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Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth
in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were
documented in the literature aimed at understanding the mechanisms that may support Gompertz’s ele-
gant model equation. One of the most convincing efforts was carried out by Gyllenberg and Webb. They
divide the cancer cell population into the proliferative cells and the quiescent cells. In their two dimen-
sional model, the dead cells are assumed to be removed from the tumor instantly. In this paper, we mod-
ify their model by keeping track of the dead cells remaining in the tumor. We perform mathematical and
computational studies on this three dimensional model and compare the model dynamics to that of the
model of Gyllenberg and Webb. Our mathematical findings suggest that if an avascular tumor grows
according to our three-compartment model, then as the death rate of quiescent cells decreases to zero,
the percentage of proliferative cells also approaches to zero. Moreover, a slow dying quiescent population
will increase the size of the tumor. On the other hand, while the tumor size does not depend on the dead
cell removal rate, its early and intermediate growth stages are very sensitive to it.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction as an initial model for tumor growth. Here N is the size of the tumor,
Tumor growth models have their historical roots in the work of
Gompertz [8]. The Gompertz model was first employed in the paper
of Laird [12] to model real tumor growth. Ever since, Gompertz’s
empirical equation remains the most popular one in describing
cancer cell population growth in a wide spectrum of bio-medical
situations due to its good fit to data and simplicity [15]. Many efforts
were documented in the literature aimed at understanding the
mechanisms that may support Gompertz’s elegant model equation
[7,9,13,14,11,18]. The key aspect of the approach of these existing
efforts is to divide the cancer cell population into the proliferating
cells and the quiescent cells, or the proliferating cell and dispersing
cells.

In the beginning, a tumor often grows in approximately a spher-
ical form. If the tumor fails to produce enough signaling proteins
such as vascular endothelial growth factor (VEGF) for angiogenesis,
then the tumor can only grow to a certain size with available nutri-
ent supplies. Indeed, most tumors exhibit a sigmoid growth curve
in the early stage. For this reason, many modelers simply employ
the well-known logistic equation

dN=dt ¼ rNð1� N=KÞ ¼ rN � rN2=K ð1:1Þ
usually measured as a number of cells or as a volume. r is the
growth rate while rN=K can be interpreted as the density dependent
death rate. The tumor size is an increasing function that tends to the
carrying capacity K. Generalizing the logistic model, von Bertalanffy
[1] introduced the equation

dN=dt ¼ f ðNÞ ¼ aNk � bNl; k < l: ð1:2Þ

to represent tumor growth. This is often referred as the (general-
ized) von Bertalanffy tumor model. The tumor size is an increasing
function that tends to the carrying capacity ða=bÞ1=ðl�kÞ. Tumors
tend to approach a steady state size in the nutrient-limited growth
phase when nutrient is supplied only by diffusion. A particular case
of the von Bertalanffy equation is the surface rule model [1], which
states that growth is proportional to surface area (k ¼ 2=3) since
nutrients have to enter through the surface, while death is propor-
tional to the size (l ¼ 1). In this special case, b is the death rate.
Notice that, the birth rate of logistic model and the death rate of
the von Bertalanffy model (when l ¼ 1) are constant.

Gompertz model is arguably also the most important and prac-
tical tumor model. Many researchers reported that Gompertz
model provided surprisingly good fit to their experimental data
on various tumor growths. The key assumption embodied in the
Gompertz model is that the cell growth rate decreases exponen-
tially as a function of time.
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http://dx.doi.org/10.1016/j.mbs.2014.06.009
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dN
dt
¼ rðtÞNðtÞ; dr

dt
¼ �arðtÞ: ð1:3Þ

Notice that

dðlnðNÞÞ
dt

¼ 1
N

dN
dt
¼ rðtÞ ¼ �1

a
dr
dt
; ð1:4Þ

from which we obtain that for some constant b,

lnðNÞ ¼ ð�rðtÞ þ bÞ=a; ð1:5Þ

which is equivalent to say that rðtÞ ¼ b� a lnðNÞ. This gives us an
alternative and more popular form of the Gompertz model

