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Part I. Forcing Terminology

Section 1. The Purpose of Forcing

§1A. The Main Results

emain idea behind forcing is to expand a model of set theory by a new set. Moreover, we should do this in aminimal
way, and we should hope to preserve the membership relation, meaning that the new model should be transitive.

1A • 1. Theorem
Let V � ZFC be a transitive model. Let P 2 V be a poset.
A generic extension of V by G … V, written VŒG�, has the following properties:

1. G � P ;
2. VŒG� � ZFC is transitive;
3. VŒG� is the �-least transitive modelM of ZFC with V �M and G 2M .

(1) is a really where P comes into play: we attempt to find a set G not in V, but which still has some intelligible
structure to it. (2) is just a nice result of P being a set. (3) is the most important and motivating idea for us. e idea is
that, despite G not being in V, we carry out a bunch of potential constructions of VŒG� inside V (so-called P -names).
It is only through using G as a kind of oracle that allows us to form VŒG� by interpretting these constructions in V.

To figure out which G � P are appropriate, we have the following theorem relating truth in VŒG� with P in V. Here
p  ' is a notion definable in V which we will introduce later: it’s the forcing relation.

1A • 2. Theorem
Let P 2 V be a poset. Let G � P be “generic”. erefore, VŒG� � ' iff there is some p 2 G with p  '.

Interpretting the forcing relation requires a lot of work, and there are many perspectives to take on it. Regardless, one
can always take the formal approach, using the definition of it in V from Appendix A.

§1B. Philosophy behind the method

If we’re working with the actual universe of sets, the existence of these generic setsG … V is called into question. is
worry can be alleviated in several ways. Firstly, we can regard ourselves as working in a relatively small inner model,
assuming that for each P 2 V, there is a G … V. L, for example, consistently has relatively few sets, so it should be
a little more understandable for there to be these G … L, although this still depends on what sets exist in the ambient
universe.

Secondly, many authors work with countable transitive models as sort of toy models of set theory to play with. With
such models, the existence of these Gs is provable from ZFC. Unfortunately, the existence of these models does not
follow from ZFC by Gödel incompleteness. is sub-worry can be alleviated when we acknowledge what the purpose
of forcing is: consistency results. In particular, we only need to worry about countable transitive models of finite
fragments of ZFC, which do exist assuming ZFC is consistent.i So if we’re trying to show the consistency of some

ie coded version of this statement doesn't follow from ZFC. More precisely, for every actually finite fragment of ZFC, we get these models. But
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theory Con.ZFC C T / assuming Con.ZFC/, it suffices to show Con.� C T / from Con.�0/ where �;�0 � ZFC are
sufficiently large fragments of ZFC. In other words, we get sufficiently large finite fragments of ZFC C T for some
theory T , demonstrating that ZFCC T is consistent by the compactness theorem.

ere is a third interpretation of the generic extension by way of Boolean valued models, where truth value is not taken
to be either 0 or 1, but instead an element of a Boolean algebra. Under this interpretation, a suitable ultrafilter G tells
us how to interpret the non-strictly-true and non-strictly false statements as either true or false. Alternatively, if we
forgo the existence of such a G, the resulting Boolean algebra can still allow us to see whether a certain theory T is
consistent relative to ZFC: in the Boolean valued model, each formula of ZFC has truth value 1, and perhaps so do all
the elements of T . One can show using logic that this shows the consistency of ZFCC T .

We will mostly just consider V to be a transitive inner model in the ambient universe, and we just assume that every
poset P 2 V and p 2 P we consider will have a generic G.

some models of ZFC think there are finite fragments of ZFC that are inconsistent, because it misinterprets what “finite” means (and so it misinterprets
both ZFC and first-order logic).

2
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Section 2. Names, Possible Worlds, and the Forcing Relation

First we will consider what VŒG� will actually be, and then we will consider truth in VŒG�. e idea behind what VŒG�
will be is a bunch of conditional constructions that, once we have access to G is, can be thinned out to yield what we
were trying to construct dependent on G. is yields a kind of forcing to be true in that knowing just a bit aboutG can
already determine the outcome of some constructions.

§2A. Names

For G … L, there is already the notation of LŒG�. Recall that L is defined recursively:
L0 D ; L˛C1 D ¹x � L˛ W x is definable over hL˛;2iº L D

[
˛<

L˛ , for  a limit.

So at each stage, we’re taking definable subsets. What is the natural model ofL that includesG (given thatG � P 2 L)?
Well, we just make G a definable subset of P : rather than consider definable subsets of hL˛;2i, we allow membership
in G as a predicate:
L0ŒG� D ; L˛C1ŒG� D ¹x � L˛ŒG� W x is definable over hL˛ŒG�;2; Giº L ŒG� D

[
˛<

L˛ŒG�, for  a limit.

Clearly if G were in L already, this wouldn’t make a difference: LŒG� D L. Moreover, any inner model M with
G 2 M can do this construction: L � M already, and G 2 M allows one to consider all of these stages. Hence LŒG�
is the least inner modelM of ZFC with G 2 M (assuming G � P 2 L). is is kind of the gold standard we want to
emulate when forming the generic extension, and it motivates the idea of a name.

Suppose V has access to G. What sets can V form from G? V doesn’t know what G is, but it can at consider
constructions from P , and then thin these out if it had access to G. e idea is to tag elements at each stage of the
construction with elements of P : look at things of the form hx; pi for p 2 P . Once we have access to G, if p … G, we
throw out x, and if p 2 G, we include it. For example, ¹hp; pi W p 2 Pº will be thinned out to G, as we only include
the first coordinate of hp; pi where p 2 G.

e idea is that each set is tagged with an element of P , and we just consider the elements tagged with an element of
G. We can also iterate this concept: the set ¹h0; pi; h1; qiº will be thinned out to8̂̂̂<̂

ˆ̂:
¹0; 1º if p; q 2 G
¹0º if p 2 G ^ q … G
¹1º if p … G ^ q 2 G
; if p; q 2 G.

2A • 1. Definition
Let P 2 V be a set. A P -name is defined by recursion on rank: define

• VP
0 D ;;

• VP
 D

S
˛< VP

˛ for  a limit;
• VP

˛C1 D .P .V
P
˛ � P//V.

Say that � is a P -name iff � is in VP D
S

˛2Ord VP .

Each x 2 VP can be “thinned out” once we’re given access to G. In particular, we have the following interpretations.

3
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2A • 2. Definition
Let P 2 V be a set, and G � P , possibly not in V. For a P -name � , define by recursion on P -name

�G D ¹�G W 9p 2 G .h�; pi 2 �/º.

So, for example, ; is a P -name, as is � D ¹h0; pi W p 2 Pº. As G ¤ ;, this is a P -name for �G D ¹0º D 1. Note that
there can be multiple P -names for a single set. For example, for p; q 2 G and p0; q0 … G, ¹hx; pi; hx; qiºG D ¹xGº.
We also have a P -name for G itself.

2A • 3. Definition
Let P 2 V be a set. For x 2 V define Lx 2 VP recursively to be ¹ Ly W y 2 xº � P .

For example,
• L; D ; � P is a P -name for ;;
• L1 D ¹L0º � P is a P -name for 1;
• L2 D ¹L0; L1º � P is a P -name for 2;
• .x [ y/zD Lx [ Ly is a P -name for x [ y;
• ¹x; yºzD ¹h Lx; pi; h Ly; pi W p 2 Pº is a P -name for ¹x; yº; etc.

One can easily see that Lx is inductively a P -name, and that its interpretation is just x.
2A • 4. Result

Let P be a set and ; ¤ G � P . Let x 2 V. erefore . Lx/G D x.

Proof .:.
Proceed by induction on the rank of x. Inductively, . Ly/G D y for each y of lower rank, in particular, for y 2 x.
Hence we can calculate

. Lx/G D ¹h Ly; pi W y 2 x ^ p 2 PºG

D ¹. Ly/G W 9p .h Ly; pi 2 Lx/º

D ¹. Ly/G W y 2 xº D ¹y W y 2 xº D x a

is also gives a P -name forG itself: ¹h Lp; pi W p 2 Pº. Hence, by the following definition, V � VŒG� andG 2 VŒG�.
2A • 5. Theorem

Let P 2 V be a set and ; ¤ G � P . Define VŒG� D ¹�G W � 2 VPº. erefore,
1. V � VŒG� and G 2 VŒG�;
2. VŒG� is transitive; and
3. Any transitiveM � ZFC with V �M , G 2M has VŒG� �M .

Proof .:.
1. Lx has . Lx/G D x 2 VŒG� so that V � VŒG�. We have the name PG D ¹h Lp; pi W p 2 Pº for G so that
G D . PG/G 2 VŒG�.

2. To see that VŒG� is transitive, let x 2 �G 2 VŒG� where � 2 VP . erefore, x D �G for some � 2 VP so
that x D �G 2 VŒG�.

3. Any suchM with V �M can construct each P -name: VP �M . Since G 2M , for each P -name � of V,
we can construct �G (M knows enough set theory to carry out these constructions). Hence VŒG� �M . a

So already we have a kind of “minimal” model by expandingV toVŒG�. But it’s not obvious howwe can knowwhether
VŒG� � ZFC or not. Indeed, it’s not at all obvious how to calculate truth in VŒG�. Just from it being transitive, finding
the right P -names allows us to argue by absoluteness that VŒG� models pairing, union, and some of the other simple
axioms. But going further than this isn’t easy, especially when VŒG� differs from V on some statement.

§2B. Posets, information, and Forcing

Recall the definition of a poset (a partially ordered set).

4
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2B • 1. Definition
A poset is a structure hP ;6i where 6 � P � P is reflexive, transitive, and anti-symmetric, meaning

• (reflexive) for all p 2 P , p 6 p;
• (anti-symmetric) for all p; q 2 P , p 6 q 6 p implies p D q; and
• (transitive) for all p; q; r 2 P , p 6 q 6 r implies p 6 r .

In some sense, we don’t really need reflexivity, as any non-reflexive hP ; <i has a corresponding reflexive version hP ;6i
where we just consider 6 D < [ ¹hp; pi W p 2 Pº. e concept of a poset should be fairly familiar, as it corresponds
to directed graphs (that are transitive) with no loops.ii

We will be viewing posets as coding information. Consider the following analogy with knowledge and discovery.
Currently, we have a fair amount of knowledge p. At a later point in time, we could make discoveries such that we
know q or r . In this way, we have an ordering on our knowledge. Given that more precise, specific information is less
likely to be true in general, we say that p� 6 p to represent that p� has more information than p. is gives a kind
of poset, and motivates the terminology of p 2 P as a “condition”. Moreover, this analogy allows us to introduce the
forcing relation already: p forces something to be true if p has enough information to determine it.

2B • 2. Definition
Let P 2 V be a poset with p 2 P . We say p forces a formula ', written p  ', iff p 2 G implies VŒG� � ' for all
appropriate G � P (to be made precise later).

