xeGT *xZ):n<c(x)<(m-+m)—1}
It follows as before that ¢ o f is a Borel m-coloring of G(A, N), a contradiction. —

8+18. Definition

A graph (V, E) is bipartite iff there exists a partition V' = A U B such that every edge e € E joins a vertex v € A
to a vertex w € B.
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— 8+19. Definition

A perfect matching of a graph (V, E)) is a collection M C E such that every vertex v € V lines on a unique edge
ecM.

—— 8+20. Theorem (Konig's Theorem)

An n-regular, bipartite graph has a perfect matching.

— 8+21. Observation
There exists a 2-regular, bipartite, Borel graph with no Borel perfect matching.

Proof ...

Let (V, E) be Free(Z, 2%). Then every connected component has a graph that looks like Z. So each element’s
edge is determined by the first choice of our edge in M, yielding an ability to choose elements. Formally, let
M C E be a perfect matching and let < be a Borel linear ordering of V. Then

Xo={v eV :visthe < -least elementofv € e € M}

is 2Z-invariant and we reach a contradiction as before. -

Question: What about Borel-bipartite (meaning the pieces of the partition are Borel) graphs? Answer: the answer still
is that there may not be a perfect matching. Consider the following theorem due to Marks.

8:22. Theorem
’7F0r every n > 1, there exists an n-regular, acyclic, Borel-bipartite graph with no Borel perfect matching.

To prove this, we make use of the following theorem.

8+:23. Theorem
Let ', A be countable groups and let Er, Ea be the orbit equivalence relations for the Borel actions I'
Free(NT*2) and A ~ free(NT*2). Then Er, Ea do not have disjoint, Borel complete sections.

Proof ...
Suppose that S, T are disjoint, Borel complete sections for ET, Ea. We will apply Marks” Main Theorem (8 * 17)
with A = T'. Thus

S C Free(NT*2)\ 4 = Free(NT*2)\ T.

Case 1. Suppose there exists a continuous, injective, I'-equivariant map f : Free(NT) — Free(N*#) with
imf € A =T. Thenim f # @ is a ['-invariant subset such that S Nim f = @. Thus S is not a
complete section for ET.

Case 2. Otherwise, there exists a continuous, injective, A-equivariant map f : Free(N?) — Free(NT*2) with
im f C Free(NI'*2)\ T = S. This implies as before that T is not a complete section for Ea, a
contradiction. =

Proof of Theorem 822 ...

Let ', A becyclicofn > 1. LetY C [Free(NF*A)]n be the standard Borel space consisting of the Er-classes
and E a-classes.

Let G be the intersection graph on I" i.e. s5,¢ € Y are adjacent iff st # @. Note that each edge joins an Er-class
to an Ea-class and so § is Borel bipartite. Also § is clearly n-regular, since the I" * A-action is free.

Since § is bipartite, it contains no odd cycles. Suppose § contains an even cycle; say
S1,01, 82,082, , 8¢, Iy
Without loss of generality, we can suppose the s; are Er-classes.

Let {x} = 51 N #;. Then there exists 1o # &; € A such that {§;x} = #; N s5. Similarly, thereisa 1p # y; € I
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such that {y18;x} = s, N . Continuing in this fashion, there exist 1o # §; € A and It # y; € A for
1 <i <{—1suchthat

Ye—18¢—1++-y181x € 5¢ N1y,
But then as a cycle, there isa 1p # &¢ € A such that

Seve—18e—1--y181x =1 N s1.

But this is in the same I"-orbit as x, and thus there is a y € I" such that

Y8eve—18¢—1 -+ y181x = x,
contradicting the fact that I' % A acts freely.

Now suppose that M is a Borel perfect matching of ¢, and let
A = {x € Free(NT*%) : there exists an {s,t} € M suchthats Nt = {x}}.
Then A, Free(NT*2) \ A are disjoint, Borel complete sections for Er, Ea, contradiction. .

The following condition allows you to have disjoint complete sections.

— 8+24. Definition

Suppose that Ey, E; are countable Borel equivalence relations on a standard Borel space X .
* Ey Vv Ej is the smallest equivalence relation which contains Eg, E.

* Ey, E; are everywhere nonindependent iff whenever C is an (Eg v Ep)-class, then there exists a sequence
of distinct elements xo,--+ ,x, € C with n > 1 and a sequence ig, i1, - ,in € {0,1} withi; # i;4; for
j <nandi, # iy such that

xo Eig x1 Ei; x2-+-xn Ej, Xo.

Note that £ Vv F is a countable Borel equivalent relation. To see this, by Feldman—Moore Theorem (2 ¢ 2), there exist
countable groups Gg, G1, and Borel actions G; & X such that £ = Eé(( , and F = E(};(l. Let G = Gy *x Gy, and let

G ~ X be the corresponding action. Then E v F = Eé( .
—— 8+25. Open Problem

Let $ 7, be the space of finitely generated groups, and let R be the Borel relation defined by I' R A iff there exist
isomorphic (unlabelled) Caley graphs of I" and A.

R isn’t an equivalence relation. Is the transitive closure of R Borel?

The proof of Marks’ Main Theorem (8 « 17) will make use of the following theorem.

— 8+26. Theorem

If Ey, E; are everywhere non-independent countable Borel equivalence relations on the stadard Borel space X,
then there exists a partition X = X, Ll X such that each X; is a Borel complete section for E;.

The above theorem makes use of yet another result.

— 8+27. Definition
Let E be a countable Borel equivalence relation on X.
* [E]=% is the Borel subset of the standard Borel space [X]=°° consisting of the nonempty finite S C X such
that S is contained in a single E-class.
* 9 = ([EI"®,R) where SR T iff SNT # @.

— 8+28. Theorem
18($E) < o.
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Proof ...
First let (g, : n € w) be a sequence of Borel permutations g, : X — X with g2 = 1 such thatif x, y € X, then
x E y < x = y or there exists n € w such that g, (x) = y.

Also fix some Borel linear order < of X. Given § € [E]=®°, let S = {x¢,---,X,} Where xg < -+ < Xx,.
Then c(S), the color of the set, is the lexicographically least sequence {k;,;};«; such that foralli < j < n,

gki.j X = Xj.
We will show that if S # T € [E]™° with S N T # @, then ¢(S) # ¢(T). So suppose S # T are a
counter-example. Then clearly |S| = |T|. Let
S ={x0.++,xn}
T = {yo"" »)/n}
be the <-enumerations. Leti, j < n be such that x; = y;.

Case 1. Suppose thati # ;. Then without loss of generality, i < j. Hencei < j implies x; < x; = g, ; (xi).
But this says that y; < gx; ;(vj) = yi, which requires j < i, a contradiction.

Case 2. So we must have thati = j. But then for each £ # i, we have x; = g, ,(xi) = gk; ,(vi) = y¢. And
so S = T, a contradiction. -

Proof of Theorem 8+ 26 ...

Let A C [Eg vV E{]=% be the Borel subset of finite S € [Eg vV E;]=* such that there exists an ordering S =
{xo,:++,xn} and a sequence {ig, -+ ,i,} With i; # i;41 and i, # ip such that

xo Eiy x1 Eij x2+--x5 Ej, Xo. (%)

Then A contains a finite, nonempty subset of each (Eg v Ep)-class.

Letc : [Eg V E1]°® — w be a Borel w-coloring. Let B C A be the Borel subset S € A such that whenever
T € A lies in the same (E¢ Vv Ej)-class, then ¢(S) < ¢(T). Then the elements of B are pairwise disjoint; and
B still contains a finite, nonempty subset of each Ey v E;-class. We fix a Borel way of ordering each S € B as
Xo, - , X and assigning a sequence ig, - -+ , i, such that (x) holds.

For each ¢ = 0, 1, let A, consist of those x € X such that there exist S = {x¢,:--,x,} € Band j < n such
that x = x; and i; = e.

For example: if we start with xo Eo x1 E1 x2 E¢ X3 Eq X then xo, x3 € A0 and x1,x3 € A1 .

Clearly Ag,0 N A1,0 = @. Also, note that for each ¢ = 0,1, and x € A, , there exists a y € [x]g, such that
¥y € A1—¢0. We now inductively construct disjoint Borel sets Ao ,, A1, satistying:

(a) Aa,n c Ae,n+1a
(b) foreach x € A, p, there existsa y € [x]g, suchthat y € A1, 5.

