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Abstract

Carcinogenesis is the transformation of normal cells into cancer cells. This process has been shown to
be of a multistage nature, with stem cells that go through a series of genetic and epigenetic changes that
eventually lead to a malignancy. Since the origins of the multistage theory in the 1950s, mathematical
modeling has played a prominent role in the investigation of the mechanisms of carcinogenesis. In
particular, two stochastic (mechanistic) models, the Armitage-Doll and the two-stage clonal expansion
(TSCE) model, are commonly used for cancer risk assessment and the analysis of cancer epidemiology
and experimental data. In this mini-course, I will introduce some of the basic biological, epidemiological
and mathematical concepts behind the theory of multistage carcinogenesis, and discuss in detail the
Armitage-Doll model, the TSCE model and some generalizations. The use of these models for the
analysis of cancer epidemiology and experimental data will be described in detail, and some examples
will be discussed.

1 Introduction

1.1 Mathematical Modeling of Carcinogenesis

Carcinogenesis is the transformation of normal cells into cancer cells. This process has been shown
to be of a multistage nature, with stem cells that go through a series of (stochastic) genetic changes that
eventually lead them to malignancy. In general, it is quite hard to give a precise definition of the steps
of the process. However, experimental evidence suggests that most malignancies can be analyzed under
the initiation-promotion-malignant conversion paradigm. Initiation refers to the emergence of altered
cells prone to clonal expansion. Promotion is the outgrowth of initiated cells into premalignant lesions.
Malignant conversion refers to the growth of malignant cells into tumors and the onset of the clinical
disease.

Multistage models of carcinogenesis constitute a powerful quantitative framework that has played a
major role in the advancement of cancer research [72, 39]. Being biologically based, multistage mod-
els allow the investigation of the effects of carcinogens on cancer initiation, promotion and malignant
conversion. Hence, multistage models provide a natural framework to evaluate the potential benefits
of prevention and intervention strategies designed to reduce cancer risk, like screening for premalignant
lesions or the use of chemo-preventive agents. Mathematical models of carcinogenesis are stochastic
in nature, and their analysis requires expertise in several areas of applied mathematics, like stochastic
processes, differential equations, numerical analysis, probability and statistics.

2 Mathematical Models of Carcinogenesis

2.1 Hazard or Age-Specific Incidence Function

The standard measure for cancer risk is the hazard or age-specific incidence function of cancer. Let
T be the time to malignant transformation of a particular tissue. Let P(t) = P[T < t] be the probability
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that cancer occurs before age t. Then, the hazard or incidence function is defined as

Plt <T <t+ At|T > 1]
At—0 At

. (1)

So, the hazard measures the instantaneous rate of change in cancer probability. The hazard can be
expressed also in terms of the survival function S(t) = P[T > t] =1 — P(t),
. 1 P[T >t]—P[T>t+At] —-5(t)
h(t) = lim — = . 2
(1) = lim % PIT > ] S(t) @

The hazard is a theoretical representation of the observed incidence or mortality of cancer in the
population (# of cases / population at risk). As an example, Fig 1 shows the observed incidence of
colorectal cancers among white males in the US during 1995 [67].
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Figure 1: Incidence of colorectal cancer in the SEER database during 1995. Cases are grouped in 5-yr
intervals.

3 History of Multistage Carcinogenesis Models

As mentioned in the previous chapter, multistage carcinogenesis theory states that cancer is the con-
sequence of a series of genetic transformations that accumulate in a single cell’s progeny. The multistage
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theory was originally suggested independently by Muller [64] and Nordling [66]. In particular, Nordling
proposed that several mutations were needed for malignant transformation in order to explain the ob-
servation that the incidence of several cancers increases according to the sixth power of age. Armitage
and Doll [1] incorporated the ideas of Nordling into a stochastic model of carcinogenesis and showed
that the power of age observed in cancer mortality may be related to the number of transformations
required to produce a malignant cell. Armitage and Doll’s is certainly one of the landmark papers in
cancer epidemiology and in the mathematical modeling of carcinogenesis.