2B • 3. Motivation
Let P be a poset. For p 2 P , write p� 2 P for an arbitrary p� 6 p (an arbitrary point in time after p). erefore,

1. if p  ' then every p�  ';
2. p  “:'” iff every p� 6 ', i.e. you can conclude it’s false iff you will never discover that it’s true;
3. p  “' ^  ” iff p  ' and p   ;
4. if p  “9x '.x/” then there is some p� 6 p and � where p�  “'.�/”; and
5. if p  ', and ' is logically equivalent to  , then p   ;

Note that this is very intuitionistic. ere is actually a fairly close connection between forcing and intuitionistic
logic [1]. Note, for example, p 6 ' is not equivalent to p  “:'”. e motivation behind (4) is that if we know
something is true, we should be able to discover an example.

2B • 4. Corollary
Let P be a poset, p 2 P , and ' a formula. erefore, p  ' iff every p�  '.

Proof .:.
e “!” direction is clear. For the “ ” direction, suppose p 6 ', i.e. p 6 “::'”. By (2) of Motivation
2B • 3, there is then an extension p�  “:'”, contradicting that every p�  '.

e idea given by the proof also shows the following: if it’s currently unclear whether something is true, it will be
decided later.

2B • 5. Corollary
Let P be a poset, p 2 P , and ' a formula. erefore, p 6 ' and p 6 “:'” implies there are q; r 6 p where q  '

and r  “:'”.

In the end, our goal will be the following.
2B • 6. Theorem

Let P 2 V be a poset. Let G � P be “generic”. erefore, VŒG� � ' iff there is some p 2 G with p  '.

iiWe don't even need anti-symmetry really: the result are preorders where we can mod out by the equivalence relation �—defined by p � q iff
p 6 q 6 p—to get a poset. Indeed that poset is forcing equivalent (gives the same generic extensions) as the original preorder, so there's no harm
in using only preorders, but posets are a more familiar object to most mathematicians.

5
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Proof .:.
Clearly if p 2 G has p  ' then VŒG� � ' by Definition 2B • 2. So suppose VŒG� � ', but every p 2 G has
p 6 '. So every p� 6 ' too for p 2 G because G is “generic”. us p  “:'” for p 2 G by the unproven
Motivation 2B • 3. erefore VŒG� � :', a contradiction. a

So really we need a notion that ensure the forcing relation as defined in Definition 2B • 2 obeys Motivation 2B • 3. So
this partially motivates what G should look like: we obviously need all p 2 G to be compatible with each other in
a precise sense. We also need G to interact nicely with extensions: we need to be able to extend elements of G with
certain properties as needed. We will see later that this amounts to being a filter and intersecting dense sets.

6
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Section 3. Poset Topology

Properties of the generic G will be induced by the topology of the corresponding poset P . e topology on posets is
given by their ordering relation. In particular, basic open sets are just sets that are closed downward.

3 • 1. Definition
Let P be a poset. For p 2 P , the basic open neighborhood around p is P�p D ¹q 2 P W p 6 qº, i.e. everything
below p. e poset topology on P is the topology generated by these: ¹P�p W p 2 Pº.

3 • 2. Corollary
Let P be a poset. erefore U � P is open iff U is closed downward: p 2 U and q 6 p implies q 2 U .

Proof .:.
If U is closed downward, then for every p 2 U , P�p � U and hence U is open. If U is open, note that U has
been generated by the basic open neighborhoods, which are closed downward. To be generated by these basic
open sets, U must be an arbitrary union of finite intersections of these P�ps. ese finite intersections are easily
seen to be closed downward, and unions of sets closed downward are also closed downward. Hence U is closed
downward. a

Without appealling to topology, one can make the following result a definition.
3 • 3. Corollary

A setD � P is dense iffD intersects every open set. usD � P is dense iff for every p 2 P , there is some p� 6 p

where p� 2 D. In other words,D is dense iff we can always extend a p to a p� 2 D.

Proof .:.
SupposeD is dense with p 2 P . SinceD \ P�p ¤ ;, there is some p� 6 p with p� 2 D.

§3A. Density

For the most part, the above ideas are not used: we do not care about topological definitions in general. We really
only care about sets closed downward, and sets where we can always go downward into the set. In the analogy with
knowledge and discovery, these correspond to things that always remain true (closed downward), and things that always
have the potential to be true (density) in that for any point of time p, it’s always possible to discover at a later time p�

that it’s true.

e notion of being able to extend an element is incredibly important for us. We thus have two additional notions for
posets.

3A • 1. Definition
Let P be a poset. Let p; q 2 P . We say that p and q are compatible iff there is a common extension r 6 p; q.
We say that p and q are incompatible, written p ? q, otherwise: there is no common extension.

Easy examples of compatible elements include any two comparable elements: p� 6 p implies p and p� are compati-
ble. e basic pictures of compatibility and incompatibility are below.

ere need not be a common predecessor to p and q if p ? q, as the figure above suggests. But we will only consider
posets where this occurs, sometimes artificially adding a maximal element to P to ensure that this happens.

In the context of forcing, if p and q are compatible, then there are no conflicts with what they force: there is no ' with

7
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p q

r

Compatible elements
p q

r

Incompatible elements

3A • 2. Figure: Compatibility of p and q in example posets

p  ' and q  “:'”. is follows from (1) of Motivation 2B • 3: a common extension r 6 p; q would need to
have r  “' ^ :'”, which would mean any G with r 2 G has VŒG� � “' ^ :'”, which is impossible. is still, of
course, depends on some knowledge about what G can be, but it provides some motivation on what we want G to be.

So we now have the fundamental concepts with posets: extending individual elements, and extending perhaps incom-
parable (but still compatible) elements. e notion of density is closely connected with the idea that “most” elements
have the property or at least are compatible with the property in a loose sense.

3A • 3. Lemma
Let P be a poset. Let D0 and D1 be open, dense sets in P . erefore D0 \ D1 is open, dense (and in particular,
non-empty).

Proof .:.
Since bothD0 andD1 are closed downwards, so isD0\D1, meaning it’s open. To show density, suppose p 2 P .
We can extend this to some p� 2 D0 and then to some p�� 2 D1. SinceD0 is closed downward, p�� 2 D0. By
transitivity, p�� 6 p so thatD0 \D1 is dense. a

8
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Section 4. Generic Filters

§4A. A new set

We are now in a position to say what properties G needs to have. Firstly, consider the following theorem of ZFC.
4A • 1. Theorem

Let P be a poset with p 2 P . Let D be a countable collection of dense sets. erefore, there is a filter G � P where
p 2 G and G \D ¤ ; for everyD 2 D .

Proof .:.
Enumerate D D ¹Dn W n < !º. As D0 is dense, let p0 6 p be in D0. As in Lemma 3A • 3, just by continually
expanding, we get a sequence hpn 2 P W n 2 !i, where pnC1 6 pn 6 p and pn 2 Dn. Taking the upward
closure of this chain G D ¹q 2 P W 9n 2 ! .pn 6 q/º yields a filter (a set closed upward where all elements are
compatible) where p 2 G, and pn 2 G \Dn for each n < !. a

e question then becomes: how many dense sets can we intersect? e generic G is one that intersects all dense sets
of V. Of course, P itself also has this property, but we require in addition that all the elements of G are compatible to
ensure Motivation 2B • 3 holds.

4A • 2. Definition
Let P be a poset. Let D be a collection of dense sents. A set G � P is said to be P -generic over D iff

• G \D ¤ ; for everyD 2 D ; and
• G is a filter (i.e. closed upward under 6, and any two elements of G are compatible).

We say that G is generic over V iff G is P -generic over ¹D 2 V W D is denseº.

It will turn out that G … V if P satisfies some weak requirements. So what posets are appropriate to use in forcing?
e following terminology is non-standard, and is really just short-hand for the concept.

4A • 3. Definition
A poset P is appropriate for forcing iff

• there is a 6-maximal element 1P ; and
• for every p 2 P , there are q; r 6 p where q ? r .

If P has no maximal element, we can artificially consider P 0 D P [ ¹1º and say 1 > p for each p 2 P . P 0 then has a
maximal element. e reason we want these properties is the following.

4A • 4. Theorem
Let P 2 V be a poset appropriate for forcing. erefore, there is no G 2 V that is P -generic over V.

Proof .:.
Suppose G \D ¤ ; for every dense D 2 V. Clearly G ¤ P , as there are incompatible elements in P , but all
elements of G must be compatible. So consider P nG. is set will be dense.

To see that P n G is dense, let p 2 P be arbitrary. ere are then two incompatible conditions q ? r below p.
Since any two elements ofG are compatible, we cannot have both q; r 2 G. So one of these is in P nG, meaning
we have an extension of p in P nG. Hence P nG is dense, and thusG … V as otherwise genericity over V implies
G \ .P n G/ ¤ ;, a contradiction. a

is is in contrast to eorem 4A • 1. In particular, if V is countable in our universe, then there are only countably

9
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many dense sets in V and hence a generic exists in the real world. It’s just that V just doesn’t see this subset of P .

We will never actually confirm that a poset is appropriate for forcing, because we rarely care whether there is a generic
already in V: sometimes V D VŒG�. is is the case with trivial posets, for example: a poset P D ¹1º has G D P 2 V
as generic over V. So whether G 2 V or not is practically irrelevant: we care more what properties VŒG� has.

§4B. The generic extension

We’ve already defined the generic extension in Subsection 2A, but we repeat it here for ease of reference. Recall that
a P -name is just a potential construction hinging on G in the sense that it is (inductively) some potential constructions
marked with elements of P . When interpretting a P -name � , we just take those elements tagged with an element in G:
�G D ¹�G W 9p 2 G .h�; pi 2 �/º. Note that the collection of P -names depends on the sets V can construct, hence the
notation “VP” for the colleciton of P -names in V.

4B • 1. Definition
Let P 2 V be a poset and G P -generic over V. e generic extension VŒG� D ¹�G W � is a P -nameº.

We now can formally define the forcing relation as in Definition 2B • 2
4B • 2. Definition

Let P be a poset and p 2 P . Write p  ', iff VŒG� � ' for every G that is P -generic over V with p 2 G.

is allows us to confirm the results of Motivation 2B • 3. e proof of this fact is quite long, however, and is only
given at the end of Appendix A. A very thorough treatment of the forcing relation in general can be found in Appendix
A as well as in Chapter VII of [2] (which the appendix is based on).

4B • 3. Lemma
Let P 2 V be a poset and ' a formula. erefore the relation ¹hp; E�i W p  “'.E�/”º is definable over V.

4B • 4. Corollary
Let P 2 V be a poset appropriate for forcing and p 2 P . Write p� 2 P for an arbitrary p� < p. erefore,

1. p  ' iff every p�  ';
2. p  “:'” iff every p� 6 ';
3. p  “' ^  ” iff p  ' and p   ;
4. p  “9x '.x/” iff there is some P -name � and extension p� 6 p where p�  “'.�/”; and
5. For ' and  logically equivalent, p  ' iff p   .

As before with eorem 2B • 6, this allows us to characterize truth in VŒG�.
4B • 5. Corollary

Let P 2 V be a poset. Let G be P -generic over V. erefore VŒG� � ' iff 9p 2 G .p  '/.

Moreover, through tedious checking, we can confirm each individual axiom of ZFC in VŒG�.
4B • 6. Theorem

Let P 2 V be a poset. Let G be P -generic over V. erefore VŒG� � ZFC.

e proof of this is quite tedious, but can also be found later in Appendix B and in Chapter VII of [2].