Case 1. Suppose 7 is even. Then we define
Aop+1 = Aon U ([AonlE \ A1)
Al,n+1 = Al,n ) ([AO,n]El \AO,n+1)-

Clearly Agn+1, and A; ,4 are disjoint and (a) holds. To see that (b) holds, first suppose that x € Ag ;41 \
Ao, Then there exists (by saturation by Eg) an x’ € A, such that [x]g, = [x']g,, and by induction there
existsa y € A1n C Ay n41 suchthat y € [x']g, = [x]g,. Next, suppose that x € Ay 441 \ A1, Asit’sin
the saturation of the previous one, there existsa y € Ao, € Ao n+1 such that [x]g, = [y]g,. Thus (b) holds.

Case 2. Suppose n is odd. Then we define
Aons1 = Aon U ([A1nlEy \ A1)
Al,n+ = Al,n U ([Al,n]E] \AO,n+1)-
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Arguing as above, the inductive hypotheses still hold.

Let Xo = U,jep o,n and X1 = |J,,c,, 41,». Then it suffices to prove the following claims.
— Claim 1

X = Xo U X;.
— Claim 2

Ife =0, 1, then X, is a complete Borel section for E;_;.

Proof ...
Assuming Claim 1, consider the case where ¢ = 0. Let x € X. If x € X, then clearly [x]g, N Xo # 0.
Otherwise, by Claim 1, x € X; and hence there exists a y € [x]g, such that y € Xj. —

Proof of Claim 1 ...
Suppose z € X. Then there exists xo € Ag,0 N [z]E,vE,- It follows that there exists a sequence

xo Eiy x1 Eiy X2+ xXm Ei, z,
foriy € {0, 1}. We can suppose inductively that x,, € Xo U X;. Suppose, for example, that x,, € Xo. Then
there exists an even n such that x,, € Ag,. Ifz € Ag,, U A;,,, we are done. If not, and z € [A¢,,]E,, then

z € Aon+1- Otherwise, z € [Aon]E, andso z € Ay p41. —

_|

So we are almost ready to start proving Marks’ Main Theorem (8 ¢ 17). Before finally beginning the proof, we need
one more technical lemma.

8-29. Definition
Let Y C NT'*A be the set of all elements y € NT'*2 such that forall g € T * A,

y-gy # gy forally € I' \ {Ir}, and
8-gy #dyforalld e A\ {1a}.

Note that Y is I"  A-invariant. Clearly, Free(NT*4) C Y. So what concerns us is the difference.

Let Er be the I'-orbit equivalence relation on NT*2 and E s be the A-orbit equivalence relation.

8:30. Lemma
’7Er MY \ Free(NT*2)) and Ea MY \ Free(NT*2)) are everywhere nonindependent.

Proof ...

Let C C Y \ free(NI*2) be a (I" * A)-orbit. Then there exists an x € C and g € (' * A) \ (I' U A) such that
g - x = x. Suppose, for example, that g = y1d1 -+ yu8yy where y; € T'\ {11}, 8 € A\{la}forl <i <n
and y € I'. We also suppose 7 is minimal within C.

Case 1. Suppose y = 1. Then x, §,x, ypénx, ..., 81+ YndnX, Y181 - - - Sy x = x witnesses nonidependence.

Case 2. Suppose y # 1. Suppose yy; # 1. Then replacing y; by y; = yy; and x by x’ = yx, we obtain
Y161+ Yubnx’ = x’. And so we are in (Case 1).

Case 3. Suppose yy1 = 1. Thenreplacing x by x’ = yx, we obtain 8192682 « - - $5—1Yndn-x’ = x’. By minimality
of n, we have a contradiction. .

Now we will prove Marks’ Main Theorem (8 ¢ 17).

47



MaTH 569 CLASS NOTES

§8

48

Proof of Marks’ Main Theorem (8+17) ...
Each non-identity element of I" % A can be uniquely written as a finite product of the form
(1) Vi08i1 yiz s Or
(11) 8i0 )’il 8i2 HR
where y;; € I'\ {1}, and §;; € A\ {1}. Words of the form (1) are called I'-words and words of the form (ii) are

called A-words. We will make use of games for building an element y € NI'*4

and II* decides y on A-words.

, where I decides y on I'-words,

First we fix injective (possibly finite) listings yg, 1, ...; and &g, 61, ... of T'\ {1} and A \ {1} respectively.

Next we define the turn function ¢ : (I" %« A) \ {1} — N as follows. Suppose o € (I" * A) \ 1 has the form (i)
or (ii) with associated sequence iy, i1, ..., I, (Where the indices are from these fixed enumerations). Then ¢ (@) is
the least n such thati; + j <n forall j < m.

For example, the elements with ¢ (o) = 0 are yy, 8o. The elements with ¢ («) = 1 are y1, Y000, 180, and similarly
81, 80Y0, and 81yo. And so on.

Write e for 1yr«a. For each Borel subset B € Y and k € N, the following game G,f produces an element

y € NT*A with y(e) = k. First we set y(e) = k. On the nth turn of GP, first I defines y(«) on the I'-words
with # (o) = n; and I defines y(«) on the A-words with ¢ () = n.

The winning conditions for G ]f:
s IfyeY,thenll winsiff y € B.
Suppose that y ¢ Y. Then there exists an o € I' * A such that either 3y € T\ {I}(ya~'y = a7'y) or

38 € A\ {1}(Sa~ 'y = a~'y). In the former case, we say that («, I") witnesses that y ¢ Y, and in the latter
case, (o, A) witnesses that y ¢ Y. In both cases, we say that o witnesses that y ¢ Y.

e If y ¢ Y and (e, I') witnesses that y ¢ Y then I loses.
Otherwise, if (e, A) witnesses that y ¢ Y, then II loses.
If neither of the above cases hold, then I wins iff there is a A-word « witnessing that y ¢ Y such that for
all I'-words B with () < t(«), B doesn’t witness that y ¢ Y.

Finally, recall that Er (Y \ Free(NT*2)) and Ex MY \ Free(N*2)) are everywhere nonindependent. Hence
there exists a Borel subsets C C Y \ Free(NT*2) such that C meets every Ea-class on Y \ Free(NT*2) and the
complement C ¢ meets every Er-class.

Now let A C Free(Nr*A) be Borel. Then we define By = A U C C Y. So by Borel Determinacy, for each
k € N, either I or II has a winning strategy in the game G,f 4. Hence one of the players has a winning strategy
for infinitely many k € N.

Suppose, for example, that S = {k € N : II has a winning strategy in G,f 41 is infinite. Clearly there exists an
injective, continuous, I'-equivariant map from Free(NT) to Free(ST). Hence it’s enough to show that there is an
injective, continuous, I'-equivariant map f : Free(S') — Free(NT*%) such that im f C A.

We will define f such that for all x € Free(ST), the following hold:

(i) f()(y) = x(y) forally € I';
(i) f(x) will be a winning outcome for II’s winning strategy in Gfé )

Clearly (i) ensures that f is injective. Suppose, for the moment, that f is I'-equivariant and that f(x) € Y for
all x € Free(ST). I will help to ensure that these are both true.

Claim 1
’7With the suppositions above, f(x) € A for all x € Free(ST).
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Proof ...
Since f(x) € Y,and and f(x) is an outcome in II’s winning strategy in Gfé ) it follows that f(x) € B4 =
A U C. Suppose that f(x) € C C Y \ Free(NI'*2). Since Free(NT*2) is I'-invariant, it follows that if

y € I', then yf(x) = f(yx)Y and in factisin C. And so I' - f(x) € C. But this contradicts the fact that
every I'-orbit on Y \ Free(NT*2) intersects C°. n

The basic idea: in order to deal with the assumptions for a single x, while II uses the winning strategy in the
games Gf(/;/ 1y I plays to ensure that f is I"'-equivariant and that f(x)(y) = x(y).

By
x(y~h
y € NT*2 which will be equal to ¥ f(x). We begin by setting y f(x)(e) = x(y~!) foreach y € I (we’re playing
infinitely many games simultaneously).

Finally fix some x € Free(ST). Then for each y € I', we will play an instance of G to produce an element

Now suppose that yf(x)(c) is defined for all y € T"and @ € T x A with #(«) < n. Then the nth move of I in
each game is as follows. Suppose f is a I'-word with () = n. Then 8 = y;o wherei < n and f(«) < n.
Forevery y € I', we define y f (x)(y; ) to be (y; 1y #(x))(a), which has been defined. Then II uses the winning
strategy in all of these games to define (yf(x))(8;«) for every A-word ;¢ with ¢(8;) = n. Clearly f is I'-
equivariant by the way I has played, and f(x)(y) = x(y), as a special case of I'-equivariance. Also, it is clear
that f is continuous, since if the words agree on large initial segments, then the players play along those long
initial segments. Thus it only remains to check that f(x) € Y for all x € Free(ST).