Although the Armitage—Doll model is consistent with some of the epidemiological characteristics of
several cancers, it predicts a higher number of mutations required for malignant transformation than
the number supported by experimental evidence[72]. Moreover, the model does not incorporate cell
growth dynamics, which are known to be a key element of carcinogenesis. For these reasons, several
alternative models were developed. In particular, Armitage and Doll proposed a two-stage model that
assumed that intermediate-stage cells had exponential growth [2]. A similar model, proposed by Fisher
[20], assumed that the growth of the intermediate cells was proportional to the square of the age of the
clone. A few years later, Kendall developed a two-stage model where premalignant and malignant lesions
were modeled as sub-critical and supercritical birth and death processes, respectively [36]. In his paper,
Kendall derived expressions for the probability generating functions of the number of premalignant and
malignant cells and discussed the problem of extrapolating the carcinogenic effects from high to lose dose
exposures. A similar two-stage model was also suggested by Neymann and Scott [65] to represent the
number of hyper-plastic foci originated from urethane exposures in rats. However, the model was not
consistent with the experimental data and was abandoned in favor of an alternative three-stage model.
None of these models gained general acceptance and the original Armitage—Doll’s model remained as
the main reference.

Whittemore and Keller provided a survey of the mathematical models of carcinogenesis developed
until the early seventies [72]. Their work remains today as one of the main references in this research area.
In their review, Whittemore and Keller described all the principal theories of carcinogenesis existing up
to that moment and expressed them in a unified mathematical framework. They also introduced their
own theory of carcinogenesis, which was the first one to incorporate explicitly the initiation-promotion
paradigm into the mathematical theories of carcinogenesis.

A few years before the publication of Whittemore and Keller’s review, Knudson proposed a two-stage
statistical model to explain the incidence of retinoblastoma in children [37]. From his model, Knudson
derived the two-hit hypothesis, which states that the two-alleles of a single gene have to be inactivated
to produce a tumor in the retina. This idea lead to the concept of tumor suppressor genes, which was
corroborated in the laboratory a few years later [21]. Knudson’s work is without a doubt one of the
most important contributions of mathematical and statistical modeling to cancer research. A few years
later, Moolgavkar and Venzon incorporated the ideas of Knudson into a mathematical model, which is
consistent with the incidence of most cancers in both children and adults [62]. Similarly to Kendall and
Neymann and Scott, Moolgavkar and Venzon modeled the clonal expansion of premalignant cells as a
birth-death process. However they also incorporated the dynamics of normal stem cells into the picture,
a feature that turned out to be essential for the model to be able to describe the incidence of cancers in
children [62, 56]. Using the theory of filtered Poisson processes, Moolgavkar and Venzon were able to
obtain general expressions for the hazard and survival curves of their model. As shown in Moolgavkar
and Knudson [56], the now called two-stage clonal expansion (TSCE) model was the first carcinogenesis
model to be consistent with the epidemiology of most cancers and also with the data from carcinogen
experiments.

Since the original work of Moolgavkar and Venzon and Moolgavkar and Knudson, the TSCE model
has been widely used for the analysis of epidemiological [58, 43, 35, 28, 6, 49, 32, 10, 30, 25, 27, 26, 68,
52, 13, 22] and experimental [54, 60, 47, 23, 46] data. In addition, several mathematical extensions of
the model have been proposed to accommodate the particular characteristics of different cancers. In the
following sections, we describe some of the mathematical details of multistage models and, in particular,
derive some of the principal mathematical results of the Armitage—Doll and the TSCE model.
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4 The Armitage—Doll Model

Fifty years after its original publication, the Armitage—Doll model [1] remains one of the standard
references in cancer epidemiology. In this section, we briefly describe the model and derive the hazard
and survival functions of cancer under this model.

Following the ideas of Nordling, Armitage and Doll postulated that a malignant tumor arises in
a particular tissue when a single susceptible cell undergoes a series of sequential transformations that
eventually lead to malignancy. A schematic representation of the model is given by

BN p ME 2 R (3)

where Ej represents the normal stage, F, the malignant stage, Fj the intermediate stages and A; the
transition rates between stages, k = 0,...,n — 1. Armitage and Doll assumed that the time spent by the
susceptible cell in each stage is an exponential random variable with mean 1/A\¢,k =1,...,n — 1.