dN
dt
¼ bN � a lnðNÞN ¼ Nðb� a lnðNÞÞ: ð1:6Þ

Note that this function is not defined for N ¼ 0, so we must assume
that the tumor has a certain size before applying this model. Again,
the tumor size is an increasing function that tends to the carrying
capacity K ¼ eb=a. Using the substitution u ¼ lnðN=KÞ, we can solve
the Gompertz equation with initial condition Nð0Þ ¼ N0. We obtain
that NðtÞ ¼ KeAB, where A ¼ lnðN0=KÞ and B ¼ e�at . Some researchers
have also considered the following so-called generalized Gompertz
model [13,14],

dN
dt
¼ Naðb� a lnðNÞÞ: ð1:7Þ

Marusic and Vuk-Pavlovic [13] compared the Gompertz model, the
generalized Gompertz model, and a host of other one dimensional
ODE tumor models (including the above logistic and von Bertalanffy
tumor models) to predict growth of multicellular tumor spheroids
as paradigms of the prevascular phase of tumor growth. They
reported that the Gompertz model is the model with the best pre-
diction power. The generalized Gompertz model is ranked as the
second most predictive model. Moreover, the ranking of models
was not affected by the applied minimization criteria of weighted
least squares, unweighted least squares and fitting to logarithmi-
cally transformed data.

While these models have intuitively meaningful parameters,
they all ignored the typical three-layer structure manifested by
most multicellular tumor spheroids in their later phase (see
Fig. 1). Hence, in Marusic et al. [14], the authors stated that more
sophisticated models that incorporate fine tumor structures are
needed. This in fact was pursued in a two-compartment model of
cancer cells population growth dynamics proposed by Gyllenberg
and Webb [9]. In their model, the transition rates between prolifer-
ating and quiescent cells are assumed to be non-specified functions
of the total population N. As a result, the net inter-compartmental
transition rate function is also a function of the total cells. For some
C: necrotic core Q P

Fig. 1. Structure of a typical multicellular tumor spheroid. Q = quiescent layer and
P = proliferating layer.
special set of parameter values and initial conditions, this net inter-
compartmental transition rate function can be selected to generate
the Gompertz growth model. Effectively, this leads to a hybrid
model for which explicit analytical solutions for proliferating and
quiescent cell populations, and the relations among model param-
eters can be obtained. The model realistically predicts that the
number of proliferating cells may increase along with the total
number of cells, but the proliferating fraction appears to be a con-
tinuously decreasing function. The net transition rate of cells is
shown to retain direction from the proliferating into the quiescent
compartment. The death rate parameter for quiescent cell popula-
tion is shown to be a factor in determining the proliferation level
for a particular Gompertz growth curve. However, in this model,
the dead cells are assumed to be removed from the tumor instantly
which is a drastic simplification of reality and ignores the ubiqui-
tous necrotic core feature of a typical late stage avascular tumor.

In this paper, we modify the model of Gyllenberg and Webb [9]
by keeping track of the dead cells remaining in the tumor. We per-
form systematical mathematical and computational analysis of the
model properties and dynamics. In particular, we compare and
contrast our three dimensional model dynamics to that of the
two dimensional model of Gyllenberg and Webb [9].
2. A three-compartment model for tumor growth

In a typical avascular multicellular tumor spheroid, due to lack
of key resources such as nutrient and space, proliferating cells
often enter a quiescent state where they stop dividing. Quiescent
cells may die if the resource limitation persists or return to prolif-
erating state if enough resources can be obtained in a given period.
Therefore, quiescence tends to be more common in later phases of
an avascular multicellular tumor spheroid. Quiescence typically
increases, often nonlinearly, with tumor size. It can be reversible
or irreversible, as reviewed by Skipper [17].