First, since x € Free(ST) and f(x) )T = x [T, we have that yf(x) # f(x) forally € T\ {1}. Thus (e,T)
doesn’t witness that f(x) ¢ Y. Since f(x) is an outcome for II’s winning strategy, (e, A) doesn’t witness
f(x) ¢ Y. Now we prove inductively that & doesn’t witness f(x) ¢ Y forall x € Free(S') andalla € T % A
with ¢ (@) = n. This is certainly true for the identity, so now we proceed by inductionon n. First, suppose ¢ = yf8
is a I'-word with ¢ (o) = n and ¢(8) < n. Since

o« f(x) =BTy ) =BTy ),
and B doesn’t witness that f(y~!x) ¢ Y, it follows that o doesn’t witness f(x) ¢ Y. Let @ be a A-word with
t(a) = n. Hence we can suppose that if 8 is a ['-word with #(8) < n, then 8 doesn’t witness that f(x) ¢ Y.
Since f(x) is an outcome of II’s winning strategy, it cannot be that « is the first time that a witness appears (as
that means that IT would lose). It follows that o cannot witness that f(x) ¢ Y. Hence f(x) € Y, as desired. This
completes the proof, as the case is symmetric where S is the k € N where I has a winning strategy for G,f 4.

§8A. Recursive Isomorphism

We now state another theorem of Marks (recall [, is the free group on two generators).

8A+1. Theorem

Let G < Sym([F, x N) be a countable group of permutations such that for each g € [5, there exists p, € G such
that pg (h,n) = (gh,n) for all (h,n) € F, x N. Then
(i) G ~ 2F2*N s a measure universal countable Borel equivalence relation.

(ii)) G ~ 3F2XN s a universal Borel equivalence relation.

It’s open whether the action in (1) is universal. As stated, of course, this is hard to really understand. So instead we
have the following corollary.

8A-+2. Corollary

(i) Recursive isomorphism on 2% is measure universal.
(ii) Recursive isomorphism on 3N is countable universal.
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Proof ...
Let Y e {2,3}. Via computable bijection between N and [, x N, we can identify 2N and 22N Then G =
Rec(F; x N) (recursive permutations of [, x N) satisfies the hypotheses of Theorem 8 A « 1. =

Proof of Theorem 84+ 1 ...

Throughout, Y € {2, 3}, as much will be the same. Let Eo, be the universal countable Borel equivalence relation
arising from F, v X where X = 2%2. Let f : X — YN be any Borel map. We modify this to get a map from
X to YF2XN,

Consider the associated f : X — YT2XN defined by f(x)(h,n) = f(h~'x)(n). Suppose x,y € X and g € [,
satisfies gx = y. Then

(pg - N (hn) = f)g  hon) = f(h gx)(n) = f(gx)(h,n) = F()(h,n).
Thus pgf(x) = f(gx) = f(y), and f is a Borel homomorphism from F, v X to F, & Y 2N,

We will define an injection f : X — YN so that f witnesses either (i) or (ii) of Theorem 8 A« 1.

Basic Idea: we will construct f such that for all p € G and x € X, either
s p-f() gim fror
e p- f(x) = f(y) forsome y Eo X.
We now introduce a definition to help with this.
8A-3. Definition
* p € G has type Iiff for every k > w, there exist m,n > k with n # m such that p~1(1,n) € F, x {m}.

* p € G has type II if it is not type I, and there exists an m such that for infinitely many n € N,
o Y(1,n) € Fp x {m}.
* p € G has type III iff it is not type I nor type II.

Note that if g € [y, then pg has type IIL. If p € G has type 111, then for all but finitely many n € N, p~1(1,n) €
[, x {I’l}

For each p € G of type 11, fix some m,, such that there exist infinitely many n € N with p~(1,n) € F, x {m,}.
We say that each such n witnesses that p has type II.

To begin, we inductively construct a partition N = Sy L S; U S U S3 such that S, and S3 are infinite, and for
every p € G,
« if p has type I, then there exist an n € S; and m € Sy such that p~1(1,n) € F, x {m};
« if p has type 11, then there are infinitely many n € S, and infinitely many n € S5 such that n witnesses that
p has type II.

Now we make another definition, and then we actually prove something.

8A-4. Definition
’7A set S C N is good if whenever p € G has type II, then infinitely many n € S witness this.

Hence S5 and S35 are good by definition. Furthermore, any good subset can be partitioned into two good subsets.
During the proof, we will successively add more constraints to the map f : X — YN,

0 ifmeSo

Constraint 1. For every x € X, define f(x)(m) = .
1 ifn e S;.

Claim 1
Fp has type I, then ,of(x) ¢ imf forall x € X.
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Proof ...
There exists ann € Sy and m € Sg such that p~!(1,n) = (h, m) for some h € F,. Hence
(p- fON(n) = fC)(h,m) = f(h™"x)(m) = 0,
since m € Sy. On the other hand, forall y € X,
fOAn) = f)m) = 1.
Thuspf(x)géranf. =

Claim 2
’Tfp_l has type I, then pf(x) ¢ ran f' forall x € X.

Proof ...
Otherwise, there exist x, y € X such that p f (x) = f (v); and so p~! f (y) = f (x), which contradicts
Claim 1. 4
So we only need to worry about the elements where it and its inverse have type II or III. Let pg, p1,:- € G

enumerate the elements of G such that both p and p~! have type II or III (not necessary both with the same type).
Since S, is good and every good set can be partitioned into two good sets, we can inductively define infinite,
disjoint subsets S3 0, 52,1, - -+ of S such that:

* If p; has type II, then every n € S, ; witnesses this;
* if p; has type III, then every p~1(1,n) € F, x {n} forevery n € S, ;.

Constraint 2. For each 7, let #; : X — 252 be a Borel bijection. Then for every x € X, define f(x)(n) =
h; (x)(n) iffn € SZ,i~

So we’ve defined f on Sy and S, and we’re dealing with S, and S3. Next, let Sé,o» S3.0, Sé,l’ S3.1, ..., be (finite
and possibly empty) disjoint subsets of S3 such that:
o If p; or pi_1 have type 11, then Sé,i contains m,,; and/or m ol provided they’re not already included in
SoUS;US, U Uj<i(S§’j U S3,;), where m,, is as in Definition 8 A « 3 for type 1L
* If p; has type II, then S3 ; contains an n which witnesses that p; has type II.
« If p; has type 111, then |S3 ;| = 2 and each n € S3;; satisfies p; ! (1,n) € F» x {n}.

Again, there is no problem defining S3 ; and S3 ;.
Constraint 3. We define f(x)(n) = 0ifn € S> \ |J; S2,; orn € S3\ U; S3.i-

Finally, we will define f(x)(n) for n € S3; by induction on i € w. Suppose we have done this for j < i. In
essence, there is only one candidate.

Claim 3
Suppose that p € {p;, p;” 1}, Then there exists a fixed Borel map g, : X — X such that for any Borel map

f : X — YN satisfying all our previous constraints before step 7, if p f (x) = f (¥), then y = go(x).
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Proof ...
First suppose that p has type II. Let p = p; (possibly j > i). Then f(x)(m,) has already been defined for
each x € X (being either O or else defined at an earlier stage). Thus for everyn € S5 ;,

pf)(1n) = (o™ (1m) = F () (ym.mp) = £ (v x)(mp),

for some y,, € [F,, has already been defined. Suppose that x, y € X and that p f (x) = f (y). Then for each
n € S, ;, by constraint 2,

hiMm) = ()0 = f)An) = pfx)(1Ln).
Since h; : X — 252./ is a bijection, there exists at most one such y; namely go(x) = hj_l(n >
o) f (x)(1,n)), which has already been defined.

Next, suppose that p has type III. Then for every n € S, ;,
pf)(1n) = f)(p™ (1m) = f@) ) = f 0 ),

for some y,, € [F,, has been defined. As above, there exists at most one y such that p f (x) = f (y); namely
hj_1 of this function: y = hj_l(n = pf(x)(1,n)). =

Foreach i, let g; : X — X be the Borel partial function defined by
gix)y=y i gp(x)=yandg,1(y)=x.

Therefore,

* Ifpi f(x) = f(y), then g;(x) = y.