We derive now the hazard and survival function of the Armitage-Doll model. Let py(t) = Prob[the
cell is in stage k by time ¢]. We are particularly interested in p, (t), the probability that the cell has gone
through malignant transformation by time ¢. The Armitage—Doll model can be seen as a pure-birth or
Yule process with an absorbing boundary at stage n. This implies that the probability of being in state
k at time t + h, pr(t + h), can be expressed, using the Markov property and the Chapman-Kolmogorov
equations, as

po(t+h) = (1 —"hAo)po(t)+ o(h),
pe(t+h) = (1 —h\e)pi(t) + hAg—1pr—1(t) + o(h), (4)
prn(t+h) = pu(t) +hdn_1pn_1(t) + o(h).

Dividing by h and taking the limit when h goes to zero, we obtain the system of differential equations:

po(t) = —Xopo(t),
pe) = —Xepr(t) + Ae—1pr—1(t), (5)
p;, (t) = Anflpnfl (t)

The solution of system (5) can be easily computed by successive integrations or by calculating the
exponential of the matrix Q, where we write the system (5) as P’ = QP.

Let us assume that the number of cells that can go through malignant transformation is N and that
T1, Ts,.., TN, are independent random variables, representing the time to malignancy of each cell. Clearly,
the time to malignant transformation of the tissue, T', is the minimum of the malignant transformation
times of all cells, i.e., T =min[T},...Tv]. Assuming independence among all cells in the tissue, we have
that the survival function of the model satisfies

S(t) = P(T > t) = P(min [T, ...,Tx]) = (1 — p,(t))" (6)

and, substituting this relationship into definition (1) for the hazard function, we get that the hazard is
given by

Npl (t

h(t) = Pi(t)

1 _pn(t). (7)
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If the probability that a cell becomes malignant is small (i.e. if p,(t) ~ 0 for all ¢), then we can
approximate the hazard by

h(t) = Npj,(t). (8)

A further approximation is obtained if we calculate the Taylor series of (8) and keep only the first

non-zero term of the series. This leads to the well-known approximation to the hazard function of the

Armitage—Doll model
N)\Q)\l...)\n_ltn_l
h(t) = . 9

This approximation has been extensively used in the past by epidemiologists. However, its long-
term (large-age) behavior is completely different from the long-term behavior of the exact solution,
which converges to NAp,;n,. The approximation is particularly inappropriate if we need to analyze
laboratory experiments, where the probability of malignancy is usually significant [57]. On the other
side, the “approximate” hazard behaves exactly as a power of age (the number of intermediate cells in
the model), which is consistent with the observed mortality of several cancers [1]. So the Armitage-Doll
model gives a very simple explanation to the observation that several cancers behave approximately as
a power of age. For this reason and for its simplicity, the Armitage—Doll model remains one of the basic
tools in cancer epidemiology.

4.1 Exact Solution of the Armitage—Doll Model with Constant Rates

As mentioned above, the exact Armitage—Doll model hazard and survival function can be computed
by solving the system of differential equations (5). The solution depends on the eigenvalues of the
system, which coincide exactly with the transition rates of the model, Ay, ..., A,—1. The functional form
of the solution depends on the equality or inequality of the transition rates. We present the exact hazard
and survival function in case of equality or inequality of all the transition rates.

If the transition rates between all stages are equal, then the malignant transformation time of a cell
is a Gamma random variable with parameters (n,A). In this case, the hazard and survival function of
the model (formulas 6 and 7) can be evaluated explicitly:

e R (n-1)
S(t) = O] kzzo (0", (10)

Ntnfl)\n
h(t) = n—1 (n—1)! k- (11)
k=0 T(/\t)
Alternatively, if we assume that the transition rates are all different, then the exact hazard and survival
function of the model are given by

n—1 N
Ao Ap_i e~ Akt
S(t) = i > e (12)
k=0 'k
NY Loty
ht) = Zfzof £ (13)
n—1 =kt
k=0 " Xg Ly

where
L = JJ=M),
i<j
Ly = JJ i=x)-
i<j
i j#k
From (13) it is straightforward to show that the Armitage—Doll hazard converges to N A as t — 00,
which is a very important qualitative difference between the exact solution and its approximation, as
was mentioned before.
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4.2 Armitage—Doll Hazard after Acute Exposures to Mutagens

It is difficult to obtain closed form expressions of the Armitage—Doll hazard when the model param-
eters are age-dependent. However, Heidenreich et al. derived expressions for the Armitage—Doll hazard
when an acute exposure to a mutagen occurs [30].