In an effort to better understand the success of Gompertz mod-
els in fitting clinical tumor data, Gyllenberg and Webb [9] pro-
posed a two-compartment model of the tumor cells in a typical
avascular multicellular tumor spheroid transition into and out of
quiescence. We briefly describe their model below. Let PðtÞ and
QðtÞ be the densities of proliferative and quiescent cells, respec-
tively. Define NðtÞ ¼ PðtÞ þ QðtÞ. Then the Gyllenberg–Webb model
(GW model) takes the following form:

dP
dt ¼ ðb� lp � r0ðNÞÞP þ riðNÞQ ;
dQ
dt ¼ r0ðNÞP � ðriðNÞ þ lqÞQ ;

(
ð2:1Þ

with initial conditions,

Pð0Þ ¼ P0 > 0; Qð0Þ ¼ Q 0 P 0: ð2:2Þ

Proliferative cells are assumed to proliferate at a constant per capita
rate b > 0, and proliferative and quiescent cells are assumed to die
at constant rates lp P 0 and lq P 0, respectively. The key assump-
tion of Gyllenberg–Webb model is the tumor cells transition to and
from the quiescent compartment at rates r0ðNÞ and riðNÞ, respec-
tively, where both functions are continuous and defined for
N P 0. Recall that stress often increases with tumor size and
stressed cells tend to enter and stay at a quiescent state. Gyllenberg
and Webb assume that

(A1) r0ðNÞP 0 and r00ðNÞP 0 for all N > 0 and,
0 < lim
N!1

r0ðNÞ � l0 61: ð2:3Þ
(A2) riðNÞP 0, but r0iðNÞ 6 0, and
0 6 lim
N!1

riðNÞ � li <1: ð2:4Þ
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(A3) The dead cells are immediately removed from the tumor.

It can be shown that under reasonable conditions, solutions of
the above Gyllenberg and Webb model, like that of Gompertz
model, take the form of an S-shaped growth curve.

In this paper, we would like to make two natural modifications
to the Gyllenberg–Webb model (2.1). Specifically, we would like to
include the dead cell population DðtÞ into the model. We assume
that dead cells are removed from the tumor at a constant rate d.
For convenience, we will denote b� lp by b and lq by l. All
parameters below are nonnegative constants. This may result in
the following three-compartment model.

dP
dt ¼ ðb� r0ðNÞÞP þ riðNÞQ ;
dQ
dt ¼ r0ðNÞP � ðriðNÞ þ lÞQ ;
dD
dt ¼ lQ � dD;

8><
>: ð2:5Þ

where

NðtÞ ¼ PðtÞ þ QðtÞ þ DðtÞ ð2:6Þ

and initial conditions are,

Pð0Þ ¼ P0 > 0; Qð0Þ ¼ Q 0 P 0; Dð0Þ ¼ Q 0 P 0: ð2:7Þ

Here are some examples of functions r0ðNÞ and riðNÞ

r0ðNÞ ¼ kN; k lnð1þ NÞ; kN
aN þ 1

;
kN2

aN2 þ 1

and

riðNÞ ¼
r

N þm
;

r

N2 þm
:

Throughout the rest of this paper, we assume that the assumptions
(A1) and (A2) hold and the parameters b;l; d are positive.

3. Fundamental model properties

In this section, we present a preliminary analysis of the basic
properties such as positivity and boundedness of solutions for
the three-compartment model (2.5). We also briefly consider the
existence and locations of nonnegative steady states of the model
which enables us to appreciate how the steady state tumor size
and structure are affected by model parameters and functions
and hence allows us to gain some novel biological insights of
avascular tumor growth.

3.1. Positiveness of solutions

It is easy to see from the model equations, if the tumor initially
has only proliferative cells, then in an infinitesimal time, some pro-
liferative cells will enter the quiescent state, and some proliferative
and quiescent cells will die in the same period. This indicates that
without loss of generality, we can assume initial values for P;Q and
D populations are positive. The following theorem confirms that
with positive initial values, the solutions of model (2.5) are con-
fined to a biologically meaningful region.