* g; is an injection.
To finish the proof, it is enough to complete the construction of f such that for all x € X and i,

cither g; (x) Eco x or p; f(x) # (gi(x)). ()

We now continue with step i of the construction. First, suppose that p; has type II. Choose some n; € S3; such
that n; witnesses that p; has type II. Then there exists a y; € [, such that pi_l( 1,n;) = (yi,my,). Recall that

Pi f(x)(lJ’li) = f()/i—lx)(mp,.)has been defined. Hence to ensure that p; f(x)(l,ni) # f(gi (x))(1, n;), where
then f(gi (x))(l, ni) = f(g,' (X)(I’l), it is enough for each y € X to define
JO)m;) = {(1)_ S e ()mp,) ifg,-_l(.y) is defined
otherwise.

And thus we’ve “killed off” all of type II. More precisely, we have the following.

Claim 4
Fpi has type Il and f : X — YN satisfies our current constrains, then for all x € X, p; f(x) ¢ im f

To sum up, for each i, there exists a Borel partial map g; : X — X such that
* pif(x) = f(), then g;(x) = y; and
* g; is an injection.
Moreover, we’ve dealt with types I and II.
Continuing with step i, suppose p; has type III. Then | S3 ;| = 2 and for each n € S5 ;, there exists a y, € [, such
that pi_l(l, n) = (yp,n). For eachn € S3; (all two of them), let g; , : X — X be the Borel partial function
defined by gi,n (y) = 7, ' g; (). Then if gi(x) = y and p; f(x) = f(y), forevery n € S3.;,
SO = f)(Ln) = pi f(x)(1.n)
= f@e ' Am) = ) (m.n)
= fry ' )m) = f(gin())(n)
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In other words,

F)@m) = f(gin(¥)(n). ()
Until further notice, let Y = 3. Let §; , be the Borel graph on X such that if x # y, then x, y are adjacent iff
8in(x) = yorg;,(y) = x. Then each vertex of ; , has degree at most two. Hence there exist Borel 3-colorings
cin:X — 3. Foreachn € §3; and y € X, define

FO) ) = cin(y) &)

Claim 5
’Tfpi has type III and p; f(x) = f(y), then x E y.

Proof ...

If p; f(x) = f(y), then y = g;(x), the unique candidate, and so g;! (y) = x is defined as well as gl_,} (y)
foreachn € S3;. Fix somen € S3;.

Case 1. Suppose gi»(y) = y. Then y =y, '¢;'(y) = y, 'x and so they are in the same orbit and thus
are Eoo equivalent.

Case 2. Next suppose g;,»(y) # ». Then the ¢; ,(¥) # c¢in(gi,n(y)); and hence (1) and (}) imply that
pi f(x) # f(¥). n

This completes the proof of part (ii) of Theorem 8 A * 1. So now we wish to show part (i): that G ~ 2F2XN g
measure universal.
8A+5. Observation

Suppose that for every Borel probability measure ;1 on X, there exists a Borel subset A C X with u(4) = 1
such that E, [ 4 is Borel reducible to (the orbit equivalence relation of) G ~ 2F2XN_ Then G ~ 2F2XN g
measure universal.

Proof ...

Let E be a countable Borel equivalence relation on a standard Borel space Z.
Let v be any Borel probability measure on Z.

Let ¢ : Z — X be a Borel reduction from E to E.

Let u = ¢ * v, the push-forward.

By the hypothesis, there then exists a Borel subset A € X with u(4) = 1 such that Eo [ A is Borel
reducible to G ~ 2PN Let Z; = ¢~1(A) by definition of the push-forward. Then v(Zy) = 1 and
E } Z, is Borel reducible to G ~» 2F2*N, -

Let 1 be any Borel probability measure on X. Now we use the following lemma to deduce the theorem. Then
we prove the lemma.

— 8A-+6. Lemma
For any standard Borel space X and Borel partial injections go, g1 : X — X, there exists a Borel subset
A C X with u(A) = 1 and Borel maps cg, ¢1 : A — 2 such that for all x € A either

1. there exists i € 2 such that (g; } A)(x) is undefined,
2. there exists i € 2 such that g;(x) = x; or
3. there exists i € 2 such that ¢; (x) # ¢; (g (x)).

Assuming Lemma 8 A * 6, we can complete the proof of part (i) as follows. Suppose p; has type Il so |S3,;| = 2.
As before, for each n € Sz, let g; , : X — X be the partial Borel injection defined by

gin(¥) =¥y gin(¥),
where p; ! (1,n) = (yn,n). Applying Lemma 8 A+ 6, let 4; C X be Borel with u(A;) = 1andletc;, : A; — 2
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be as in the lemma. For eachn € §3; and y € X, we define

cin(y) if € 4;
0 otherwise.

Jm) = {

Claim 1
’;‘pi has type III and p,-f(x) = f(y) forx,y € A;,thenx E y.

Proof ...
LThe proof is (practically) identical to Claim 5. -

Let A = ({A4; : p; has type III}. Then f M A is a Borel reduction from Es [ A. This completes the proof of (i)
of Theorem 8 A ¢ 1 assuming Lemma 8 A 6. So finally, we turn to the proof of the lemma.

Proof of Lemma 846 ...

For eachi € 2, let §; be the Borel graph such that x # y are adjacent iff g;(x) = y or g;(y) = x. Let S;
be the Borel subset of those x € X such that either

* x has no neighbors in %;; or
* the connected component of x has an element of degree 1.
Then there exists a Borel 2-coloring of S;. Hence, to simplify notation, we can suppose that S = S; = 0,
since we can deal with these easily. Let E; be the countable Borel equivalence relation on X defined by
x E; y iff x and y lie in the same connected component in ;. Note that each E; is aperiodic.
8A-7. Lemma
There exists a Borel partition X = B U C such that u([B]g,) = n([Clg,) = 1.

Assuming Lemma 8 A «7, we can prove Lemma 8 A « 6 as follows. Let A = [B]g, N [C]g,. Then:
» foralla € 4, [alg, N B # 0;
 foralla € 4, [a]g, N C # 9.

Also j1(A) = 1. Let T; be the Borel subset of a € A such that [a]g, € A. For each a € T;, either
* a has no neighbors in §; | 4; or
* the connected component of @ in §; [ A has an element of degree 1.

Thus there exist Borel 2-colorings ¢; : T; — 2. Hence, it is enough to consider the case when 7o = 77 = 0;
i.e. A is both Ey-invariant and E-invariant.

Let 4 be the graph obtained from G ['4 by removing edges {x, go(x)}, where x € B; and let 4] be the
graph obtained from §; [ 4 by removing edges {x, g1 (x)} for x € C. Then every connected component in
G is either a singleton, or else contains a vertex of degree 1. Hence there exist Borel 2-colorings¢; : 4 — 2
and of 4. Note that if x € A, then either x ¢ B or x ¢ C. Hence either {x, go(x)} is an edge of g or
{x,g1(x)} is an edge of . Thus either co(x) 7# co(go(x)), or c1(x) # c1(g1(x)). =

So all that remains is the (second) lemma.
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Proof of Lemma 8A 7 ...

Since Ey, E; are aperiodic, by The Marker Lemma (4 » 17), there exist decreasing sequences Ciocio...
of complete Borel E;-sections such that (), C;, = @. Let C, = C,? U Cnl. Then Cy 2 C; D --- and
ﬂn C, = 0. Also, each C, is a Borel complete section for both E¢ and Ej.

Let Ag be any Borel complete Eq-section (e.g. the whole space). We will define inductively a sequence
{A, : niseven} of Borel complete Ey-sections and a sequence {B, : n is odd} of Borel complete E-
sections, together with a strictly increasing sequence i, of natural numbers.

Given A4,, we define By, 4 as follows. Since A, = A, \ (), Cc = Uy An \ Cg, it follows that X =
U¢[4x\C(] E, since A, was a complete section. Hence there exists ani, > i,—1 suchthat u([4,\Ci,]E,)
1 — (1/2)". We define B,+1 = (4, \ C;,)°. Since B,4+1 2 Cj,, By+1 is a Borel complete section for £
which satisfies u([By,]g,) > 1 — (1/2)". Similarly, given B,, we define 4,11 = (B, \ C;,)° where
in > ip— satsifies u([B, \ Ci,1g,) > 1 — (1/2)".

v

Note that A}, and B;;, | = A, \ C;, are disjoint; as are B, and 45, ;. Also,

Aus2 = Burt \ Gy ) = (A \ G )\ Gy = (4, UG )\ Gy 2 4,
since C;,,,; € Ci,_, € Ay. Similarly, By, ,, 2 By It follows that |, .en 45> U, oqq By, are disjoint Borel
sets such that | J,, .44 BS meets p-almost every Eg-class and | J,, o, A5 meets p-almost every Ej-class. -

_|

Section 9. Odds and Sods

[class missed, notes transcribed from lecturer’s notes]

Our next target is the following consequence of MC.