Assume that the exposure occurs at age 7. After the exposure, a fraction fi of the cells in stage k
is assumed to jump to stage kK + 1, k = 0,...,n — 1. This can be modeled mathematically by assuming
that the system (5) is restarted at age 7 with the initial conditions

po(m) = (1= fo)po(T),

Pr(T) (1 = fe)pe(7) + fe—1pk(7), (14)

pu(T) = fa—1Pn-1(7),

where the values of po(7), ..., pn—1(7) on the right hand side are the values right before the exposure.
If the fractions and the background transition rates between all stages are assumed to be equal and
constant, then the hazard after exposure is given by [30]

N[+ f(55 - DIE"—tA)
h(t)_ n n—1
k= 5 kl( ) f((>;f),1)!

(15)
for t > 7.

5 The Two-Stage Clonal Expansion Model

The two-stage clonal expansion model (TSCE) was originally developed by Moolgavkar and Venzon
[62] and Moolgavkar and Knudson [56]. This model assumes that malignant transformation of susceptible
stem cells occurs as a result of two specific, irreversible and hereditary events. In its most general form,
the number of normal (susceptible) stem cells as a function of age, X (t), is modeled as an stochastic
process. However, for simplicity we concentrate only in the case when the normal stem cells are assumed
to follow a deterministic process [62, 56, 55]. The first event in the TSCE occurs when a normal stem cell
becomes “initiated”. Initiation is modeled as a non-homogeneous Poisson process of intensity v(t) X (t),
where X (t) is the number of susceptible stem cells at age ¢. Initiated cells, also called intermediate cells,
are assumed to expand clonally; this expansion is modeled as a birth-death and mutation process. This
means that initiated cells can divide into two initiated cells with rate a(t), die or differentiate with rate
B(t) and divide into one intermediate and one malignant cell with rate p(t). Figure 2 gives a schematic
representation of this model.

Following the derivation of the TSCE model in [55], we calculate the hazard and survival functions
of the model. Let Y (¢) and Z(t) be the number of intermediate and malignant cells at age ¢, respectively
and let P;x(t) = Prob[Y(t) = j,Z(t) = k]. The vector {Y(t), Z(t)} constitutes a two-dimensional
continuous-time Markov chain. Hence, the P; ;(t)’s satisfy the Chapman-Kolmogorov equations

Pi(t+h) = [OXO)Pi—1k®)+ (1 — Dat)Pj—1k(t)]h
+( + D)BE) Py, (t) + jp(t) Py k-1 (t)]h
+[1 = jh(a(t) — B(t) — u(t)) — hX (v (t)]Pjk(t) + o(h). (16)

This equation is a consequence of the Markovian property. It expresses the probability of the process
at time ¢ 4 h, using the probability at time ¢. Dividing by h and taking the limit when h goes to zero
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Figure 2: Two-stage clonal expansion model.

n (16), we get the Kolmogorov differential equations [55]

ZPinlt) = (= Dalt) + X Ou(O)Py-14(0)
+ (G + DB Prs1(t) + Gt Pixs (1) (a7
— {jlalt) + B(t) + v(B)] + X (OO} Pri(t).

Let \If(y,z t) denote the probability generating function (PGF) of the process, i.e. let U(y,z,t) =
E[yY®)221)] = > . Pik(t)y?2*. The probability generating function of a discrete stochastic process
summarizes all its probabilistic properties. Hence it can be used, at least in theory, to calculate all
the quantities of interest. Multiplying (17) by y?2* and summing over all j and k, we get the forward
Kolmogorov differential equation for the PGF [55],

P20 _ ()X (@t 0(y. 2.)
oY (y, z,t)

+{lu®)z + )y — a(t) - B(t) — u(d)ly + (1)} ay

(18)

If we assume that all stem cells are normal at the time of birth, then ¥(y, z,0) = 1.
Given the probability generating function, the survival function of the time to the appearance of the
first malignant cell, S(¢), is given by

W(1,0,t) ZPJO P[T >t] = S(t),

and the corresponding hazard is then [55]
0,t)
h(t) = ————. 19
) o (19)

This implies that we only need to solve for ¥(1,0,t) and its derivative with respect to ¢ to obtain the
hazard and survival function. However, more can be said before solving directly any equation. Using
(18) we get that ¥’(1,0,t) = —u(t)%f’t). This plus the fact that