Proposition 3.1. Solutions of model (2.5) with positive initial values
will stay positive.
Proof. If the proposition is false, then at some time the solution
turns negative, then there is a first time t1 > 0 that one of the three
solution components becomes zero. Without loss of generality,
assume that Pðt1Þ ¼ 0 and minfPðtÞ;QðtÞ;DðtÞg > 0 for t 2 ð0; t1Þ.
Let kp � minfb� r0ðNÞ; t 2 ½0; t1�g. Then,
dP
dt

P kpP; t 2 ½0; t1�

which implies that

PðtÞP Pð0Þekpt > 0; t 2 ½0; t1�;

a contradiction to the assumption that Pðt1Þ ¼ 0. Similar contradic-
tions can be derived if Qðt1Þ ¼ 0 or Dðt1Þ ¼ 0 for some time t1 > 0.
This completes the proof of the proposition. h
3.2. Boundedness of solutions

Intuitively, the Gyllenberg–Webb model (2.1) can be viewed as
the limiting case of the model (2.5) as D tends to infinity. It is easy
to see that if l0 < b, then dP

dt P ðb� l0ÞP which implies that
PðtÞP Pð0Þeðb�l0Þt . Hence, some condition must be placed on l0 to
ensure that the tumor growth eventually comes to an end. The
question is what other conditions shall we add to establish the
boundedness of the solutions of the model (2.5). A relatively
straightforward set of conditions will be riðNÞ � 0 and l0 > b, which
is probably reasonable biologically since as tumor grows, there are
negligible amount of quiescent cells can reenter proliferative state.
This set of conditions are used to establish boundedness of solu-
tions for the model (2.1) in the Proposition 2.1 of Gyllenberg and
Webb [9]. In the following proposition, we show that the strict
requirement of riðNÞ � 0 can be replaced by an equally simple
yet more general and realistic condition that riðNÞN is bounded.
With this assumption, we show below that the solutions of model
(2.5) are eventually uniformly bounded.

Theorem 3.1. Assume that b < l0 <1 and there is a constant I > 0
such that riðNÞN < I for all N > 0. Then, solutions of model (2.5) are
bounded. Moreover, there is a constant L > 0 such that

lim sup
t!1

NðtÞ 6 L:
Proof. We first show that P must be bounded. Since l0 > b, for any
e1 > 0, there is a positive constant K1 such that N P K1 implies that
r0ðNÞ > bþ e. Since Q 6 N, it is easy to see that

dP
dt

< ðb� r0ðNÞÞP þ I:

We claim that

P < maxfK1; Pð0Þ; I=e1g þ 1 � KP:

If not, then there is a time t1 > 0 such that Pðt1Þ ¼ KP; P0ðt1ÞP 0 and
PðtÞ < KP for 0 6 t < t1. However, since N P P, we have

dP
dt
ðt1Þ < ðb� r0ðNðt1ÞÞÞPðt1Þ þ I < �e1Pðt1Þ þ I < 0;

a contradiction. Our proof above also implies that

lim sup
t!1

PðtÞ 6maxfK1; I=e1g � LP:

Next, we show that Q is also bounded. In fact, for any e2 > 0, we
can show that

Q < maxfl0KP=l;Qð0Þg þ e2 � KQ :

If not, then there is a time t2 > 0 such hat Qðt2Þ ¼ KQ ; Q 0ðt2ÞP 0
and QðtÞ < KQ for 0 6 t < t2. However, since r0ðNÞ < l0, we have

dQ
dt
ðt2Þ < r0ðNÞP � lQ < l0KP � lQðt2Þ < 0;

also contradiction. Standard comparison argument can show that

lim sup
t!1

QðtÞ 6 l0LP=l � LQ :
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Similarly, we can show that Q is bounded and
lim supt!1DðtÞ 6 lLQ=d � LD. It is now straightforward to see that

lim sup
t!1

NðtÞ 6 LP þ LQ þ LD � L:

This completes the proof of the theorem. h

The following corollary is the result of a simple application of
the above boundedness theorem.