— 9+1. Theorem
(MC) There exist uncountably many weakly countable universal Borel equivalence relations up to Borel reduction.

We first introduce yet another strong ergodicity notion.

— 9+2. Definition
Suppose that E and F are countable Borel equivalence relations on the standard Borel spaces X and Y, and that
[ is an E-invariant, Borel probability measure on X .

E is F-p-ergodic iff for every Borel homomorphism f : X — Y from E to F, there exists a Borel subset Z € X
with £(Z) = 1 such that f maps Z to a single F-class.

Note that if £ is F-pu-ergodic and f : X — Y is a u-measurable homomorphism from E to F, then there exists a
Borel subset Z € X with u(Z) = 1 such that f maps Z to a single F-class.

To see this, let g : X — Y be a Borel map where g(x) = f(x) for u-almost every x € X. Then
W = {x € X : g"[x]E is not contained in a single F-class}

is an E-invariant Borel subset of X with u(W) = 0. Hence, after adjusting g on W, we can suppose that g is a Borel
homomorphism from E to F. The result follows.

In Section 6, we proved the following theorem.
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— 9+3. Theorem

There exists a Borel family § = {G,, : « € 2N} of finitely generated groups, each with underlying set N, such that
the following conditions hold.

(a) Gg has a normal subgroup N, = SL3(Z).

(b) Gy has no nontrivial, finite, normal subgroups.

(c) Ifa # B, then Gg does not embed into Gy .

For each € 2N, consider the shift action G, v 26« = 2N Then the uniform product probability measure 1 on 2N
is Gy-invariant and

Xe={xe2N:g.x#xforalll #ge Gy}
satisfies u(X,) = 1. Let E4 be the orbit equivalence relation of G, 3 X. Applying Popa Superrigidity (6 A « 3), we
obtain the following theorem.

— 9+4. Theorem
If o # B, then Eg is Eq-p-ergodic.

In particular, E,, is not weakly universal. On the other hand, =1 X E, is clearly weakly universal.

— 9+5. Theorem
(MC) If o # ,3, then (ET XE/}) %B (ET XEa).

We will need to work in a forcing extension VP = MA 4- —CH. So we first need to establish some absoluteness results.
Recall the definition of MC from Martin’s Conjecture (7 ¢ 5). We want to understand the complexity of this statement.
For this, we need a parametrization of the Borel relations R C N » ON.

—— 9:6. Theorem (Classical Theorem)
There exist subsets D € 2N and P, S C (2N)3 such that:
1. DisTIi, PisTI},and S is =};
2. Ifd € D, P; = S;, where
Py ={(x,y):(d,x,y) € P}
Sd = {<X,y) : (d»XJ’) e S}
Foreachd € D,let D; = P; = S,.
3. {Dg:d € D} = {R € 2N x 2N : R is Borel}.

Now consider F = {d € D : D, is a function}.

9-7. Observation
F is H%.

Proof ...
LdeFiffdeDand

VxVyVz ([Sd,x,y)ASd,x,z)] >y =2z)-

As a matter of notation, for each d € F, let F; be the corresponding Borel map.

It is now easily seen that MC is a I1} statement. We need to find a less complex formulation.

9-.8. Definition

(MC) If £ : 2N — 2N is a Borel homomorphism from =t to =, then either:
(a) forall x € 2N, there exists x <t y such that f(y) <t y; or

(b) forall x € 2N, there exists x <t y such that y <t f(y).

Note that MC' is a 1} statement. Of course, we should want MC to be equivalent to this.
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9:9. Theorem
WC < MC'.
Proof ...

Assume MC and let f : 2N — 2N be a Borel homomorphism from =t to =y. Suppose there exists a cone
C < 2N such that £ maps C to a single class [r]=,. Then for each x € 2%, there exists y € C such that x <t y
and f(y) =rr <ry.

Similarly, if there exists a cone C C 2N such that z <t f(z) forall z € C, then for all x € 2V, there exists
x <t y such that y <t f(y). Hence MC' holds.

Conversely, assume MC’ and let f : 2N — 2N be a Borel homomorphism from =t to =r. If (a) holds from
Definition 9 ¢ 8, then

A={ye2V: f(y) <)
is a <r-cofinal =p-invariant Borel subset of 2N. Hence, by Martin’s Theorem (7 « 2), there exists a cone C C A4;
and by Slaman-Steel (7 * 6), there exists a cone D C C such that f maps D into a single =r-class. Similarly, if
(b) holds, then there exists a cone C < 2N such that y < f(y) forall y € C. =

We also have two more absoluteness results, both immediate consequences of Shoenfield’s absoluteness theorem.

— 9°+10. Theorem
If V E MC and P is any notion of forcing, then VP = MC.

— 9+11. Theorem

Suppose that E, F are Borel equivalence relations on the standard Borel spaces X, Y and that f : X — Y isa
Borel reduction from E to F. Therefore, if P is any notion of forcing then /¥ : X¥ — Y is a Borel reduction
from EP to FP.

[end of class missed]

Let’s recall what we’ve done and what we’re working towards.

9:12. Theorem
HAC) There exist uncountably many weakly countable universal Borel equivalence relations up to Borel reduction.

The idea is to have a whole bunch of countable Borel equivalence relations E,, @ < 2X0 such that they are “mutually
ergodic”, so that are really incompatible. They are not weakly universal, however.

The following are upwards absolute:
* MC
» E <y F for Borel equivalence relations £ and F
The thing we’re trying to prove is the following.
— 9+13. Theorem
(MC) If a # B, then (=1 XEp) £g (=1 XEq).

We will use the following consequence of MA + —CH.

— 9+14. Theorem

If 41 is a Borel probability measure on a standard Borel space X and Z C X is XJ, then Z is j1-measurable.

Proof ...

Since Z is E%, there exist Borel subsets Ay, @ < ®; such that Z = | J
J-measurable.

Aq. We want to show that Z is

a<wi
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Let B € Z be a Borel subset such that Z \ B has inner measure 0 (meaning there’s no Borel subset of positive
measure). Then for each ¢ < wi, w(A4q \ B) = 0. By MA 4+ —CH, the union UM&)] Ay \ B = Z \ B has
u-measure 0. Thus Z = B U (Z \ B) is u-measurable. =

Proof of Theorem 9+ 13 ...

Suppose that for some o # B, f : 2N — Xpg — 2N x X, is a Borel reduction from =t xEg to =1 XEy. Then
we can suppose that MA + —CH holds. By upward absoluteness, MC still holds, and f is still a Borel reduction.

Let A, p be the Borel maps such that

Sf(r.x) = (A(r, x), p(r, x)).
For each x € Xg, let py : 2N — X, be the Borel map defined by p,(r) = p(r,x). Then py is a Borel
homomorphism from = to E,. Since E, isn’t weakly universal, by MC, there exists a cone C, 2N such that
px maps Cx to a single Ey-class; say, Dy.

Suppose that y Eg x and r € Cy. Then since (r, y) (=1 xE) (r, x),

py(r) = p(r.y) Eq p(x,y) = px(r),
and so py (r) € dyx. Hence if y Eg x, then b, = dy.

Consider the relation R C Xg x X defined by
R(x,z) iff FsVr(s<rr— p(r,x) Ey z).
Intuitively, this translates z € d,. Then R is Z;. By Kond6’s theorem, there exists a Z;-uniformization function
h:Xg — X, for R. Thus h(x) € b, forall x € Xg. If U € X, is open,
h"U ={x € Xpg:3y (y e U ANh(x)=y)}
and so h71"U is £]. By MA + —CH, it follows that h~!"U is pu-measurable. Thus & : Xg — X4 is a u-

measurable homomorphism from Eg to Ey. Since Eg is E4-pu-ergodic, there exists a Borel Z € Xg with
w(Z) = 1 such that & maps Z to a single E,-class; say, c: forevery x € Z, h(x) = by = c.

For each x € Z, let A, : 2N — 2N be the Borel map defined by A.(r) = A(r,x). Then A, is a Borel
homomorphism from =1 to =1. If r, s € Cy, then p(7, x), p(s, x) € ¢; and hence r =7 s iff Ax(r) =1 Ax(5).
Thus A is a enduces a Borel reduction from =t | Cx to =r. Hence by MC, there exists a cone Dy C [A,"Cx]=;.