W (1,0,t)
dy

Zz Po’ = 0(1,0,0)

E[Y (t)|Z

(20)
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gives us the hazard

U(1,0,¢

P (LX)

U(1,0,t)

As pointed out in Section 4, cancer is a rare event, so it can be assumed that the probability of malig-

nant transformation is very small. Therefore, the conditional expectation in (21) can be approximated

by the unconditional expectation E[Y (t)]. Moreover, we see that %—‘;’(1, 1,t) = E[Y (¢)], and using (18),

we obtain [55]

— u(®)E[Y ()| Z(t) = 0]. (21)

%E[Y(t)] =v(t)X(t) + [alt) - BEOIEY (D), (22)

which can easily be solved for E[Y(¢)]. Thus, a general approximation to the TSCE hazard is given by
[55]

o) ~ OB (0] = (0 [ v(9X()exp | [ Tatw) = pula] as 29

A detailed discussion of the validity of this approximation is given in [55, 57]. However it is important
to point out that the use of (23) instead of the exact solution may give incorrect results when analyzing
experimental and epidemiological data. In experimental studies, the probability of malignancy is usually
significant. Thus, the approximation of the conditional expectation by the unconditional one may not
be accurate in this case. Moreover, the effects of carcinogen exposures on cancer risk predicted by the
TSCE model differ depending upon whether you use the exact hazard or its approximation. For this
reason, it has been pointed out by several authors that in most cases it is better not to make use of the
approximation [55, 61, 57].

5.1 Constant Number of Susceptible Stem Cells and Constant Model Pa-
rameters

If we assume that the number of susceptible stem cells is constant during life and that the model
parameters are constant, then we can find a close form expression for the hazard and survival function
under the TSCE model.

In this case, equation (18) can be easily solved using the method of characteristics and the expressions
for the hazard and survival function are [49]

vX
a

5 = (==L ) (24)

ge~Pt — pe—4t

and
_ vX pgle” " —eP)
h’(t) - a qe_pt _ pe_qt ’ (25)
where
p=%{(—a+ﬁ+u)—\/(a—ﬁ—u)2+4au}7 (26)
q=%[(—a+ﬁ+u)+\/(a—ﬁ—u)2+4au]- (27)

5.2 Age-Dependent Piecewise Constant Parameters

Multistage models can be used to evaluate the effects of carcinogens on cancer risk, by assuming that
the model parameters are functions of the exposure dose at any particular age. Similarly, multistage
models can also be used to evaluate the effects of preventive measures on cancer risk, for example, the
use of non-steroidal anti-inflammatory drugs as a preventive measure to reduce the risk of polyps in the
colon.

To evaluate the effects of carcinogens with age-dependent exposure, we need expressions of the
hazard and survival functions when the model parameters depend on age. Closed form expressions

PAGE 8 OF 25
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for the hazard and survival functions of the TSCE model are not available in the case of general age-
dependent parameters, so numerical methods are necessary. However, closed form expressions for the
hazard and survival function of the TSCE model in the case of piecewise constant parameters were
derived by Heidenreich et al. [31].

Let’s assume that the parameters of the TSCE are constant between the time points 0, t1, ts, ..., tx-
The number of time intervals is K, and in the i—th interval, the parameters of the model are oy, 5;, v;,
fori =1...K.

The characteristic equations of (18) are [31]

Z—i = {2+ alt)y —alt) = B(t) — u(t)]ly + B(t)},

dz _ 9 dt—l

w =% =h

Z_;I: = (y— DX (u)v(u)V. (28)

As shown in the previous sections, we need only to solve to calculate ¥(1,0,t) to obtain the hazard
function. Thus we need only to find ¥ along the characteristic through (y(0),0,0) with y(¢) = 1. Once
y(t,u) is known, we can easily solve [31] for

U(y(t), z,t) = Ugexp [/0 [y(u,t) — 1] X (u)v(u)du| . (29)

The equation for y(u,t) is a Ricatti differential equation with piecewise constant parameters, so it
can be solved analytically. Heidenreich et al. [31] showed that under this assumption, the solution to
the characteristic equations is given by

810g fi(uut)

ai(y(u,t) = 1) = —=2 =, (30)
where
filu,t) = (gi — pi) exp lqi(u — t5)] + (¢; — §i) exp [ps(u — ;)] ,
PinGi = % ((—Oéz' + 0+ i) F V(@i = Bi — pi)? + 40<iuz') ;
filti,t) = @ —pi,
i = a;l 810géf;(u,t) s (31)

The final expressions for the hazard and survival function in the case of age-dependent piecewise-
constant parameters are [31]

K
Vi qi — Pi
@ = p{za—lm} (52)
K v; O
h(t) = Za_z_gl()g(fi(ti—lat))a (33)
i=1 "

where all the summands can be calculated recursively using (31).