Corollary 3.1. Assume that r0ðNÞ ¼ kN
aNþ1 ; riðNÞ ¼ r

Nþm, and b < k=a,
where all parameters are positive. Then, solutions of model (2.5) are
bounded. Moreover,
lim sup
t!1

NðtÞ 6 b
k� ba

1þ k
a

1
lþ

1
d

� �� �
:

Clearly, Theorem 3.1 does not cover the case of r0ðNÞ ¼ kN. The
difficulty stems from the fact that the recruitment to the quiescent
population is pushed away from P, not generated by Q. This case is
deceivingly simple. It requires a different and more elaborate
treatment.
Proposition 3.2. Assume that r0ðNÞ ¼ kN; k > 0, and there is a
constant I > 0 such that riðNÞNð1þ NÞ < I for all N > 0. Then,
solutions of model (2.5) are bounded.
Proof. Since there is a constant I > 0 such that riðNÞNðN þ 1Þ < I
for all N > 0, we have riðNÞN < I and riðNÞN2 < I for all N > 0. In
fact, we claim that

P 6 max
1þ b

k
; Pð0Þ; I

� �
� Pm: ð3:1Þ

If Eq. (3.1) is false, then there is a time t1 > 0 such that
Pðt1Þ ¼ Pm; P0ðt1ÞP 0 and PðtÞ < Pm for 0 6 t < t1. However, since
N P P, we have

dP
dt
ðt1Þ < ðb� r0ðNðt1ÞÞÞPðt1Þ þ I 6 �Pðt1Þ þ I 6 0;

which is a contradiction. This proves that the Eq. (3.1) is true.
Next, we show that the expression ZðtÞ � NðtÞPðtÞ is bounded.

Observe that NQ < N2. We have
Z0 ¼ ðbP � dDÞP þ ðb� kNÞZ þ riðNÞNQ

< I þ bP2 � ðkN � bÞZ: ð3:2Þ

We claim that

ZðtÞ 6 max I þ ðbþ 1Þ 1þ b
k

� �2

; P2ð0Þ
( )

� U: ð3:3Þ

If Eq. (3.3) is false, then there is a time t2 > 0 such that
Zðt2Þ ¼ U; Z0ðt2ÞP 0 and ZðtÞ < U for 0 6 t < t2. Since PðtÞ 6 1þb

k ,
we must have Nðt2Þ > 1þb

k . We thus have

Z0ðt2Þ < I þ bP2 � ðkNðt2Þ � bÞZðt2Þ < I þ b
1þ b

k

� �2

� U < 0;

which is also a contradiction. This proves that the Eq. (3.3) is true.
Since Q 0 6 kZ � lQ and Qð0Þ ¼ 0, a standard comparison argu-

ment yields that
QðtÞ 6 kU=l:

Likewise, we have D 6 kU=d. This completes the proof of the
proposition. h
3.3. Existence and locations of nonnegative steady states

We now consider the existence and locations of nonnegative
steady states of model (2.5). Clearly ð0;0;0Þ is the trivial steady
state. Let E� ¼ ðP�;Q �;D�Þ be a nontrivial steady state of model
(2.5).

It is easy to see that

dN
dt
¼ �P� dD:

At steady state, we must have bP� � dD� ¼ 0. From the D equation,
we have lQ � � dD� ¼ 0. Hence bP� ¼ dD� ¼ lQ � and

N� ¼ P� þ Q � þ D� ¼ 1þ b
l
þ b

d

� �
P� � dP�: ð3:4Þ

From the Q equation, we have

r0ðN�ÞP� ¼ ðriðN�Þ þ lÞQ� ¼ ðriðN�Þ þ lÞ b
l

P�; ð3:5Þ

which implies that

lr0ðN�Þ ¼ bðriðN�Þ þ lÞ: ð3:6Þ

We are now in a position to state and prove the following result on
the existence and uniqueness of positive steady state for model (2.5).