In particular, choosing x, y € Z with [x]g, # [y]E,, there exist r € Cx and s € Cy, such that A (r) =t A, (s).
But then f(r,x) (=1 xEy) f(s,y), a contradiction. =

Now we have a concept by Simon, with a name by Kechris.
9+15. Definition

A countable group G is (weakly) action universal iff there exists a standard Borel G-space such that £ g is (weakly)
universal.

For notation, if G is countable and X is a standard Borel space,
+ E(G, X) is the orbit equivalence relation of G ~» X©.
* F(G, x) is the free part of E(G, X).

We have the following easy theorems.

9+16. Theorem
Fthe countable group G has a nonabelian free subgroup, then G is action universal.

Proof ...
LSince [, embeds in G, it follows that Ee, = E(F,2) <g E(G,2). =
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9+17. Theorem
’I‘ G is a countable, amenable group, then G isn ¥ action universal.

The proof of Theorem 9 17 is delayed. First, we should define what “amenable” means.

9-+18. Definition

countable group G is amenable iff there exists a finitely additive probability measure i : ®(G) — [0, 1] such that
forall A € G and g € G, u(Ag) = pn(A).

Alternatively, under choice, G is amenable iff for every finite S € G and ¢ > 0, there is a nonempty finite 4 € G
such that forall s € S, |4 A As|/|A| < e. This shows that amenability is absolute.

The two theorems above suggest the possibility of a “dynamical” version of the von Neumann conjecture: is it true that
if G is a countable group then the following are equivalent?

i. G is action universal.
ii. G contains a nonabelian free subgroup.

If we replace (i) by “amenable”, this is von Neumann’s conjecture, and is false. Thomas’ conjecture is that the answer
is no. Marks’ conjecture is that the answer is yes.

We begin working towards a proof of Theorem 9 ¢ 17. First, the following theorem due to Day.

9+19. Theorem
If G is a countable group, then the following are equivalent:
1. G is amenable.
2. There exists a sequence of functions f;, : G — RZ? such that f, € £,(G), || f»|l1 = 1 and such that for all
g € G, limyco || fo — fi' 1 = O where £,F (h) = fu(hg).

Remark: each f, can be regarded as a probability measure on G.

Proof of Theorem 9+ 19 ...
The proof of (ii) from (i) involves functional analysis, and will be skipped. For (i) from (ii), for each n € w,
define py, : @(G) — [0, 1] by un(A) =Y cq fula).

Let U be a nonprincipal ultrafilter on . Then pu(A) = limy p, (A) satisfies our requirements.

Here, for (x, : n € ®) a bounded sequence, limy x, is the unique £ € R such that for each ¢ > 0, {n € » :
|rn — €| < €} € U. It’s not difficult to show such an £ exists. =

— 9+20. Definition

et E be a countable Borel equivalence relation on X. Then E is 1-amenable iff there exist Borel f, : E — R=°
such that, letting £, (y) = fu(x,y),

L fF e tu(fxlg) with || fF]lr = 1.

2. Ifx E y, then limy—oo || ;¥ — i l1 = 0.

— 9+21. Proposition

If G is a countable amenable group and X is a standard Borel G-space, then £ g is 1-amenable.

Proof ...
Let ( f, : n € w) witness that G is amenable as in Theorem 9 « 19. For each n, define g, : Eé( — R=% by

gn(x,2) = D fulo):

gx=z

Clearly, if x € X, then g¥ € El([x]Eér) and ||g¥ |1 = 1. Suppose that x EX y. Then there exists an & € G such
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that hx = y. Foreach z € [x]Eg, gn(z) = Zg-x:z fn(g) and
—1 —1
g = Y fl@= > K =D £ (9.
ghx=z ghx=z g-x=z
Since || f, — fnhf1 |1 tends to 0, it follows that || g — g ||1 also tends to 0. =

In particular, hyperfinite Borel equivalence relations are 1-amenable (because they can be realized by a Z action, and
Z is amenable). It is not known whether the converse of this statement holds: it’s conceivable that hyperfiniteness and
1-amenability are the same.

The converse of Proposition 921 doesn’t hold. And there is an interesting counterexample. Consider the action of
GL,(Z) (2 x 2-matrices with determinant +1) on R U {oo} given by

a b ar +b

r=——.

c d cr+d

This action is hyperfinite.
—— 9+22. Proposition

Suppose G is a countable group and X is a standard Borel space with invariant probability measure u. If G ~» X
is p-almost everywhere free, and E é is 1-amenable, then G is amenable.

—— 9+23. Corollary

E isn’t 1-amenable.

Proof ...
F, ~ (2%2, u) is p-almost everywhere free and [F, isn t amenable. .

Proof of Proposition 922 ...
Let (¢, : n € w) witness that Eg is 1-amenable. Define

1) = [ i) auc)
Then clearly f, > 0. Also

> h@=X [ = [ X eienwen = [ 5 o,
yelx]

geG geG geG
since the action is p-almost everywhere free. Note that by definition, this is just 1.

Finally, if 4 € G, then by definition,
1w = Sl =Y 1 fa(®) = fulgh)]

geG

-

geG

-

geG

52/

geG

5/2

geG

/ G (g - x) dpu(x) — / o (gh - x) du(x)

/ o (g - ) du(x) — / o' (g x) dp(x)

w,f(g'X)—soh_lx(gOX)‘ du(x)

h—l
(pr): —¥n *

@f(g-X)—fph_l"(gW)‘ du(x) = /‘ | dn),

which goes to 0 as n goes to co.
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Thus to prove Theorem 9 ¢ 17, it is enough to prove another proposition. Note that it suffices to prove (i), but doing so
we need to prove (ii) and (iii).

9-+24. Proposition

Let E, F be countable Borel equivalence relations on X, Y.
(1) If E is 1-amenable and F <g E, then F is 1-amenable.

(ii) If E is 1-amenable and A € X is Borel, then E ' A is 1-amenable.
(iii) If A € X is a complete Borel E-section and E ' A is 1-amenable, then E is 1-amenable.

Proof ..

Assuming (ii) and (iii), we can prove (i) as follows. Let f : ¥ — X be a Borel reduction from F to E. Then
A = f"Y is a Borel subset of X and there exists a Borel map g : A — Y such that f(g(a)) = a foralla € A.
Also, B = g"A is a Borel complete F-section. Note that g ' A is a Borel isomorphism between £ | A and F | B.
Also, by (ii), E | A is 1-amenable and hence so is F | B. Since B is a Borel complete F'-section, (iii) implies that
F is 1-amenable.

(i) Let (f, : n € w) witness the 1-amenability of E. If A is E-invariant, then (f, | E N A?) witnesses the
l-amenability of E } A. Hence we can assume that A is a Borel complete E-section. Let ¢ : X — A
be a Borel map such that ¢(x) E x forall x € X. For x,y € A with x E y, define g (y) to be
Zep-1(y)Ju (2). Then (g : n € ) witnesses the 1-amenability of £ | A.

(iii)) Let ¢ : X — A be a Borel map such that ¢(x) E x forall x € X. For x, y € X with x E y, define

ey = [F0) ifyea
" 0 otherwise.
Then (g, : n € w) witnesses the 1-amenability of E. —

— 9+25. Definition

If G is a countable group, then Sg(G) is the space of subgroups H < G (a compact subset of 29); and ~¢ is the
conjugacy relation on Sg(G):

K~gL iff 3geG (gKg ' =L).

— 9+26. Theorem

(MC) If G is a countable group, then the following are equivalent.
(1) ~¢ is weakly universal.

(i1) G is weakly action universal.

Proof ...

That (i) implies (ii) is trivial. So suppose (ii) holds. Let X be a standard Borel G-space such that E g is weakly
universal. Suppose &g isn’t weakly universal. Sonsider the Borel map ¢ : X — Sg(G) given by ¢(x) = Gy
(the stabilizer). Then ¢ is a Borel homomorphism from E g to rg.

Next, let ¥ : 2N — X be a weak Borel reduction from =7 to Eg; and let 6 = ¢ o . Then 6 is a Borel
homomorphism from =t to &~g. By MC, there exists a cone C C 2N such that § maps C to a single ~g-class.
By adjusting v if necessary, we can suppose that there exists a fixed K < G such that Gy,,y = K forallr € C.
For later use, note that =t [ C is weakly universal.

Let Xo = {x € X : Gy = K}. Then we have just seen that =1 |C <} Eg P Xo and so Eé( P Xo is weakly
universal. However, we will next show that E é( I Xo is essentially free, a contradiction.