5.2.1 Time between Malignant Conversion and Clinical Detection or Death

In its simplest form, the TSCE model does not account for the time between the appearance of the
first malignant cell and cancer incidence or mortality (usually termed “lag time”). Several approaches
can be taken to address this issue. The simplest one is to assume that the lag time is constant. Although
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somewhat unrealistic, this approach adds only one more parameter to the model and the computation of
the hazard or survival function at age ¢t from the corresponding TSCE model functions is straightforward.
A more realistic approach is to assume a distribution for the lag time, so inter-individual variability can
be taken into consideration. A gamma distribution has often been used. This adds two more parameters
to the model, the mean and the standard deviation of the gamma distribution, and calculation of the
hazard and survival functions involves the convolution of the gamma distribution with the TSCE survival
and hazard functions. Specifically,

St = So(t — tiag) if lag time is constant, (34)
1 fot(l — So(u))f(t —u)du if lag time is gamma-distributed,

ht) — ha(t — tiag) if lag time is constant, (35)
B (f(f ho(u)Sa(u) f(t —uw)du)/S(t) if lag time is gamma-distributed,

where ho(t) and Sa(t) represent the TSCE model hazard and survival, respectively, and f(-) is the
gamma density. In general, the integrals cannot be evaluated in closed-form and numerical methods for
integration are required.

Another approach is to incorporate the dynamics of malignant cells explicitly into the model and
assume that the malignant compartment follows also a birth-death-mutation process. The “mutation
rate” of the malignant compartment is then interpreted as the rate of cancer detection or death (per
malignant cell). Although this approach can be thought as more realistic and complete, it has some
disadvantages. Having models with more than one clonal expansion stage makes impossible the calcula-
tion of closed-form expressions for the hazard and survival function, so numerical methods are required
[41, 44, 9, 51]. In addition, the parameters of the malignant compartment may not be identifiable
from incidence or mortality data alone, so explicit modeling of the malignant cell dynamics may just
overparameterize the model unnecessarily. Nevertheless, models with more than one clonal expansion
have been implemented successfully and used to analyze the incidence and mortality of several cancers
[41, 44]. However, no significant improvement in fit has been obtained when compared with models with
a single clonal expansion stage, suggesting that more data on intermediate lesions is required [40, 49, 53].

6 Analysis of Premalignant Lesions using the TSCE

In several cancers, premalignant lesions appear long before the clinical onset of the disease. Examples
of these are the aberrant crypts foci (ACF) and the adenomatous polyps that appear in the colon and
which are considered to be precursors of colorectal carcinoma. Premalignant lesions provide important
information about carcinogenesis. They clearly show the multistage nature of the process and their
study has provided a lot of insight about the mechanisms of malignant transformation.

Since the experiments of Berenblum and Shubik [4], the analysis of premalignant lesions in animal
experiments constitutes one of the principal frameworks to investigate the carcinogenesis process. In
particular, initiation-promotion animal experiments where tumors are induced by chemical agents have
been particularly useful for elucidating the specific effects of carcinogens on the occurrence and growth
dynamics of premalignant lesions [57]. More recently, the analysis of premalignant lesions in humans has
provided significant information about the genetic transformations required for malignant transforma-
tion in different tissues [19, 3]. Moreover, epidemiological analysis of the characteristics of premalignant
lesions found during screening has also been crucial in the design of prevention, and intervention strate-
gies against cancer [18, 50, 5, 34]. One of the big advantages of using multistage models is that they
provide a unified framework for analyzing epidemiological and experimental data.

Cancer incidence (or mortality) data alone may not be sufficient to evaluate in great detail the mech-
anisms of carcinogenic agents. For example, the cell division and cell death rates cannot be estimated
independently when using cancer incidence data alone. However, information about the number and
size distribution of premalignant clones can elucidate the specific role of some agents for cancer devel-
opment [61]. For example, in rat hepatocarcinogenesis experiments, good quantitative information is
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available on the number and size of enzyme-altered foci, which are considered premalignant clones in
liver cancer. And this information may allow the estimation of both the cell division and cell death rates
in the TSCE model.