10



§5 GOST Sൾආංඇൺඋ Nඈඍൾඌ

Part II. Examples of Forcing, and Further Ideas

If forcing is all about adding new objects into the universe, we should think about what sorts of objects we want to add.
ere are all sorts of posets that generically add in all sorts of objects. ere are, of course, limits to what we can add
with forcing,i but commonly we add in functions and subsets. So this will be the purpose of the first few posets: add
in subsets and functions.

One immediate question that pops up is how do we choose what poset to force with? Commonly, the idea begins with
the goal in mind: we want to add in some G � V. Our poset will often consist of V’s approximations to G where
p 6 q iff p approximates more than q. In the context of functions and subsets, this ordering is usually containment:
p 6 q iff p � q.

Section 5. Collapsing Cardinals

Recall that cardinals are really just special ordinals. ey are determined by what functionsii the model V has. For
example, to calculate !1, the general idea is that V looks at each ordinal ˛, determines whether there’s a bijection with
!. en, the first place it has no bijection, it stops and says “this is !1”.

But because this is all based on what functions V has, if we add in a bijection with ! and, say, ˛ D !V
1 , we can

show this ordinal ˛ is countable in VŒG�, meaning !V
1 D ˛ < !

VŒG�
1 . We can also generalize this, but let’s stick with

“collapsing” a cardinal to ! for now.
5 • 1. Definition

Let � be an infinite ordinal. e poset Col.ℵ0; ˛/ 2 V consists of functions f 2 V where (all interpreted in V)
• jf j < ℵ0; and
• dom.f / � !, im.f / � �.

We write f 6 g iff f � g.

We say f is a partial function from ! to � in the sense that f W A! � for some subset A � !. is shorthand is quite
useful as each f is an approximation to a full-fledged function from ! to �.

e first thing to confirm is that this gives us what we want: G codes a surjection from ℵ0 onto �. We will show this
slowly with all the detail. e main idea is that

S
G D g inherets properties from the approximations in Col.ℵ0; ˛/.

So since we can always add in an n < ! into the domain of these approximations, and always add in an ˛ < � into the
range, it follows that these form dense sets. Hence each n < ! is in the domain of g, and each ˛ < � is in the range
of g.

5 • 2. Theorem
Let � be an infinite ordinal. Let G be Col.ℵ0; ˛/ D P -generic over V. erefore

S
G D g is a surjection from ! to

�. In particular, VŒG� � “j�j D ℵ0”.

Proof .:.
We need to confirm several things: that g is in fact a function. at dom.g/ D !, and that im.g/ D � so that g
is a surjection.

iFor example, we can't add ordinals with forcing.
iiIn particular, what bijections

11
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Claim 1
g is a function

Proof .:.
is is a simple application of compatibility of G. In particular, if hn; ˛i; hn; ˇi 2 g for some n < ! and
˛; ˇ < �, there are some f; g 2 G with f .n/ D ˛ and g.n/ D ˇ. By compatibility, there is some h 2 G
with h 6 f; g, meaning a finite, partial function h � f; g. But then hn; ˛i; hn; ˇi 2 f [ g � h requires
that ˛ D ˇ for h to be a function at all. Hence hn; ˛i; hn; ˇi 2 g implies ˛ D ˇ and thus g is a function. a

Just by definition of g D
S
G � ! � �, we have that g has domain dom.g/ � ! and im.g/ � �. e issue,

however, is whether we have equality. is is where dense sets come into play.
Claim 2

g W ! ! �, i.e. dom.g/ D !.

Proof .:.
We need to show that for each n < !, there is some ˛ with hn; ˛i 2

S
G. e only real way we have to

ensure something is inG is to find an appropriate dense set. enG intersects it, and we have a witness. So
for our case, we need some f 2 G where hn; ˛i 2 f for some ˛. For each n < !, consider the set of these
f :

Dn D ¹f 2 P W n 2 dom.f /º.
Note that this is dense in P , since for any p 2 P , if n 2 dom.p/, we’re done. If n … dom.p/, then we just
choose some ˛ < � not already in im.p/ (p is finite while � is infinite, so this is possible), and then consider
q D p [ ¹hn; ˛iº 6 p. is q 2 Dn and extends our arbitrary p 2 P , so eachDn is dense.

In particular, G \Dn ¤ ; for each n, and thus n 2 dom.f / � dom.g/ for some f 2 G, implying each
n 2 dom.g/. erefore ! � dom.g/. Since clearly dom.g/ � !, we have equality. a

So all that remains to be shown is that g is surjective. To see this, we proceed exactly like in Claim 2 for the
range. Let ˛ < � be arbitrary. Consider the set

E˛ D ¹f 2 P W ˛ 2 im.f /º.
is set is dense by the same reason as above: since p 2 P is finite, take n 2 ! n dom.p/ and add in hn; ˛i:
q D p [ ¹hn; ˛iº 6 p has q 2 E˛ and thus E˛ is dense. erefore there is some f 2 G \ E˛ and so
˛ 2 im.f / � im.g/. As ˛ < � was arbitrary, � � im.g/. We obviously have im.g/ � �, and thus equality. is
means g W ! ! � is a surjection. By AC in VŒG�, it follows that VŒG� � “j�j D ℵ0”. a

Where exactly did the forcing relation come into play here? e idea is that f 2 P has f  “ Lf � Pg”, where Pg is a
name for giii and it’s this sense that our f 2 P is an approximation to g.

e above forcing notion gives us the idea of “collapsing” a cardinal in the following sense. is allows us to consider
other forcing notions that do not collapse cardinals.

5 • 3. Definition
Let P 2 V be a poset. We say that P preserves cardinals iff every ˛ 2 V such that V � “˛ D j˛j” has 1P 
“ L̨ D j L̨ j”. Equivalently, P preserves cardinals iff for every P -generic G over V, V � “˛ D j˛j” iff VŒG� �
“˛ D j˛j”.

e above definition also makes sense for other properties. For example, one can say that P preserves cofinalities
whenever V and VŒG� agree on the function ˛ 7! cof.˛/. Similarly, P preserves stationary sets whenever S 2 V is
stationary implies VŒG� � “S is stationary”. So it should be obvious that Col.!; �/ does not preserve cardinality when
� > ℵ0. But Col.!; �/ does preserve cardinals � ℵ0.iv

We can define more generally Col.�; �/, which forces that j�j D � in the generic extension (so long as � > �). While
iiifor example, ¹hhn; ˛iL; pi 2 .! � �/L� P W p.n/ D ˛º.
ivAll forcings do this as ! and n < ! are absolute between transitive models of set theory.
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this poset also collapses cardinals, it doesn’t collapse all of them. In particular, it leaves cardinals � � alone. To prove
this, we need some more concepts related to posets.

5 • 4. Definition
Let � < � be infinite ordinals. e poset Col.�; �/ 2 V consists of functions f 2 V where (interpretted in V)

• jf j < �; and
• dom.f / � �, im.f / � �.

We write f 6 g iff f � g.

We of course have a similar property as before:
5 • 5. Theorem

Let � < � be an infinite cardinals in V. Let G be Col.�; �/ D P -generic over V. erefore
S
G D g is a surjection

from � to �. In particular, VŒG� � “j�j D �”.

Proof .:.
By the same reasoning as before, we already know g is a function with domain dom.g/ � � and image im.g/ � �.
So we want to show equality of each of these. For each ˛ < � and each ˇ < �, consider the sets

D˛ D ¹f 2 P W ˛ 2 dom.f /º
Eˇ D ¹f 2 P W ˇ 2 im.f /º.

Since � > �, any f 2 P (which then has size jf j < �) is not a bijection: dom.f / ¨ � and im.f / ¨ �. If
˛ … dom.f / and ˇ … im.f /, f � D f [ ¹h˛; ˇiº 6 f has f � 2 D˛ \ Eˇ and thus each is dense. Hence
G \ D˛ ¤ ; and G \ Eˇ ¤ ; for each ˛ < � and ˇ < �. In particular, this yields that ˛ 2 dom.g/ and
ˇ 2 im.g/ for each ˛ < � and ˇ < �, meaning g W �! � is a surjection. a

is shows Col.�; �/ collapses � to �. Col.�; �/ still preserves some cardinals by the following fact.
5 • 6. Lemma

Col.�; �/ is < cof.�/-closed, meaning if hp˛ 2 P W ˛ < i is a 6-decreasing sequence (in V) of length  < cof.�/,
there is some condition p 2 P below all of them: p 6 p˛ for each ˛ <  .

Proof .:.
Let hp˛ W ˛ < i be as in the statement. us p D

S
˛< p˛ is a partial function from � to �. Moreover, as

 < cof.�/ and each p˛ has size jp˛j < �, it follows that this union has size jpj � j j � sup˛< jp˛j < �. Hence
p is a condition in P , and clearly lies below each p˛ . a

is gives the following corollary. It’s also a nice exercise to see how the result should change if � is not regular.
5 • 7. Corollary

Let � be a regular, infinite cardinal. Let � < �. erefore Col.�; �/ preserves cardinals � �. In other words, for G
Col.�; �/ D P -generic over V and � < �, V � “� D j� j” iff VŒG� � “� D j� j”.

Proof .:.
Just by downward absoluteness, if VŒG� � “� D j� j”, then clearly V � “� D j� j”, because if VŒG� has no
bijections from smaller ordinals to � then neither does V. So suppose V � “� D j� j”, but VŒG� � “j� j D � < �”
as witnessed by a bijection f W �! � in VŒG�.

f 2 VŒG� has a name Pf 2 VP and by Corollary 4B • 5, there is some p 2 G where p  “ Pf is a function
from L� to L�”. We’d like to do the following that doesn’t actually work. It does provide motivation, however,
of continually deciding more and more of f . e < �-closure of P allows us to decide all of f with a single
condition.

Construct a 6-decreasing sequence hp˛ 2 G W ˛ < �i where 9ˇ < � .p˛  “ Pf . L̨ / D Ľ”/. We would do this
recursively: p0 D p and for f .˛/ D ˇ, let q˛ 2 G be such that q˛  “ Pf . L̨ / D Ľ”. en we find a common
extension p˛C1 6 q˛; p˛ . At limit stages  < �, we would appeal to < �-closure to find a p 6 p˛ for all

13
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˛ <  . en a p� 6 p˛ for all ˛ < � (which is supposed to exist by < �-closure) has
f D ¹h˛; ˇi W p�  “ Pf . L̨ / D Ľ”º 2 V.

is implies f 2 V is a bijection from � to � , contradicting that V � “� D j� j”.

e issue with this approach is that this construction of hp˛ W ˛ < �i takes place outside of V. In other words,
because V doesn’t have access to G, it cannot form this sequence. is is especially obvious when V is some
countable transitive model where it’s clear V doesn’t contain all countable sequences (V thinks P is < �-closed
just in case all sequences in V have lower bounds, but many sequences outside V may not). So we must use a
slightly different approach with the same motivating idea just translated into terms of dense sets. But if the reader
understands the idea above, this is enough, as the actual approach below doesn’t add much understanding.v

For each ˛ < �, consider
D˛ D ¹q 6 p W 9ˇ < � .q  “ Pf . L̨ / D Ľ”/º.

is will be open by Corollary 4B • 4 (1), and also dense below p. To see density, let q 6 p be arbitrary. Let
H be generic with q 2 H . us VŒH � � “f .˛/ D ˇ” for some ˇ. ere is then some r 2 H forcing this:
r  “ Pf . L̨ / D Ľ”. A common extension q� 6 r; q then yields a condition q� 2 D˛ . SoD˛ is dense below p.