1 1

Suppose x,y € X and x Eé y. Then there existsa g € G such that g - x = y. Since gKg~ = gGyg~ =
G, = K, it follows that g € Ng(K) (the normalizer). If & € G also satisfies hx = y, then hK = gK. Hence
E é P X is the orbit equivalence relation of the associated free Borel action of A = Ng(K)/K. It follows that
Eg | Xo is essentially free, contradicting that it is weakly universal. =
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But what can we prove from ZFC? Without MC, we can just prove the following much weaker version.

9:27. Theorem
’I‘ ~¢ 1s essentially free, then G is not weakly action universal.

To give an idea of how little is known, consider the following question: is the converse true? Thomas’ conjecture (and
belief) is “no”. Although he changes the conjecture in the last minute of class to be “yes”.

We will make use of the following theorem of Hjorth et al.

9+28. Theorem
’:“the countable group G has a nonabelian, free subgroup, then ~¢ is countable universal.

Proof of Theorem 927 ...
Suppose G is weakly action universal but that ~¢ is essentially free. Then there exists a countable H and a free
standard Borel H -space Z such that ~g<g E g Let ¢ : Sg(G) — Z be a Borel reduction from ~¢g to E 5 Let

L be a finitely generated group with no nontrivial finite normal subgroups such that L doesn’t embed into H and
let I' = SL3(Z) x L.

Let X be a standard Borel G-space such that £ g is weakly universal and let ¥ : 2 — X be a weak Borel
reduction from E(I',2) to E g . Let o : X — Sg(G) be the Borel homomorphism defined by o(x) = Gy (the
stabilizer). So we have

T Y x5 se6) Sz
Let 6 : 2F' — Z be defined by § = ¢ o 0 o ¢. Then 6 is a Borel homomorphism from E (T, 2) to Eg By Popa

Superrigidity (6 A« 3), since L doesn’t embed into H , there exists a Borel subset ¥ € 2T with 1(Y) = 1 such
that 6 maps Y to a single E fl—class.

Since ¢ is a Borel reduction, o o ¥ maps Y to a single ~g-class. After adjusting ¥ if necessary, we can suppose
that there exists a single subgroup K < G such that (the stabilizer) Gy () = K forall y € Y. Let Xo =
{x € X : Gx = K}. Then Eé( P Xo can be realized by the corresponding free action of A = Ng(K)/K. Since
¥ 1Y is u-nontrivial, by Popa Superrigidity (6 A « 3), there exists an embedding I' < A. Since SL3(Z) < T,
it follows that A contains a nonabelian, free subgroup. It follows that Ng (K) has a nonabelian, free subgroup.
By Theorem 9 « 28, since G has a nonabelian, free subgroup, ¢ is countable universal and hence not essentially
free, a contradiction. —

Most questions concerning ~¢ are open. For example, note the following observation to motivate the first question.

9+29. Observation
FG, H are countable and there exists a surjective homomorphism 7 : G — H, then ~g <p ~g.

Proof ...
LLet f :Sg(H) — Sg(G) be defined by f(K) = #~!"K. Then f is a Borel reduction from ~ g to ~¢. =

—— 9+30. Open Problem
Suppose H < G. Does it follow that ~ g <g x~g?

— 9-+31. Definition
subgroup H < G is malnormal it gHg ' N H = 1forallg € G\ H.

For example, let F, = (a,b) < F3 = (a, b, c¢). Then [, is malnormal in F3.

Note that if H is a malnormal subgroup of G, then clearly ~g < ~¢g. Also, if H < G is a counterexample to Open
Problem 9 « 30, then G has no nonabelian free subgroups.
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9+32. Open Problem
’7Let E be any countable Borel equivalence relation. Does there necessarily exist a countable G such that £ =5 ~g?

Really, the question is what kinds of relations can be realized as ~¢ for some G? For now, we at least know there are
uncountably many.

— 9+33. Theorem

There exists an uncountable family {G,, : @ < 2%} of finitely generated, nonamenable groups such that if @ # B,
then ~¢, and ~¢ 4 are incompatible with respect to <g. In particular, none are universal. And furthermore, each
~ g, 1s essentially free and hence not weakly universal.

To prove this, we require a bit of background.

— 9-+34. Definition
If H is any group, then the (restricted) wreath product C, wr H is defined as follows. Foreachh € H,let Cy, = (cp)

be cyclic of order 2. Then the base subgroup is B = @,y Cr, and C, wr H = B x H where gerg = cgp for
g.heH.
— 9+35. Lemma
If H is a countable group and G = C, wr H, then E(H,2) <p =g.
Proof ...
Foreach A C H, let
Ki=EPC.<B<G.
acA
Let g € G be any element. Then there exist 7 € H and b € B such that g = hb. Since B is abelian,
gKag ! = hbKab 'h™! = hK4h™' = Ky
Thus A > Ky is a Borel reduction from E(H, Z) to =g. =

9+36. Corollary
’I‘ H is an infinite sum of cyclic groups of order 2 and G = C, wr H, then ~¢ is nonsmooth and hyperfinite.

Each of our gropus will have the form G, = C, wr H, where H,, is a finitely gnerated, simple, quasi-finite group. In
fact, every simple, quasi-finite group is necessarily finitely generated. So the “finitely generated” can be removed, as
it’s redundant.

To see this, suppose that S is a counterexample. Then S is locally finite. Every infinite, locally finite group has an
infinite abelian subgroup (a nontrivial result). Since every proper subgroup is finite, it follows that S must be abelian.
But the only abelian, quasi-finite groups are Z(p*°) (which isn’t simple) and Q (which isn’t simple).

9.37. Lemma

Suppose H is a simple, quasi-finite group and X is a standard Borel H-space. Let Y = {x € X : H, # 1} be the
nonfree part of £ g Therefore E g 'Y is smooth.

Proof ...
Firstlet Z = {x € X : Hy = H}. Then Eg MZ is a clearly smooth. So we can suppose that Z = @. Fix an
element Fe of each of the countably many conjugacy classes C of nontrivial finite subgroups of H. If x € Y,
then H, is a nontrivial finite subgroup of H. Let C, be the corresponding cojugacy class containing H,; and
define

n(x)={yeH -x:H, =Fe,}.
We claim that 7 (x) is a nonempty, finite subset of Y. To see that 7 (x) is nonempty, choose g € H such that
gHxg™' = Fe, andlety = g-x. Then Hy, = gHxg™' = Fe_ andso y € m(x).
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Next suppose that y,z € 7(x) andlet 4 - y = z. Then

hFe h™' = hH,h ™' = H, = Fe_.
Thus i € Ny (Fe, ). Since H is simple, Ny (Fe, ) is a proper subgroup and hence is finite. Thus 7 (x) is finite.
Clearlyif H -x = H - y, then w(x) = n(y). Thus ¥ : ¥ — Y =% witnesses that Eg 'Y is smooth. =

Recall that simple, quasi-finite groups are necessarily finitely generated.

9:38. Lemma
Let H be a simple quasi-finite group and let G = C, wr H. Then there exists a free standard Borel space Z such
that EZ <p~g.

Proof ...
Let w : G — H be the canonical surjection. Then Sg(G) = Xo U X7 U X1 U X5, where
Xo=1{K €Sg(G) : n"K = H}
X1 ={K € Sg(G) : n"K is a finite nontrivial subgroup of H }
X; = {K €S¢(G) : n"K = {1z}}
Let’s see how complicated each of these are. Let B be the base group for G as usual: B = @,y Ch.

Claim 1
’7@(; M Xo is smooth.

Proof ...
Suppose K € Xg and g = hb € G be any element where h € H and b € B. Since 7" K = H, there exists
ac € Bsuchthatk = hc € K. It follows that, as B is abelian,
g(KNB)g ' =hg(KNB)g 'h ' =h(KNB)h™! = k(KN Bk,
as B is normal and k normalizes K, this is just K N B. Thus K N B <1 G. Also since K/(K N B) =~ H,

it follows that K is finitely generated over K N B and hence there are only countably many K’ € X, such
that K'N B = K N B.

Let = be the equivalence relation on X, defined by K = K’ iff K N B = K’ N B. Thus = is a smooth
(witnessed by sending K +— K N B) countable Borel equivalence relation. Since ~g | Xy C =, it follows
that =g | X is smooth. =

Claim 2
EG P X is smooth.

Proof ...

Let ¥ be a set of representatives of the counjugacy classes of countably many nontrivial finite subgroups
of H. Foreach F € ¥,let Xp = {K € Sg(G) : n"K = F}. Then ~¢ | X1 <g | |pey ~c [ XF;andso
it is enough to show that each ~g | X is smooth.