Proposition 3.3. Assume the following two conditions hold
lr0ð0Þ < bðrið0Þ þ lÞ; ð3:7Þ

and there is a positive constant U such that

lr0ðUÞ > bðriðUÞ þ lÞ: ð3:8Þ

Then, model (2.5) has a unique positive steady state.
Proof. The proof of this proposition is straightforward. Let

f ðNÞ � lr0ðNÞ � bðriðNÞ þ lÞ: ð3:9Þ

We see that f ðNÞ is strictly increasing with f ð0Þ < 0 and
f ðUÞ ¼ lr0ðUÞ � bðriðUÞ þ lÞ > 0. Hence, there is a unique
N� 2 ð0;UÞ such that f ðN�Þ ¼ 0. The unique positive steady state is
given by

E� ¼ N�

d
;
bN�

ld
;
bN�

dd

� �
:

This completes the proof of the proposition. h

For the case of r0ðNÞ ¼ kN
aNþ1 and riðNÞ ¼ r

Nþm, where all parame-
ters are positive, the above proposition ensures the solutions of
model (2.5) possess a unique positive steady state if there is a
U > 0 such that

l kU
aU þ 1

> b
r

U þm
þ l

� �
:

In case of a ¼ m ¼ 1, this reduces to the existence of U > 0 such that
l½ðk� bÞU � b� > br, which is easily satisfied if k > b. From Proposi-
tion 3.1, we also see that the solutions of model (2.5) are also
bounded.

3.4. Steady state tumor size and structure

It is worthy noting that at steady state, the tumor size N� does
not depend on the dead cell removal rate d, while the ratio of pro-
liferative cells to the total tumor cells is 1=d which does not depend
on the transfer rate functions r0ðNÞ and riðNÞ. Moreover, as l tends
to zero, we see that d tends to infinity from (3.4), which implies
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that at the proliferative portion of the tumor approaches to zero at
or near steady state level. This echoes a similar statement included
in the Proposition 2.3 of Gyllenberg and Webb [9]. Moreover, it is
easy to see that f ðN�Þ ¼ 0 implies that

b ¼ lr0ðN�Þ
lþ riðN�Þ

< r0ðN�Þ: ð3:10Þ

By implicitly differentiating the equation lr0ðNÞ � bðriðNÞ þ lÞ ¼ 0
with respect to l, we can show that

dN�

dl
¼ b� r0ðN�Þ

r00ðN
�Þ � br0iðN

�Þ
< 0: ð3:11Þ

These elementary mathematical findings can be summarized into
the following biological proposition on the steady state tumor size
and structure.

Proposition 3.4. If an avascular tumor grows following the model
(2.5), then as the death rate of quiescent cells decreases to zero, the
percentage of proliferative cells also approaches to zero. Moreover, a
slow dying quiescent population will increase the size of the tumor at
the steady state level.
4. Stability of steady states

At the onset of tumor growth, plenty of nutrient is available for
tumor cells to proliferate, hence there is no need for cell to enter
the quiescent state. In view of this fact, we assume in the rest of
this paper that

(A4): r0ð0Þ ¼ 0.
We will study the stability of the trivial steady state and the

nontrivial steady state when it exists.
We consider first the local stability of E0 ¼ ð0;0;0Þ which is

determined by the following Jacobian,

JðE0Þ ¼
b rið0Þ 0
0 �rið0Þ � l 0
0 l �d

2
64

3
75:

It is easy to see that JðE0Þ has eigenvalues b;�rið0Þ � l and �d,
implying it is a saddle.

We now consider the local stability of E� ¼ ðP�;Q �;D�Þ which is
determined by the following Jacobian,

J � JðE�Þ ¼
��A� B �Aþ C �A

Aþ B A� C � l A

0 l �d

2
64

3
75;

where

A ¼ r00ðN
�ÞP� � r0iðN

�ÞQ� > 0; B ¼ r0ðN�Þ; C ¼ riðN�Þ: ð4:1Þ

From Routh–Hurwitz criterion, we know that all eigenvalues of
J have negative real parts if all the following three conditions hold:

ðiÞ trJ < 0; ðiiÞ det J < 0; ðiiiÞ D � det J � ðtrJÞ
X3

k¼1

Akk

 !
> 0;

where Akk is the determinant of the 2� 2 matrix obtained by
removing the k-th row and k-th column from J (see page 234 of
Edelstein-Keshet [2]). The following theorem gives a set of sufficient
conditions for the local stability of E�.