Claim 1
For each  � �,

T
˛< D˛ is open (by Corollary 4B • 4 (1)) and dense below p.

Proof .:.
Suppose the result holds for all ordinals below  . Let q 6 p be arbitrary. Choose pˇ 2

T
˛<ˇ D˛ for

ˇ <  . Without loss of generality, choose the pˇ s so that they are 6-decreasing (density allows this) with
p0 6 q. As  < � < �, by < �-closure, there is some q� 6 pˇ for every ˇ <  . By density of D , there
is some p 6 q� 6 q inD and in fact in

T
˛< D˛ . us

T
˛< D˛ is dense below p. a

Note that each p� 2 D� decides all of Pf . In particular, for p� 2 G \D�,
f D ¹h˛; ˇi W p�  “ Pf . L̨ / D Ľ”º 2 V,

tells us that f 2 V and we get the contradiction as before. a

is same proof generalizes to show that if a poset P is < �-closed, then P preserves cardinals � �.

vit does, however, motivate the definition of the distibutivity of a poset.
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Section 6. Forcing :CH

e above forcing shows that cardinals are not absolute between transitive models of set theory. Now we will show
both that CH is independent of ZFC,vi and that we can both preserve cardinals and change cardinality. To argue this, we
will need a little more technology. e argument given in Corollary 5 • 7 from Lemma 5 • 6 tells us that < �-closure of
a poset implies preserving cardinals � �. To argue that we preserve cardinals > �, we need to talk more about names
in the next subsection.

But first, let’s introduce the poset, and then show this gives what we want. Recall that P .!/ can be identified with
characterisitic functions f W ! ! 2: X � ! is just ¹n < ! W �X .n/ D 1º where �X .n/ D 1 if n 2 X and 0 otherwise.
If we want to add a subset of !, we could then consider the poset which looks at finite approximations of characteristic
functions: finite partial functions from ! to 2. If we want to add a lot of partial functions to bump up the size of P .!/,
we can instead index them: adding in ¹f˛ 2

!2 W ˛ < �º for � some cardinal. is is equivalent to adding in a single
function f W � � ! ! 2 where each f˛ is just the slice n 7! f .˛; n/. So this is what we are approximating.

6 • 1. Definition
Let � be a cardinal of V. Define Add.ℵ0; �/ 2 V to be the poset consisting of functions p where (interpreted in V)

• jpj < ℵ0;
• dom.p/ � � � !, and im.p/ � ¹0; 1º D 2.

We say p 6 q iff p � q.

So if we consider the forcing relation, for g D
S
G, p  “ Lp � Pg”. As with Col.�; �/, we can show this does what

we want. Note that we freely identify g W � � ! ! 2 as a function g W � ! !2 just by taking ˛ to the map g˛ defined
by g˛.n/ D g.˛; n/.

6 • 2. Theorem
Let � > jP .!/jV be an infinite, regular cardinal. Let G be Add.ℵ0; �/ D P generic over V. erefore g D

S
G 2

VŒG� yields an injection from � to !2. In particular, VŒG� � “jP .!/j � j�j”.

Proof .:.
It should be clear that g is a function by compatibility of G. By considering for each ˛ < � and n < !

D˛;n D ¹p 2 P W h˛; ni 2 dom.p/º,
which is clearly dense (recall each p 2 P is finite, so we can just add hh˛; ni; 1i to p and get an extension in
D˛;n), it should be clear that g W � � ! ! 2: f 2 D˛;n \G has h˛; ni 2 f � g.

It then suffices to show that g is injective, or rather the map ˛ 7! g˛ is injective, where g˛.n/ D g.n; ˛/. To do
this, for each ˛ ¤ ˇ < �, consider the set

E˛;ˇ D ¹p 2 P W 9n < !.h˛; ni; hˇ; ni 2 dom.p/ ^ p.˛; n/ ¤ p.ˇ; n//º.
So if p 2 E˛;ˇ \ G, then then g˛ and gˇ disagree somewhere. Note that each E˛;ˇ is dense, since each p 2 P
is finite: there are only finitely many n where h˛; ni; hˇ; ni 2 dom.p/. Hence some n beyond all of these yields
an extension p� D p [ ¹hh˛; ni; 1i; hhˇ; ni; 0iº 6 p with p� 2 E˛;ˇ . erefore, G \ E˛;ˇ ¤ ; for each ˛; ˇ,
implying g˛ ¤ gˇ for each ˛ ¤ ˇ < �. So VŒG� has an injection from � to .!2/VŒG�, and therefore to P .!/VŒG�.
So VŒG� � “jP .!/j � j�j”. a

is doesn’t tell us, however, that � is preserved. A priori, we could have VŒG� � “j�j D ℵ1” so that the above
theorem says VŒG� � “jP .!/j � ℵ1”, which we already know is true since VŒG� � ZFC. To show that � is preserved,
we basically need to show that there aren’t any bijections from smaller cardinals. is, in essence, amounts to showing

viSince L � ZFC C CH, this shows CH is relatively consistent with ZFC, so we will merely show ZFC C :CH is relatively consistent with ZFC.
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that there aren’t too many “choices” P can allow, and this is related to the concept of antichains.
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§6A. Antichains

Density has a close connection to antichains. Again, this is a general topological concept that one can prove is equiv-
alent to the definition below in the context of posets. But we have no need for the general definition.

6A • 1. Definition
Let P be a poset. A set A � P is an antichain iff any two distinct p; q 2 A have p ? q.

Maximal antichains also have some nice properties with forcing. One thing that will show this is the following result.
6A • 2. Lemma

Let P be a poset. Let A � P be an antichain. erefore A is�-maximal iff every p 2 P has some q 2 A where p; q
are compatible.

Proof .:.
Suppose A is maximal. Suppose p 2 P is incompatible with every element of A. us A [ ¹pº is an antichain
extending A, contradicting maximality.

So supposeA is not maximal. Hence there is some antichain A � P withA ¨ A. Any p 2 AnA has, since A is
an antichain, p ? q for each q 2 A. us there is an element of P with no q 2 A where p and q are compatible.
is is the contrapositive of the desired direction. a

Note that this has a similar flavor to density: a dense set D allows you to always extend to enter D. Similarly, a
maximal antichain A allows you to always find an incompatible element to enter A.

6A • 3. Result
Let P be a poset. Suppose every p 2 P has an extension p� 2 P (meaning there are no bottom nodes).

• Let A � P be an antichain. erefore P n A is dense.
• In fact, every dense set contains a �-maximal antichain.

Proof .:.
To show that P n A is dense, let p 2 P be arbitrary. If p 2 A, then an extension p� 6 p cannot be in A (as p�

and p are compatible with the obvious common extension p�). If p … A, then p 6 p has p 2 P n A. Hence
P n A is dense.

Now suppose D � P is open and dense. We will show that there is a �-maximal antichain A � D. We know
by Zorn’s lemma that there is a �-maximal element in the set of antichains ¹A � D W A is an antichain of Pº.
So it suffices to show that this maximal element A is a maximal antichain in the context of the rest of P . So let
p 2 P be arbitrary. As D is dense, there is some p� 2 D extending p. Now working in D the same reasoning
in Lemma 6A • 2 tells us that there is some element q 2 A compatible with p�. But then q is compatible with
p: there is an r 6 q and r 6 p� 6 p. a

So there is a nice interplay between dense sets, and maximal antichains. How does this help us? Well, antichains
represent choices: ifG is P -generic over V with A 2 V a maximal antichain, thenG \A is a singleton. Moreover, the
above result tells us that for G to be generic, G must intersect all maximal antichains.

6A • 4. Corollary
Let P 2 V be a poset. Let A be a maximal antichain in V. Let G be P -generic over V. erefore, jG \ Aj D 1.

Proof .:.
Clearly as any two elements of G are compatible while any two elements of A are incompatible, jG \ Aj � 1.
Consider the downward closure of A, A #, which is dense by Lemma 6A • 2: any p 2 P has some q 2 A where
p and q are compatible, and therefore there is some common extension q� 2 A #. By density, G \A #¤ ; and
so there is some q� 6 q 2 A where q� 2 G \A #. Since G is closed upward, q 2 G, showing jG \Aj � 1 and
so we have equality. a
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is is useful, because we can now talk about what kinds of antichains P has.
6A • 5. Definition

Let P 2 V be a poset. Let � be a cardinal of V. P is �-cc (has the �-chain condition) iff every antichain A 2 V of P
has size jAjV < �. We say P is ccc if it is ℵ1-cc.

We introduce this, because �-cc posets preserve cardinals and cofinalities � � for � regular. We show this only for ccc
posets, but the proof generalizes. Again, it’s a good exercise to see how this changes for �-cc posets when � is singular.

6A • 6. Theorem
Let P be ccc. erefore, P preserves all cardinals and cofinalities, meaning if V � “˛ D cof.ˇ/”, then VŒG� �
“˛ D cof.ˇ/”, for any G that is P -generic over V.

Proof .:.
Suppose not. We have two possibilities.

• A cofinality cofV.ˇ/ is not preserved. us cofV.ˇ/—a regular cardinal in V—is not regular in VŒG�.
• A cardinal � is not preserved. If � was a limit cardinal in V, then for VŒG� � “j�j D � < �” has .�C/V

a regular cardinal of V no longer regular in VŒG� � “j.�C/Vj � j�j D �”. Similarly, if � is a successor
cardinal in V, then it’s no longer regular in VŒG�.

So it suffices to show that every regular � 2 V is regular in VŒG�. Let Ę 2 VŒG� be a �-length sequence in � with
� < �. We will show this is bounded in VŒG�. Let PĘ be a P -name for Ę, and let p 2 P force that PĘ is a function
from L� to L�. In V, we can consider the possible values of P̨� for each � < �:

A� D ¹ˇ < � W 9p 2 P .p  “ PĘ is a function from L� to L� and P̨� D Ľ”/º.
Note that this is the result of an antichain of p 2 P : no two compatible p; q can force different values of P̨� . In
other words, for each ˇ 2 A� , let pˇ 6 p have pˇ  “P.˛/� D Ľ”. erefore, A� D ¹pˇ 2 P W ˇ < �º is an
antichain. Since P is ccc, A� is countable, and thus so is A� for each � < �. But then sup�<�A� is bounded in �
since � is regular, � < �, and each jA� j � ℵ0. erefore for � > ˇ > sup�<� A� , each q 2 P forces “ P̨� < Ľ”,
meaning PĘG D Ę can’t be unbounded in �. a

Note that being ccc or �-cc is a statement about V: V may have fewer antichains than VŒG� does.

§6B. Showing we actually did force :CH

Let’s return to Add.!; �/ where � is regular. We can pretty easily show that Add.!; �/ is ccc.
6B • 1. Lemma

For every ordinal �, P D Add.!; �/ 2 V is ccc.

Proof .:.
Clearly if P is countable (e.g. if � is countable), then every antichain is countable. So letA � P be an uncountable
subset of P . Consider the set of domains of p 2 A: D D ¹dom.p/ W p 2 Aº. D must also be uncountable, since
each d 2 D has only countably many (in fact, finitely many) functions from d to 2, so ifD were countable, then
would A be too.