Fix some F € ¥ and let K € XF. Since K/(K N B) = F, there are only countably many K’ € X such
that K’ N B = K N B. Hence if ~ is the equivalence relation on X g defined by

K ~K' iff 3heNg(F)(h(KN B~ ' =K' NB),

then ~ is a countable Borel equivalence relation.

Since H is simple, Ny (F) is a proper subgroup and hence is finite and so ~ is smooth. Hence it is enough
to show that ~g [ Xfg C~.

Suppose K, K’ € Xp and gKg~' = K’. Let g = hb, where h € H and b € B. Then clearly h € Ny (F).
Also, K'NB=g(KNB)g7' =h(KNB)h ' andso K ~ K'. .
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By Claim 1 and Claim 2, ~¢ is Borel bireducible with ~g [ X,. Suppose K € X, and g = hb € G, where
he Handb € B. Then gKg™! = hKh™!. Thus ~ | X, can be realized by the corresponding H -action. Let
Z C X, be the free part of this action. By the previous lemma, ~g [ X, ~ E 5 as a simple, quasi-finite group.—

We will make use of the following theorem of Ol’shanskii (and folklore).

9:39. Theorem

If T is a noncyclic, torsion-free, hyperbolic group, then I' has a family {Hy = '/ Ny : @ < 2%} of uncountably
many non-isomorphic simple, quasi-finite quotients.

To apply Popa Superrigidity (6 A * 3), we want a Kazhdan group. So to use Theorem 9 39, we need to be careful about
the group we’re taking quotients of. Luckily there is a Kazhdan group with these properties. Since the quotients are
Kazhdan, we will be able to use Popa Superrigidity (6 A « 3).

9+40. Theorem
’There exists a noncyclic, torsion-free hyperbolic Kazhdan group.

Proof of Theorem 933 ...

Let I" be a noncyclic, torsion-free, hyperbolic Kazhdan group as per Theorem 9 *40; and let { Hy, = '/ Ny : @ <
2%} be a family of nonisomorphic, simple, quasi-finite quotients. Then each H,, is also a Kazhdan group.

Let Go = Cywr H,. Suppose that there exist « # B such that ~g, <p ~g4. Since E(Hy,2) <p XgG,,
we have that E(Hy,2) < ~Gy- Let Z be a free standard Borel Hg-space such that Gg <g Eflﬁ. Then
E(Hy,2) <p Eg So by Popa Superrigidity (6 A « 3), there exists a virtual embedding 7= : Hy — Hpg. Since Hy
is simple,  is an embedding. Since H, % Hg, m(Hy) is an infinite, proper subgroup of Hg, which contradicts
that Hp is quasi-finite. .

Now we discuss the conjecture of Marks. Really we will look at a slight weakening of his actual conjecture (self-
described as “ridiculously optimistic™).

— 9°+41. Definition
Let G be a countable group and let X be a standard Borel G-space.
Then E, é( is uniformly universal iff whenever H is a countable group and Y is a standard Borel H -space, then there
exists a Borel reduction f : ¥ — X from E}; to E 1}1( such that there exists a map (just a function)u : H — G

satisfying

f(hy) = u(h) f(y) *)
forally e Yandh € H.

In this case, we can suppose that

cu(l) =1,

e ifh # h™!, thenu(h™') = u(h)~! (as we will check).
To see this, suppose & # h~!. By assumption, forall y € Y,

f(hy) =u(h)f(y) andso f(y)=u(h)~" f(hy).

Let z € Y be arbitrary and let y = A~ 'z. Then f(h™'z) = u(h)~! f(z2).

9+42. Open Problem (Marks)
’; E=F g is countable universal, then E g is uniformly universal (for each G realizing £ = E é{ ).

As a convention, from now on, 2°)¢ = {f: f : G — 2°}.

9+43. Example
’7E([Fa,, 29) is uniformly universal. (Here [F,, is the free group on infinitely many generators.)
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Proof ...
Let H be a countable group and Y be a standard Borel H -space. Recall that there exists an injection ¢ : ¥ —
(2°)H such that forall y € Y and h € H, ¢(hy) = ho(y). Let & : F, — H be a surjective homomorphism
and define ¥ : (22)7 — (22)F» by

Y(x)(Q) = x(n(g) xe€) gel,.
Then ¢ is a Borel reduction from E(H,2%) to E([, 2?).

Letu : H — [, satisfy 7(u(h)™)) =h ' forhe H.Ifx € 2°)",h € H,and g € [, then

¥ (hx)(g) = (hx)(x(g)) = x(h' () = x(w(u() ™' g)) = Y (x)(h) "' g) = u(M)Y (x)(g).
Thus ¥ (hx) = u(h)¥(x), as desired. =

We have the following theorem due to Marks.
9+44. Theorem

If G is a countable group, then there exists a standard Borel G-space such that £ g is uniformly universal iff G has
a nonabelian, free subgroup.

Proof ...
(<) Suppose G has a nonabelian, free subgroup. Then there exists an embedding = : F, — G. Fix some
Po € 22, and define f : (22)Fe — (29)C by

Fog) = VX @) ifg eimn
Po

Then f is a Borel reduction from E(F,,2%) to E(G,2?); and it is easily checked that f(hx) = w(h) f(x)
forall i € F, and x € (2?). Taking compositions with the uniformly universal action from Example
9«43 yields that E(G, 2?) is uniformly universal.

(—) Suppose there exists a standard Borel G-space X such that E g is uniformly universal. Let I" = ;. I';
where each I'; = [F,. Then there exists a Borel reduction f : (22)T — X from F(T,2%?) to E g and a map
u:y — G suchthatforally € 2®)F andy €T,

Sry) =uly)f(y).

otherwise.

Applying Theorem 2 * 6 to
R={(f().y):y )"},
there exists a partition (22)I' = |l;ce, Ai (seen as the free part) into Borel pieces A4; such that f | 4; is
injective. By an extension of Marks’ Main Theorem (8 ¢ 17), there exists an i € w and a I';-equivariant,
injective, Borel map g going from 2°)1i = (29)f2to A;. Letgp = f og. Then¢ : 2°)F2 — X isan
injection; and if x € (2°)¥2 and y € F>, then
p(yx) = f(rg(x)) = u(y)e(x).

Let F, = (a, B). Then, after adjusting u if necessary, we can suppose u(a™') = u(a)~ ! and u(f™') =
u(B)~!. Leta = u(x) and b = u(B). If x € (2°)2 and w(e, B) is a nontrivial reduced word in «, B,
then p(w(a, B)x) = w(a, b)p(x). Since w(w, B)x # x and ¢ is an injection, it follows that w(a, b) # 1.
Then (a, b) is a free subgroup of G. -

Finally, we prove the following theorem.

— 9+45. Theorem
There exists a periodic group G of bounded exponent such that &~ isn’t essentially free.

To prove this, we need some preparation in the form of two theorems of Ol’shanskii.

— 9+46. Theorem

If H is a noncyclic, torsion-free, hyperbolic group, then there exists an integer ng such that H/H" is infinite for
alloddn > ngy.
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9:47. Theorem

For every sufficiently large, odd n, there exists a family {G, : o« < 2®} of nonisomorphic, 2-generator, simple
groups of exponent 7.

So we have our big guns, and can move on to proving Theorem 9 * 45

Proof of Theorem 9 *45 ...

Let H be a noncyclic, torsion-free, hyperbolic, Kazhdan group and let n be a sufficiently large, odd integer. Then
K = H/H" is an infinite Kazhdan group of exponent n. Also, let {G,, : @ < 2%} be a family of nonisomorphic,
2-generator, simple groups of exponent n. Let K be a d-generator group, and let B be the free Burnside group

on d + 2 generators of exponent n. Then for all « < 2%, K x G4 is a homomorphic image of B and so
E(K X G(X»z) <B E(sz)

Claim 1
’7E(B ,2) isn’t essentially free.

Proof ...

Suppose there exists a countable H and a free standard Borel H -space such that E(B,2) <g E}/I For
each @ < 2%, we have that E(K x Gy,2) <g E(B,2) < E{I Then Popa Superrigidity (6 A  3) implies
that there exists an embedding 7, : G, — H. Since we have uncountably many such g, there exist
uncountably many o # 8 such that 7,"G, = mg"Gg and hence G, = Gg, a contradiction. —

Let G = Cy wr B. Then E(G,2) <g ~¢ and so ~¢ isn’t essentially free. —
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