From Eq. (3.10), we see that b < r0ðN�Þ ¼ B. Hence

trðJÞ ¼ b� B� C � l� d < 0: ð4:2Þ

Straightforward computation yields

detðJÞ ¼ bdC � dlðB� bÞ � Aðbdþ blþ ldÞ; ð4:3Þ
and

A11 ¼ dðC þ l� AÞ � lA; A22 ¼ dðAþ B� bÞ;
A33 ¼ lðAþ BÞ þ bðA� CÞ � lb: ð4:4Þ

From Eq. (3.6), we see that lB ¼ bðC þ lÞ which implies that

detðJÞ ¼ �Aðbdþ blþ ldÞ < 0; ð4:5Þ

A33 ¼ lðAþ BÞ þ bðA� CÞ � lb ¼ Aðlþ bÞ > 0; ð4:6Þ

and

A11 þ A22 þ A33 ¼ dðB� bÞ þ dlþ dC þ bA > 0: ð4:7Þ

Hence,

D ¼ �Aðbdþ blþ ldÞ þ ½B� bþ C þ lþ d�½dðB� bÞ þ dl
þ dC þ bA�: ð4:8Þ

Therefore, we have established the following local stability result
for the positive steady state E�.

Theorem 4.1. E� of the model (2.5) is locally asymptotically stable if
and only if

½B� bþ C þ lþ d�½dðB� bÞ þ dlþ dC þ bA�
> Aðbdþ blþ ldÞ: ð4:9Þ

Notice that the tumor size at the steady state N� does not
depend on d, nor the values of A;B and C. These facts imply that
the condition of Eq. (4.9) holds for large values of d. In the limiting
case of d ¼ 1, our model reduces to the model (2.1). In other
words, the above theorem implies that the positive steady state in
the model of [9] is always asymptotically stable when exists.

In real avascular tumor growth, one can probably neglect the
amount of cells that reenter the proliferative state from the quies-
cent state. That is, we can assume that riðNÞ � 0. In this special case
b ¼ B. The above theorem can be reduced to the following
proposition.

Proposition 4.1. Assume that riðNÞ � 0 in model (2.5). Then, E� is
locally asymptotically stable if and only if

lþ d > r00ðN
�ÞP�: ð4:10Þ

One can see from the model (2.5) that the value N� is indepen-
dent of the parameters l and d. Moreover, the value of P� is given
by Eq. (3.4) which indicates that it does not depend on the value of
r00ðN

�Þ. In other words, mathematically, one can formulate function
r0ðNÞ so that lþ d < r00ðN

�ÞP� and hence generate an unstable posi-
tive steady state. However, when riðNÞ � 0 and r0ðNÞ ¼ kN

aNþ1, then
the positive steady state of the model (2.5) always exists and is
locally asymptotically stable. Observe that when a ¼ 0, we have
r0ðNÞ ¼ kN.
Proposition 4.2. Assume that riðNÞ � 0 in model (2.5). Then, E�

exists and is locally asymptotically stable if r0ðNÞ ¼ kN
aNþ1.
Proof. Assume that r0ðNÞ ¼ kN
aNþ1. Then, N� ¼ b

k�ab, P� ¼ N�

d , and
Eq. (4.10) is equivalent to

lþ d >
bðk� abÞ

dk
; ð4:11Þ

where d ¼ 1þ b
lþ b

d. The above inequality is equivalent to

ðlþ dÞ 1þ b
l
þ b

d

� �
>
�ðk� abÞ

k
; ð4:12Þ

which is obviously true. This completes the proof. h
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Fig. 2. Two sets of solutions of model (2.5) with riðNÞ ¼ r
Nþm, and r0ðNÞ ¼ kN