Claim 1 (The�-System Lemma)
ere is an uncountable D0 � D and r 2 P such that any two distinct p; q 2 B have p \ q D r . In other
words,D0 forms a Δ-system.

Now we can lift this into A: A0 D ¹p 2 A W dom.p/ 2 D0º, another uncountable set, but this time, for any
two distinct p; q 2 A, dom.p/ \ dom.q/ is some fixed, finite X � � � !. Since there are only countably many
functions from X to 2, there must be some p W X ! 2 with uncountably many q; q0 2 A0 with q � X D q0 �
x D p.

Note that this implies any two p; q 2 A0 are compatible: p [ q is a function since p and q never disagree. p [ q
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is still a finite partial function from � �! to 2, and thus A cannot be an antichain. So the only antichains of P are
countable. a

Proving the Δ-system lemma isn’t particularly interesting. It’s a common idea that can be found in most any standard,
introductory reference for set theory, e.g. [2].

6B • 2. Corollary
Let � be an uncountable cardinal in V. Let G be Add.!; �/ D P -generic over V. erefore � is not collapsed. In
particular, � D !2 has VŒG� � “jP .!/j � ℵ2”.

Proof .:.
By Lemma 6B • 1 Add.!; �/ is ccc. So by eorem 6A • 6, � is still a cardinal in VŒG�. For � D !V

2 , we then
have � > !V

1 D !
VŒG�
1 and thus VŒG� � “jP .!/j � � D !2” by eorem 6 • 2. So VŒG� � ZFCC:CH. a

is just yields a lower bound on 2ℵ0 in VŒG�. But how do we actually calculate .2ℵ0/VŒG�? e answer lies in counting
names for subsets of !. Note that for any particular x � ! in VŒG�, there are a proper class of names for x just by
considering Px [ ¹h L̨ ; piº for ˛ 2 Ord and p … G where Px 2 VP is any P -name for x.

§6C. Nice names

A “nice name” is just a name that has the sort of properties you would want it to have as a subset of another name.
ere are a variety of different kinds of names one can consider. Firstly, consider the following.

6C • 1. Definition
Let P 2 V be a poset. Let G be P -generic over V. Let x 2 VŒG� be arbitrary with name Px. Let y � x be in VŒG�.
A kinda nice name for y is a � 2 VP such that dom.�/ � dom. Px/.

6C • 2. Result
Let P 2 V be a poset. Let G be P -generic over V. Let y � x 2 VŒG� be arbitrary with y 2 VŒG�. erefore there
is a kinda nice name for y.

Proof .:.
We know y has some name Py 2 VP . Consider

� D ¹h�; pi 2 dom. Px/ � P W p  “� 2 Py ^ � 2 Px”º.
Clearly �G � y, since any p 2 G with h�; pi 2 � has �G 2 PyG D y. Similarly, any �G 2 y has some
� 0 2 dom. Px/ with VŒG� � “�G D �

0
G”. is is forced by some p 2 P where then h� 0; pi 2 � and so � 0

G 2 � .
us y � �G , and so we have equality. a

e benefit of nice names is that they allow us to consider just names of a certain form rather than all names, which
again form a proper class. In particular, we have the following result.

6C • 3. Result
Let P 2 V be a poset. For any P -name Px, there are at most 2j dom. Px/�P j kinda nice names for subsets of Px.

Proof .:.
Every nice name for a subset of PxG (where G is generic) is in P .dom. Px/ � P/V. a

In particular, if P is countable, then 2ℵ0 D .2ℵ0/V in VŒG�. To see this, in V, there are at most 2j dom. L!/�P j D 2ℵ0

kinda nice names for subsets of !. In particular, since P is ccc and so preserves cardinals, if V � CH, then VŒG� �
“2ℵ0 D .2ℵ0/V D ℵV

1 D ℵ1” and so VŒG� � CH.

Another kind of nice name uses antichains in conjunction with chain conditions to do a better job at counting.
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6C • 4. Definition
Let P 2 V be a poset. Let G be P -generic over V. Let x 2 VŒG� be arbitrary with name Px. Let y � x be in VŒG�.
A nice name for y is a Py 2 VP such that

• dom. Py/ � dom. Px/, i.e. Py is a kinda nice name; and
• for each � 2 dom. Py/, ¹p 2 P W h�; pi 2 Pyº is an antichain.

Equivalently, Py is of the form
S

�2dom. Px/¹�º � A� where each A� is an antichain of P or else ;.

6C • 5. Result
Let P 2 V be a poset. Let G be P -generic over V. Let y � x 2 VŒG� be arbitrary with y 2 VŒG�. erefore there
is a nice name for y.

Proof .:.
We know there is a kinda nice name Py 2 VP for y. For each � 2 dom. Py/ � dom. Px/, let A� D ¹p 2 P W p 
“� 2 Py”º. A� is non-empty, of course, since h�; pi 2 y implies p 2 A� . Of the antichains contained in this set,
let A� be maximal among the subsets of A� . erefore, every p 2 P that forces “� 2 Py” is compatible with an
element of A� . So consider the name

� D
[

�2dom. Py/

¹�º �A� .

is is clearly a nice name, so it suffices to show �G D y.

To show y � �G , let �G 2 y have a p 2 G forcing � 2 Py, meaning p 2 A� . ere must then be some
q 2 A� \G compatible with p and thus h�; qi 2 � , meaning q  “� 2 Py”.

Similarly, for �G 2 �G , we have h�; pi 2 � for some p 2 G, meaning p 2 A� and thus p  “� 2 Py” so that
�G 2 y. Hence �G � y, and so we have equality: �G D y. is means � is a nice name for y. a

e above has been stated in a somewhat concrete way, but alternatively, we can say that for any two names Px; Py 2 VP ,
there is a nice name � 2 VP for a subset of Px such that p  “ Py � Px ! � D Py” for every p 2 P .

6C • 6. Corollary
Let P 2 V be �C-cc, and let Px be a P -name. erefore, there are at most jP j��j dom. Px/j nice names for subsets of Px.

Proof .:.
ere are at most jP j� � �-sized subsets of P . Hence there are at most that many antichains. Since each nice
name is given by a function from dom. Px/ to antichains of P , there are at most jP j��j dom. Px/j many nice names for
subsets of Px. a

In particular, in V, there is a bijection between this ordinal jP j��j dom. Px/j and the nice names for subsets of Px. So in VŒG�,
there is still this bijection that—with the help of G to interpret the P -names—yields a surjection from this ordinal to
P .x/. Hence we can say VŒG� � “jP .x/j �

ˇ̌̌�
jP j��j dom. Px/j

�V
ˇ̌̌
”. If P is ccc and thus preserves cardinals, this simplies

to VŒG� � “jP .x/j �
�
jP jj dom. Px/j

�V”.
6C • 7. Corollary

Let � be a regular, uncountable cardinal of V such that V � “�ℵ0 D �”. Let G be Add.ℵ0; �/-generic over V.
erefore VŒG� � “2ℵ0 D �”.

Proof .:.
By Lemma 6B • 1, Add.ℵ0; �/ is ccc. We know from eorem 6 • 2 that VŒG� � “2ℵ0 � j�j”, and VŒG� �
“j�j D �” by preservation of cardinals: eorem 6A • 6. By counting nice names for subsets of L!—which has
j dom. L!/j D ℵ0—it follows by Corollary 6C • 6 that VŒG� has at most .�ℵ0/V D � subsets of !, meaning
VŒG� � “2ℵ0 � �”, and thus we have equality. a
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Section 7. Forcing CH

We’ve seen that we can force:CH pretty easily, but it took some work to confirm that CH fails in the generic extension.
Similarly, we can pretty easily force that CH holds in the generic extension, but it will take some work to show this.
We will take the expected approach: add in some surjection from ℵ1 and P .!/. A worry one might have is that both
!1 and P .!/ might change in the generic extension: perhaps one of the following holds:

1. !VŒG�
1 ¤ !V

1 ; or
2. P .!/V ¤ P .!/VŒG�.

We will need to confirm that this doesn’t happen: !1 isn’t collapsed, and we don’t add too many subsets of !. Note that
the failure of (2) implies the failure of (1) for us, since if we have a bijection between ℵV

1 and P .!/V D P .!/VŒG�, then
VŒG� � “ℵV

1 D jP .!/j � ℵ1” and we already know VŒG� � “ℵ1 � ℵV
1 ”. We know already that � !-closed posets

preserve ℵ1, but they also preserve P .!/.
7 • 1. Lemma

Suppose P 2 V is a � �-closed poset. Suppose G is P -generic over V. erefore, P .�/VŒG� D P .�/V.

Proof .:.
e basic idea is that P being � �-closed means that we can collect together �-much information in V already.
e motivating idea is as follows, although the real argument is in the next paragraph. In particular, for y � �
with y 2 VŒG�, we have a kinda nice name Py 2 VP for y. For each ˛ < �, we either have VŒG� � “˛ 2 y”
or VŒG� � “˛ … y” and thus we have some element of the poset p˛ that either forces “ L̨ 2 Py” for “ L̨ … Py”. By
continually expanding, we get a 6-decreasing sequence of elements in the poset which continually decide more
and more of Py. Hence there is some p 2 P with p 6 p˛ for each ˛ < �. is p then decides whether any ˛
is in y: y D ¹˛ W p  “ L̨ 2 Py”º 2 V, implying P .�/VŒG� � P .�/V. e other containment is obvious since
VŒG� � V.

As with Corollary 5 • 7, the above argument actually needs to be translated in terms of dense sets. A terse argument
in that style is given below: let Py be a kinda nice name for a subset of �. For each ˛, consider D˛ D ¹p 2 P W
p  “ L̨ 2 Py” or p  “ L̨ … Py”º. EachD˛ is dense and open. By� �-closure,

T
˛<� D˛ D D� is also dense and

open. Any p 2 D� \G yields that PyG D y D ¹˛ W p  “ L̨ 2 Py”º 2 V, meaning P .�/VŒG� � P .�/V. a

7 • 2. Corollary

Let P 2 V be a � !-closed poset. SupposeG is P -generic over V. erefore !V
1 D !

VŒG�
1 and P .!/V D P .!/VŒG�.

So we will consider the following poset, adding a bijection between ℵ1 and P .!/. To make this countably closed, we
can’t work with finite functions as we have been doing before: the countable union of finitely many functions isn’t
necessarily finite. So we use the next best idea: countable partial functions. Since these will still have relatively small
domain compared to ℵ1, we have enough flexibility when using them as approximations.

7 • 3. Definition
Let Fn<ℵ1

.!1;P .!// be the poset of partial functions of size < ℵ1 (i.e. countable) from !1 to P .!/ ordered by
inclusion: p 6 q iff p � q.

It should be clear that Fn<ℵ1
.!1;P .!// is countably closed, since the union of any countable chain is still countable,

and is obviously still a partial function from !1 to P .!/.
7 • 4. Theorem

Let G be P D Fn<ℵ1
.!1;P .!//-generic over V. erefore VŒG� � CH.
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Proof .:.
Really this just amounts to showing that

S
G D g is a surjection from !V

1 to P .!/V. By countable closure,
Lemma 7 • 1 tells us that P .!/VŒG� D P .!/V and !V

1 D !
VŒG�
1 , meaning g would be a surjection from !

VŒG�
1 to

P .!/VŒG� and so VŒG� � CH. Since the two interpretations are equal, we just write “P .!/” and “ℵ1”.

But that g W !1 ! P .!/ is a surjection is clear: for each ˛ < !1 and each x 2 P .!/, the following are dense
D˛ D ¹p 2 P W ˛ 2 dom.p/º and Ex D ¹p 2 P W x 2 im.p/º.

To see that D˛ is dense, just extend any p 2 P with h˛;;i. To see that Ex is dense, just note that p 2 P being
countable implies dom.p/ ¤ !1 and thus we can choose some ˛ 2 !1 n dom.p/ and extend p with h˛; xi. is
new (partial) function remains countable and so is in Ex .

But this means each x 2 P .!/ has a p 2 G \ Ex where then x 2 im.p/ � im.g/ so that P .!/ � im.g/ and g
is surjective. Given that dom.g/ D !1 (by the density of theD˛s), we get the result: VŒG� � “jP .!/j D ℵ1”.a

ere are actually a great number of posets that force CH. For example, Add.!; 1/ does this. In fact, Add.!; 1/ forces
˙. It’s not a bad exercise (although moderately difficult) to show that this holds.

In general, we have many different options when it comes to adding a generic G with certain properties. is is in
part due to the vagueness of “approximation” when using a poset of sets supposed to approximate G. Many of these
posets turn out to be equivalent in the sense that a generic G � P yields a generic H � Q where VŒG� D VŒH �.
For example, the forcing we used with Add.!; �/—Cohen forcing—is equivalent to the subposet where all conditions
have domains that not only are finite subsets of !, but are actual natural numbers: dom.p/ D n for some n < !.

ere are also many posets that are not equivalent, but that can give similar generics. For example, forcing with
Col.�; �/ collapses j�j to �, but leaves j�j D � in the generic extension. If instead of conditions of size < � we
consider finite conditions, we still end up with a generic G with

S
G D g as a surjection from � to �, but we also end

up with a surjection from ! to �. is means � is (and so subsequently all cardinals � �, including �, are) collapsed
down to !.vii

is is all just to say that it’s generally not difficult to come up with a poset that adds some object serving whatever
purpose you want in the ground model. But it’s far more difficult to show it doesn’t muck things up in the generic
extension. is is the purpose of the discussion of antichains, nice names, and further ideas not covered here.

viiTo see that we collapse � to ! if we consider the poset P of finite partial functions from � to � (ordered by inclusion), just consider g � ! DS
G � !. Each p 2 P is finite, and so dom.p/ ¨ !. For each ˛ < �, there is some n 2 ! n dom.p/ where then p [ ¹hn; ˛iº 2 D˛ D ¹p 2

P W ˛ 2 im.p � !/º. is implies each D˛ is dense and so p 2 G \ D˛ implies ˛ 2 im.p � !/ � im.g � !/ implying � � im.g � !/ and
therefore g � ! is a surjection onto �, meaning VŒG� � “j�j D ℵ0”. is argument doesn't work with Col.�; �/, since conditions there can be
infinite and so contain all of ! in their domains, preventing us from extending into D˛ .
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Appendix A. Gory Detail of the Forcing Relation and Its Definability

It’s not recommended to read any of this section. e results of it are useful, but the proofs are long, technical, and
uninteresting. I will repeat for emphasis: do not read this section if you do not have to. is is mostly for the curious
and the skeptical. First we show the definability of each relation ¹hp; E�i 2 P �VP W p  “'.E�/”º for ' a formula. To
do this, we just straight up define a relation � with all the properties we’d like it to have, and then we show that it is
equivalent to . e motivation behind the definition is a result about . First, we have the following useful fact.

A • 1. Definition
Let P be a poset with p 2 P . A set D � P is dense below p iff for every q 6 p, there is some r 6 q with r 2 D.
Equivalently,D is dense below p iffD [ .P n P�p/ is dense in P (here P�p D ¹q 2 P W q 6 pº).

A • 2. Result
Let P 2 V be a poset appropriate for forcing. Let G be P -generic for V with p 2 G. erefore, G \ D ¤ ; for
everyD � P that is dense below p.

Proof .:.
As P is appropriate for forcing, we can always extend. In particular, a set D is dense iff D n ¹q 2 P W p 6 qº

is dense (removing an initial segment doesn’t change long-term behavior of being able to extend into the set).
HenceD [ .P n P�p/ is dense impliesD [ .P n ¹q 2 P W q 6 p _ p 6 qº/ is dense. Hence G has a non-empty
intersection with this. So there is some q 2 G inD or else not comparable to p.

A • 3. Motivation
Let P 2 V be a poset appropriate for forcing. Let ' be a formula. erefore, the following are equivalent.

• p  ';
• 8p� < p .p�  '/;
• D D ¹p� < p W p�  'º is dense below p.

e proof of this result will follow from the rest of our work in this section.
A • 4. Definition

Let P be a poset. We define p � “'.E�/”, read as p �-forces “'.E�/”, by structural induction on ' and P -name rank
of E� .

• p � “�1 D �2” iff for each h�1; q1i 2 �1,D1 is dense below p; andD2 is too for each h�2; q2i 2 �2; where
D1 D ¹p

� 6 p W p� 6 q1 ! 9h�; qi 2 �2 .p
� 6 q ^ p� � “� D �1”/º

D2 D ¹p
� 6 p W p� 6 q2 ! 9h�; qi 2 �1 .p

� 6 q ^ p� � “� D �2”/º.
• p � “�1 2 �2” iff ¹p� 6 p W 9h�; qi 2 �2 .p

� 6 q ^ q � “� D �1”/º is dense below p.
• p � “'.E�/ ^  .E�/” iff p � “'.E�/” and p � “ .E�/”.
• p � “:'.E�/” iff every p� 6 p has p 6� “'.E�/”.
• p � “9x '.x; E�/” iff ¹p� 6 p W 9� 2 VP .p� � '.�; E�//º is dense below p.

So we always have p � “; D ;” just vacuously. So to confirm whether p � “¹h;; piº D ¹h;; qiº”, we need to see
whether (plugging �1 D ; D �2 and q1 D p, q2 D q into Definition A • 4)

D1 D ¹p
� 6 p W p� 6 p ! .p� 6 q ^ p�  “; D ;”/º

D ¹p� 6 p W p� 6 q ^ p�  “; D ;”º
D ¹p� 6 p W p� 6 qº is dense below p, and

D2 D ¹p
� 6 p W p� 6 q ! .p� 6 p ^ p� � “; D ;”/º

D ¹p� 6 p W p�
2 Pº is dense below p.
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Here, D1 represents where �1 D ¹h;; piº will be a subset of �2 D ¹h;; qiº according to p. Similarly, D2 represents
when �2 will be a subset of �1 according to p: always. So p � “�1 D �2” iff (becauseD2 is clearly dense below p)
¹p� 6 p W p� 6 qº is dense below p. Note that with a P -generic filter G, p 2 G implies G \D1 ¤ ;, which implies
q 2 G and thus .�1/G D ¹;º D .�2/G .

is gives some motivation that � is well-defined: because we’re always decreasing P -name rank in the atomic
formulas, eventually we go down to the P -name ; where equality and membership are easy to calculate. Of course,
this doesn’t mean � is easy to calculate, as it can be unclear whether certain sets are dense or not.

Inductively, we have the following result about �.
A • 5. Lemma

Let P 2 V be a poset appropriate for forcing. Let ' be a formula and E� P -names. erefore, the following are
equivalent.

1. p � “'.E�/”;
2. 8p� 6 p .p� � “'.E�/”/;
3. D D ¹p� 6 p W p� � “'.E�/”º is dense below p, i.e.D [ .P n P�p/ is dense in P .

Proof .:.
• at (2) implies (1) is immediate since p 6 p. at (2) implies (3) is also immediate since thenD D P�p .

• Suppose (1) holds, working towards (2). We proceed by structural induction on ' and the P -rank of E� .
More precisely, let ' be the <lex-least formula with some E� where (1) holds but (2) fails. en we set E� to
be witnesses of least P -rank. Let p� 6 p be such that p� 6 “'.E�/”.

– If “'.E�/” is of the form “�1 D �2”, “�1 2 �2”, or “9x  .x; E�/”, then (2) follows easily, since those
sets being dense below p implies they are dense below p�.

– If “'.E�/” is of the form “: .E�/”, then every p� 6 p has p� 6� “ .E�/”. In particular, for any
p�� 6 p� 6 p, p�� 6� “ .E�/” and therefore p� � “: .E�/” by definition. So (2) holds.

– If “'.E�/” is of the form “�.E�/ ^  .E�/”, then p � “�.E�/” and p � “ .E�/” so inductively every
p� 6 p has p� � “�.E�/” and p� � “ .E�/” and so the conjunction is �-forced: p� � “'.E�/”
so (2) holds.

• Suppose (3) holds, working towards (1). We again proceed by induction on ' and E� .
– If “'.E�/” is of the form “�1 D �2”, “�1 2 �2”, or “9x  .x; E�/”, then (2) follows easily just from
properties of denseness. Explicitly, if ¹p� 6 p W D0 is dense below p�º is dense below p, then D0

is dense below p: we just extend twice. To show (1), we just need to notice that we don’t need to
restrict the dense set definitions of Definition A • 4 to extensions of p. en we’re working with the
same dense sets for all elements and thus we can apply this observation.

– If “'.E�/” is of the form “: .E�/”, then suppose (1) fails: there is some p� 6 p with p� � “ .E�/”.
By density of D, there is a p�� � “: .E�/”, meaning p�� 6 “ .E�/”. But this contradicts that (1)
implies (2) since p� �-forces it and p�� 6 p�. Hence (1) holds.

– Suppose “'.E�/” is of the form “�.E�/ ^  .E�/”. Since
D D ¹p� 6 p W p� � “�.E�/ ^  .E�/”º

is dense below p, then in particular,
D � D0 D ¹p

� 6 p W p� � “�.E�/”º
D � D1 D ¹p

� 6 p W p� � “ .E�/”º
are both dense below p. Inductively, then p � “�.E�/” and p � “ .E�/”, so p �-forces the
conjunction: p� � “'.E�/”, meaning so (1) holds. a

is allows us to show the analogues of Definition 4B • 2 and eorem 2B • 6 for �-forcing. We unfortunately need to
prove these simultaneously rather than focusing on just one or the other.
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A • 6. Lemma
Let P 2 V be a poset appropriate for forcing, p 2 P , E� 2 VP , and G P -generic over V. erefore
(a) p � “'.E�/” implies p  “'.E�/”; and
(b) if VŒG� � “'.E�G/”, then there is some p 2 G with p � “'.E�/”.

Proof .:.
As before, proceed by structural induction on ' and P -rank of E� (by which I mean induction on the max of the
P -ranks of E� ). Let G be Pgeneric over V with p 2 G. First we show the result for atomic formulas, and then we
induct on '.
(a) Suppose p � “'.E�/”. We must show VŒG� � “'.E�G/”.