aNþ1. Except for the dead cell removal rate d, the parameters for both panels are the same. They are
b ¼ 1; k ¼ 2; a ¼ 1;m ¼ 2;l ¼ 0:5; r ¼ 1. For panel (a), d ¼ 4 and for panel (b), d ¼ 0:01. The initial conditions are Pð0Þ ¼ 0:1;Qð0Þ ¼ Dð0Þ ¼ 0 for both panels.
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Fig. 3. Bifurcation diagrams of model (2.5) with riðNÞ ¼ r
Nþm, and r0ðNÞ ¼ kN

aNþ1 using
the dead cell removal rate d as the bifurcation parameter. The parameter values are
b ¼ 1; k ¼ 2; a ¼ 1;m ¼ 2;l ¼ 0:5; r ¼ 1. Clearly, the positive steady state appears to
be globally attractive and the components of the steady state are monotone with
respect to d.
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Indeed, our extensive simulation and bifurcation analysis
suggest that E� is globally asymptotically stable when
riðNÞ ¼ r

Nþm ; r0ðNÞ ¼ kN
aNþ1 and k > ab in model (2.5) (see Figs. 2 and

3). However, the model (2.5) does not possess any monotonicity or
generate monotone solution components to allow standard global
stability analysis that involves monotone system theory or Lyapu-
nov functions. We leave this as an open question.

5. Discussion

As pointed out in the introduction, the Gyllenberg–Webb model
(2.1) is essentially the limit case of the model (2.5) by taking d ¼ 1.
Biologically d ¼ 1 is equivalent to assuming the dead cells are
removed from the tumor instantly which is far from the truth and
ignores the existence of a necrotic core in most avascular tumors
in their late stage. By including the dead cell population remaining
in the tumor explicitly, we arrive at the three-population model
(2.5) which is deceivingly simple-looking mathematically. While it
does allow interesting and fundamental mathematical analysis of
the basic model properties, it defies our initial efforts in establishing
nontrivial global stability results for the positive steady state even
for the simple case of riðNÞ ¼ 0, and r0ðNÞ ¼ kN.

A nonintuitive observation resulted from the model (2.5) is that
the subpopulation ratios in an avascular tumor at the steady state
level do not depend on the cell state transition functions r0ðNÞ and
riðNÞ. In other words, avascular tumors of average proliferation
rate, quiescent cell death rate and dead cell removal rate shall have
the same subpopulation ratios.
A probably more intuitive but interesting observation resulted
from our basic model properties is that tumor final size, if repre-
sented by the positive steady state, does not depend on the dead
cell removal rates. The medical implication of this observation is
that for a solid tumor that does not allow easy removal of dead
cells naturally or by the help of macrophages, the tumor will have
a larger necrotic core, while a more loosely assembled tumor may
have a small or no necrotic core.

The case of riðNÞ ¼ r
Nþm and r0ðNÞ ¼ kN

aNþ1 for model (2.5) is prob-
ably most intriguing mathematically and representative biologi-
cally. In Fig. 2, we present two sets of solutions of model (2.5)
with different dead cell removal rates. Observe that for larger dead
cell removal rates, all the components as well as the tumor size
grow like a sigmoid curve, which is the hallmark of Gompertz
tumor growth. However, for small d values, the solution compo-
nents are oscillatory for a period of time. This transitional dynam-
ics suggests that oscillatory tumor sizes maybe caused by low dead
cell removal rate that maybe the result of tight tumor capsule or
inhibited macrophage activities.

As for any cells, tumor cells are limited by resources such as
nutrient, growth signals, or space, or all of these. However, for most
tumors, the most limiting element is most likely a key nutrient. It is
thus important for tumor models to implicitly or explicitly include
such limiting resources. This is attempted in some recent tumor
modeling efforts [10,3–5,18], some of which are also preliminarily
validated by clinical data [16,6. For incrementally more realistic
models, one can consider incorporating time delays in the cell tran-
sition and cell death processes. If space is limiting or spatial distri-
bution must be modeled, then one shall consider employing partial
differential equation models. All these considerations call for more
observation, data or hypothesis based modeling efforts.
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