• Suppose “'.E�/” is “�1 D �2”. We shall show .�1/G � .�2/G in VŒG�, because the other containment
is similar. So let .�1/G 2 .�1/G be arbitrary. erefore, there is some q1 2 G with h�1; q1i 2 �1.
Since p�  “�1 D �2”, by Definition A • 4, the set

D1 D ¹p
� 6 p W p� 6 q1 ! 9h�; qi 2 �2 .p

� 6 q ^ p� � “� D �1”/º
is dense below p. Hence, asG is generic, G\D1 ¤ ;. Hence there is some p� and h�; qi 2 �2 such
that
1. p� 2 G;
2. p� 6 p; q1; q; and
3. p� � “� D �1”.

(1) and (2) imply q 2 G and thus �G 2 .�2/G . (3) implies by the inductive hypothesis that
p  “� D �1” (we’re looking at the same formula ' but now with parameters � and �1 which have
maximumP -rank less than themaximum P -rank of �2 and �1) and soVŒG� � “.�1/G D �G 2 .�2/G”.
As .�1/G was arbitrary, it follows thatVŒG� � “.�1/G � .�2/G”. e other containment follows anal-
ogously.

• Suppose “'.E�/” is “�1 2 �2”. Since p � “�1 2 �2”, the set
D D ¹p� 6 p W 9h�; qi 2 �2 .p

� 6 q ^ q � “� D �1”/º
is dense below p. In particular, G \D ¤ ; and so there is a p� and h�; qi 2 �2 such that
1. p� 2 G;
2. p� 6 p; q; and
3. p� � “� D �1”.

(1) and (2) imply that q 2 G so that VŒG� � “�G 2 .�2/G”. (3) implies by the previous case above
that VŒG� � “�G D .�1/G” and thus VŒG� � “.�1/G 2 .�2/G”.

(b) Suppose VŒG� � “'.E�/”. We must show there is some p 2 G with p � “'.E�/”.
• Suppose VŒG� � “.�1/G D .�2/G”. To see that some p 2 G has p � “�1 D �2”, it suffices
to consider the dense set of Lemma A • 5. In particular, consider the set of all p� 6 p such that
p� � “�1 D �2”. is isn’t exactly easy to get a handle on, so instead consider the setD of p where
p  “�1 D �2” or we have a conflict with the dense sets of Definition A • 4: either
(i) there is a h�1; q1i 2 �1 where p 6 q1, and for every h�2; q2i 2 �2 and every q�

2 6 q2, if
q�

2 � “�1 D �2” then q�
2 ? p; or

(ii) there is a h�2; q2i 2 �2 where p 6 q2, and for every h�1; q2i 2 �1 and every q�
1 6 q1, if

q�
1 � “�1 D �2”, then q�

1 ? p.
e idea is that there can be no p 2 G that satisfies either (i) or (ii). e issue is that (the handling
of these two are analogous) if p satisfies (i) along with h�1; q1i 2 �1, we would have q1 2 G so
that VŒG� � “.�1/G 2 .�1/G D .�2/G”, meaning VŒG� � “.�1/G D .�2/G” for some h�2; q2i 2 �2.
By the inductive hypothesis on P -name rank, there is then some q 2 G where q � “�1 D �2”.
Without loss of generality (G is a filter) we can assume q 6 q2 so that by (i) q ? p, contradicting
that q; p 2 G and G is a filter.

us if there are no p � “�1 D �2” in G, then G \D D ;. So it suffices to show that D is dense,
yielding that G \ D ¤ ; and thus there is a p 2 G that �-forces “�1 D �2”. So let p 2 P be
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arbitrary, working towards a p� 2 D. Assume without loss of generality that p 6� “�1 D �2”. us
by Definition A • 4 (the other possibility being similar, yielding an extension witnessing to (ii)) there
is a h�1; q1i 2 �1 with

D1 D ¹p
� 6 p W p� 6 q1 ! 9h�2; q2i 2 �2 .p

� 6 q ^ p� � “�1 D �2”/º
not dense below p. In particular, there is some p� 6 p with no p�� 2 D1, meaning for all p�� 6 p�,

p�� 6 q1 ^ 8h�2; q2i 2 �2 .p
��
66 q2 _ p

��
6� “�1 D �2”/.

We now show that p� satisfies (i). e above shows that in particular, p� 6 p� has p� 6 q1. Note
that if h�2; q2i 2 �2, q�

2 6 q2 and q�
2 � “�1 D �2”, then any common extension r 6 q�

2 ; p
� has

r D p�� contradict the above. us this would imply q2 ? p
� and thus that p� satisfies (i). erefore

D is dense.

• Suppose VŒG� � “.�1/G 2 .�2/G”. is means there is some h�2; q2i 2 �2 with q2 2 G and VŒG� �
“.�1/G D .�2/G”. By the argument above, there is then some p 2 G with p � “�1 D �2”. So
if p� 6 p; q2, by Lemma A • 5, every p�� 6 p� has p�� 6 q2 and p�� � “�1 D �2”. us by
definition, p�  “�1 2 �2”.

So far, we have (a) and (b) for atomic formulas. e inductive steps are much easier, and we prove (a) and (b) by
structural induction on '.

• Suppose ' is “� ^  ”.
(a) If p � “'.E�/” then p �-forces each conjunct. By the inductive hypothesis, p forces each conjunct,

and thus the conjunction “'.E�/”.
(b) If VŒG� � “'.E�G” then inductively there are p1; p2 2 G with p1 � “�.E�/” and p2 � “ .E�/”.

As G is a filter, there is some common extension p 6 p1; p2 where then p �-forces both (by Lemma
A • 5) and thus the conjunction “'.E�/”.

• Suppose ' is “: ”. is case is the only reason why we needed to prove (a) and (b) together.
(a) Suppose p � “: .E�/” but some generic G has p 2 G with VŒG� � “ .E�/”. By the inductive

hypothesis on (b), there is some q 2 G with q � “ .E�/”. But then a common extension p� 6 p; q

has (by Lemma A • 5) p� � “ .E�/”, contradicting Definition A • 4.
(b) Suppose VŒG� � “: .E�/”. Consider the setD of p 2 P that decide  :

D D ¹p 2 P W p � “ .E�/” _ p � “: .E�/”º.
It should be clear thatD is dense in V, since either we can extend an arbitrary p to a p� � “ .E�/”
or else every p� 6 p doesn’t �-force “ .E�/”, in which case p 6 p �-forces “: .E�/”. Hence
G \ D ¤ ; as witnessed by some p 2 G. We obviously can’t have p � “ .E�/” as this would
imply inductively that p  “ .E�/” and thus VŒG� � “ .E�/”. Hence p � “: .E�/” witnesses the
result.

• Suppose ' is “9x  ”.
(a) Suppose p � “9x  .x; E�/” so that ¹p� 6 p W 9� 2 VP .p� � “ .�; E�/”/º is dense below p.

us if G is generic and p 2 G, then there is some p� 6 p with p� � “ .�; E�/” for some P -name
� . By the inductive hypothesis, VŒG� � “ .�G ; E�G/” and thus VŒG� � “9x  .x; E�G/”. As G was
arbitrary, it follows that p  “9x  .x; E�/”.

(b) Suppose VŒG� � “9x  .x; E�G/”. Let �G be a witness to this. us VŒG� � “ .�G ; E�G/” and so
inductively, there is some p 2 G with p � “ .�; E�/” and in particular, since every p� 6 p

�-forces this, by Definition A • 4 p � “9x  .x; E�/”. a

is allows us to prove the desired results about the actual forcing relation.
A • 7. Corollary

Let P 2 V be a poset appropriate for forcing. Let p 2 P , E� 2 VP , and ' a formula. erefore p � “'.E�/” iff
p  “'.E�/”.
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Proof .:.
e (!) direction follows from Lemma A • 6 (a). For the ( ) direction, suppose p  “'.E�/”, but p 6� “'.E�/”.
Hence by Lemma A • 5, D D ¹p� 6 p W p� � “'.E�/”º is not dense below p, meaning there is some p� 6 p

that cannot be extended into D, i.e. every p�� 6 p� has p�� 6 “'.E�/”, i.e. p� � “:'.E�/”. But then
p�  “:'.E�/”, contradicting that p > p�  “'.E�/”. a

e above proof requires some philosophical assumptions: namely if P 2 V, then any p 2 P has a P -generic G over
V with p 2 G. is is clear when V is countable by eorem 4A • 1viii, but otherwise, one could read the conclusion
of the proof above that instead p� has no generic G with p� 2 G.

One consequence of the equivalence between forcing and �-forcing is the following from Lemma A • 6 (b).
A • 8. Corollary

Let P 2 V be a poset appropriate for forcing. Let G be P -generic over V. Let E� 2 VP . erefore VŒG� � “'.E�G/”
iff there is some p 2 G with p  “'.E�/”.

Moreover, we can finally confirm the results of Motivation 2B • 3. e only interesting case here is (4).
A • 9. Theorem

Let P be a poset appropriate for forcing. For p 2 P , write p� 2 P for an arbitrary p� 6 p (an arbitrary point in time
after p). Let ' be a formula with parameters in VP . erefore,

1. p  ' iff every p�  ';
2. p  “:'” iff every p� 6 ', i.e. you can conclude it’s false iff you will never discover that it’s true;
3. p  “' ^  ” iff p  ' and p   ;
4. if p  “9x '.x/” then there is some p� 6 p and � where p�  “'.�/”; and
5. if p  ', and ' is logically equivalent to  , then p   ;

Proof .:.
1. is follows fromLemmaA • 5 andCorollaryA • 7: p  ' impliesp � ', which implies everyp� � ',

which implies every p�  '. e converse follows similarly.
2. is follows from Corollary A • 7 and Definition A • 4.
3. is follows from Definition 2B • 2.
4. Suppose p  “9x '.x/”. Let p 2 G which is P -generic over V. Since VŒG� � “9x '.x/”, there is some
� 2 VP where VŒG� � '.�G/ and thus some condition of G forces this: q 2 G has q  “'.�/”. As G is
a filter, there is some common extension p� 6 p; q which then forces “'.�/”.

5. If ' is logically equivalent to  , then any generic extension VŒG� � “' $  ” so if p 2 G and VŒG� � ',
then clearly VŒG� �  .

viiiD D ¹D 2 V W V � “D is dense in P”º � V must also be countable if V is
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Appendix A. ZFC in the Generic Extension

Our goal is now to prove eorem 4B • 6. Doing this amounts mainly to finding the right P -names for certain sets that
a particular axiom of ZFC claims the existence of. Now ostensibly, we could just apply a result like Corollary A • 8
and begin by, for each axiom ' of ZFC, finding an element of the poset that forces ZFC. is isn’t exactly easy to do
if, say, 1P  ZFC (which will be the case if V � ZFC). Mostly this is because while  is defined, that doesn’t mean
it’s computable, as whether certain sets are dense isn’t always immediate.

We now collect together the implications of how much set theory V satisfies on how much set theory VŒG� satisfies.
As a bit of notation, we refer to V as the ground model while VŒG� is the generic extension. Also, P refers to the
powerset axiom while ZF� refers to ZF � PC Col, where Col is the axiom scheme of collection. Collection is strictly
stronger than replacement, as there is a complicated forcing where replacement holds in the generic extension, but not
collection [3].

A • 1. Theorem
Let P 2 V be a poset. Let G be P -generic over V. erefore,

• V � ZF� implies VŒG� � ZF � P;
• V � ZF implies VŒG� � ZF;
• V � ZFC implies VŒG� � ZFC.

To prove these inequalities, we need to prove various closure properties of the generic extension given by appropriate
names in the ground model. e existence of these names follows from the amount of set theory the ground model
satisfies.

Note that I will often use “a name”, “a P -name”, and “a name in V” all for the same thing: an element of VP for some
given element of VŒG�.

A • 2. Theorem
Let P 2 V be a poset. Let G be P -generic over V. Suppose V � ZF � P. erefore VŒG� � ZF � P � Rep, where
Rep is the axiom scheme of replacement.

Proof .:.
• e axioms of extensionality and foundation follow from the fact that VŒG� is transitive.
• e empty set axiom follows from the fact that ; 2 V so that L; 2 V and thus L;G D ; 2 VŒG�.
• Pairing follows easily: for x; y 2 VŒG�, let Px; Py 2 VP be two P -names for x and y respectively: PxG D x

and PyG D y. Consider the P -name in V
� D ¹h Px; 1P i; h Py; 1P iº.

Since any filter has 1P 2 G, �G D ¹ PxG ; PyGº D ¹x; yº. Hence VŒG� is closed under pairs, and so as a
transitive set, VŒG� � Pair.

• Comprehension requires some work. Let ' be a formula, and x 2 VŒG�. We’d like to show ¹y 2 x W
VŒG� � “'.x; y; Ew/”º 2 VŒG� for any parameters Ew 2 VŒG�.
So let EPw be P -names for the parameters, and Px a P -name for x. For any y 2 x (with name Py 2 dom. Px/)
such that VŒG� � “'.x; y; Ew/”, there is some p 2 G such that p  “ Py 2 Px ^ '. Px; Py; Ew/”. So consider the
set

� D ¹h�; pi 2 dom. Px/ � P W p  “� 2 Px ^ '. Px; �; EPw/”º.
us any �G 2 �G has h�; pi 2 � with p 2 G, and hence VŒG� � “� 2 x ^ '.x; �; Ew/”. e argument
given above shows that any y 2 x with VŒG� � “'.x; y; Ew/” has some Py and p 2 G with h Py; pi 2 � .
Hence this � witnesses this arbitrary instance of comprehension, and thus VŒG� � Comp.
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• For union, for X 2 VŒG�, we need to show
S
X 2 VŒG�. Because comprehension holds, we only need

to show there is some Y 2 VŒG� with
S
X � Y , because then we can consider in VŒG� the set ¹y 2 Y W

9x 2 X .y 2 x/º D
S
X .

So let PX be a name for X . Consider the set
� D ¹h�; pi W 9h� 0; p0

i 2 PX .h�; pi 2 dom.� 0//º.
is clearly works as x � �G not only for h Px; pi 2 PX with p 2 G but for all x with Px 2 dom.x/. HenceS
PXG D

S
X � �G . us VŒG� � Union.

• For infinity, just note that the name L! D ¹h Ln; 1P i W n 2 !º 2 VP witnesses that ! 2 VŒG�.

With the addition of powerset in the ground model, we also get powerset in the generic extension.
A • 3. Lemma

Let P 2 V be a poset. Let G be P -generic over V. Suppose V � ZF. erefore VŒG� � P

Proof .:.
Let x 2 VŒG�. We need to show that P .x/ \ VŒG� 2 VŒG�, meaning that there is a set that collects every subset
of x that is in VŒG�. By eorem A • 2, VŒG� � Comp so it suffices to find Y 2 VŒG� with P .X/ \ VŒG� � Y ,
since then we just consider P .x/ \ VŒG� D ¹y 2 Y W y � xº 2 VŒG�.

So let Px be a name for x. If �G � x in VŒG�, then there is some p 2 P with p  “�G � Px”. So consider
� D ¹h�; pi 2 P .dom. Px/ � P/ � P W p  “� � x”.º

is is a set in V by the powerset axiom in V. If h�; pi 2 � with p 2 G, then VŒG� � “�G � x” and thus �G �

P .x/\VŒG�. Recall Result 6 C • 2, which says that any y 2 VŒG� with y � x has a name Py 2 P .dom. Px/ � P/.
So if VŒG� � “y � x”, there is some p 2 G with p  “ Py � Px”, and so h Py; pi 2 � has y D PyG 2 �G . Hence
�G D P .x/ \ VŒG� witnesses this instance of powerset, and so VŒG� � P. a

is shows that V � ZF implies VŒG� ` ZF � Rep. In order to confirm replacement we need the axiom scheme of
collection in the ground model. is follows from powerset and replacement, but without powerset, we might not have
the axiom scheme of collection. So when we jump from V � ZF� P to V � ZF, we can confirm two axioms in VŒG�:
P and Rep.

First we introduce the axiom scheme of collection, and then we show this follows from ZF. We introduce this axiom,
because it is used in the proof that V � ZF implies VŒG� � ZF. Of course, we could just proof the particular instance(s)
we need during the proof, but this isn’t exactly instructive.

A • 4. Definition
e axiom scheme of collection (Col) states the following: if ' is a relation on a setD, then there is a set containing
'-relatives of each x 2 D. Symbolically, Col consists of all formula of the form

8 Ew;D .8x 2 D 9y '.x; y;D; Ew/! 9R 8x 2 D 9y 2 R '.x; y;D; Ew//.
where ' is a formula.

e Ew just allow parameters. Note that this clearly stronger than replacement, which requires ' to define a function
overD:

8 Ew8D .8x 2 D 9Šy '.x; y; Ew/! 9R 8x 2 D 9y 2 R '.x; y; Ew//.

A • 5. Lemma
ZF ` Col

Proof .:.
For each ', Ew, andD, consider the collection of all relatives of elements inD:

R0
D ¹y W 9x 2 D '.x; y;D; Ew/º.

Note that this is potentially a proper class. But with powerset, we can consider
R D ¹y W 9x 2 D .'.x; y;D; Ew/ ^ 8z .'.x; z;D; Ew/! rank.z/ � rank.y///º.
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is will be a set, because we’ve defined a function f W D ! V where f .x/ is the least rank of a y with
'.x; y;D; Ew/. is yields f "D � Ord as a set of ordinals, and thus R � Vsup f "D yields that R is a set by
comprehension. a

e above idea (considering only the elements of least rank) has been dubbed “Scott’s trick”.
A • 6. Lemma

Let P 2 V be a poset. Let G be P -generic over V. Suppose V � ZF � PC Col. erefore VŒG� � Rep.

Proof .:.
Let ' be a formula with parameters in VŒG�,D 2 VŒG�. Suppose

VŒG� � “8x 2 D 9Šy '.x; y;D/”. (�)
We need to find a P -name for the range of ' restricted toD. Note that there is somepD 2 P forcing (�) (translated
with parameters as P -names).

Consider the formula  .p; �; �/ stating:
p 2 P ^

�
p  “'.�; �; PD/” _ :9� p  “'.�; �; PD/”

�
.

In V, for each h�; pi 2 dom. PD/ � P , there is a � 2 VP where  .p; �; �/ holds (� can be anything if :9� p 
“'.�; �; PD/”). By collection in V, there is a set R � VP where each h�; pi 2 dom. PD/ � P has a � 2 R. As
R � VP is a set, � D R � P is a P -name.

To see that �G 2 VŒG� satisfies our requirements, suppose VŒG� � “x 2 D”. We can take x D �G for � 2
dom. PD/. Since (�) holds, there is some y where VŒG� � “'.x; y;D/”. is is forced by some p 2 P : p 
“'.�; Py; PD/”. Hence there is a � 2 R where p  “'.�; �; PD/”, and thus VŒG� � “�G 2 �G ^ '.x; �G ;D/”,
yielding the result. is shows this arbitrary instance of replacement holds in VŒG�, and thus VŒG� � Rep. a

So we can conclude V � ZF implies VŒG� � ZF. e last thing to consider is choice. ere are multiple versions of
choice, but we will consider one that’s easy to use. In particular, we’re using the version that says every set is covered
by an ordinal.ix

A • 7. Theorem
Let P 2 V be a poset. Let G be P -generic over V. Suppose V � ZFC. erefore VŒG� � ZFC.

Proof .:.
We have by the previous lemmas that VŒG� � ZF. So it suffices to show VŒG� � AC, and so it suffices to show
that for any x 2 VŒG�, there is an f 2 VŒG� and an ˛ 2 Ord \ VŒG� where VŒG� � “f W ˛ ! x is surjective”.
Let Px be a name for x. By AC in V, there is a surjection F W ˛ ! dom. Px/ for some ˛ 2 Ord \ V. us

f D ¹hhh L�; F.�/ii; 1P i W � < ˛º

works. (Here, hha; bii is a name for haG ; bGi, an in particular is
°˝
¹ha; 1P iº; 1P

˛
;
˝
¹ha; 1P i; hb; 1P iº; 1P

˛±
.) If we

consider fG , we have that any element is of the form h�; F.�/Gi where F.�/ 2 dom. Px/ and � < ˛. And so we
can regard fG as a function from ˛, and It should be clear that VŒG� � “x � im.fG/”. Hence this version of AC
holds in VŒG�. a

Choice in the generic extension also allows us to confirm a stronger result than in eorem A • 9. In particular, we
don’t need to extend p to find a particular name for a witness.

A • 8. Result (Maximum Principle)
Let P 2 V be a poset with p 2 P . Suppose V � ZFC. erefore, if p  “9x '.x/”, then there is some � 2 VP

where p  “'.�/”.

ixWe get an injection from g W x ! ˛ just by setting g.y/ to be the least ˇ with f .ˇ/ D y where f W ˛ ! x is the surjection. is yields a
well-order of x. Note that in ZF, we have that x can always be surjected onto various ordinals, but the reverse is equivalent to x having a well-order.
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Proof .:.
Suppose p  “9x '.x/”. is means D D ¹p� 6 p W 9� 2 VP .p�  “'.�/”/º is dense below p. So in V,
for each q 2 D, let �q be such a name. To introduce some terminology, an antichain is a subset of P in which
any two elements are incompatible. ere is an antichain A � D that is maximal in the antichains contained in
D (such an antichain exists by Zorn’s lemma). Consider the name

� D ¹h�; q�
i W 9r; q .q� 6 q 2 A ^ q� 6 r ^ h�; ri 2 �q/º.

It follows that p  “'.�/”. To see this, let G be P -generic over V with p 2 G.

G\A ¤ ;. To see this, closing A downwards yields a setA0 dense below p (any condition without an extension
into this set is incompatible with any element of A, meaning we can add it to A to yield a larger antichain,
contradicting maximality). us G \ A0 ¤ ; so there is some p 2 G with p 6 a for some a 2 A. Since G is
closed upwards, a 2 G \A.

erefore, there is some a 2 G \A. Since any two elements of A are incompatible while any two elements of
G are compatible, jG \Aj D 1. us

�G D ¹h�; a
�
i W a� 6 a ^ 9r .a� 6 r ^ h�; ri 2 �a/ºG D ¹h�; ri 2 �a W r is compatible with aºG .

Since all r 2 G are already compatible with a, this is just ¹�G W 9r 2 G .h�; ri 2 �a/º D .�a/G . Since
a  “'.�a/”, we thus have VŒG� � “'.�G/”, and so p  “'.�/”. a

One may note that this is actually equivalent to AC holding in V.
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