Several expressions for the number and size of premalignant lesions under different scenarios have
been derived in the past [17, 61, 15, 34]. We briefly describe some of the mathematical formulas for the
number and size distributions of premalignant lesions and the total number of premalignant cells under
the TSCE model.

6.1 The Number and Size Distribution of Premalignant Lesions Using the
Two-Stage Clonal Expansion Model

Dewanji et al. [17] and Luebeck and Moolgavkar [48] derived expressions for the number and size
distributions of premalignant lesions under the TSCE. Let Y (¢, s) be defined as the size of a premalignant
lesion at time ¢, given it was originated at time s. Y (¢,s) follows a birth and death process with birth
rate a(t — s) and death rate G(t — s). Let P;(t,s) = P[Y(t,s) = i]. Then, the probability generating
function of Y'(¢, s) is given by [70, 48]

Q(Z;ta S) = ZPZ(LS)ZZ
i=0

z—1
(2= 1DG(t,s) — g(t,s)’

where
6(t,5) = exp [— / (o) — B(uw))du
and

G(t, s)z/ a(u)g(u, s)du.

Substituting z = 0 in (36), we get that the probability of extinction of a premalignant lesion by time
t, given it was originated at time s is

1

RO EToR)

The expected size of a premalignant lesion at time ¢, given it was originated at time s is [48]

By (e.9) = 22— [ [ (o) - sy @7

Initiation follows a non-homogeneous Poisson process with rate X (s)v(s), so the number of non-
extinct premalignant lesions (= N (t)) will follow also a Poisson process with rate [48]

A(t):/o X(s)y(s)(l—Po(t,s))ds:/o G(X(S)”(S) (38)

t,s)+y(t,s)

The last equation represents also the mean number of premalignant lesions existing at time t.

Now, we analyze the size of a particular premalignant lesion, given that it hasn’t become extinct by
time t. The probability generating function of a premalignant lesion originated at time s, given that it
still exists at time ¢, E[zY (%)Y (t,5) > 0], satisfies

E[Z[Y(t,s)|Y(t,s)>0]] — Q(Z;ta S) — Q(O;ta S) —1_ [G(tv S) + g(ta S)](Z — 1). (39)

1—0Q(0;t,s) (z = 1)G(t,s) —g(t,s)
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So by taking the derivatives of (39) and evaluating them at z = 0, we obtain a general expression for
the probability that the number of cells in a non-extinct premalignant lesion at time ¢ is equal to m > 0
[48]:

g(t,s) G(t, s) "
PlY(t,s) =m|Y(t,s) > 0] = . 40
it =mive) >0 = 825 (e 3 g o
The number of non-extinct premalignant lesions by time ¢ follows a non-homogeneous Poisson process
with rate A(t). This implies that the occurrence time of a premalignant lesion, given it appeared before
age t, is a random variable on 0 < s < t with density function given by [69, 48]
Alt,s) _ X(s)v(s)[l — Po(t, 5)]

D = NG . (41)

So, the unconditional probability of having a non-extinct premalignant lesion of size m at time ¢,
Pm(t), is given by [48]

pmll) = ﬁ/o A5, )P (t,5) = m|Y (£, 5) > 0]ds

= Su
At) Jo G(t,s) +g(t,s) LG(ts) \G(t,5) +g(t, )

Although these expressions can be used with any age-dependent parameters, it may not be possible
to evaluate (38) and (42) in closed form. However, closed form expressions for the number and size dis-
tributions of premalignant lesions in case of piecewise constant parameters are available in the literature
(38, 17].

Constant parameters.
The number of non-extinct premalignant lesions at time ¢, N(t), is a Poisson random variable with

expectation A(t), where [17]
w0 = e (aw)] @

and

B—Be (*—A)t if
p(t) = { ape=w—pr TG 7o (44)
ﬁ, if a = 0.
For a non-extinct premalignant lesion, say W (t), at time ¢, the probability of it having m > 1 cells
is [17]
(%p(t)>
Pr(W(t) = m|W({#) >0=——1w——1—| (45)
B
mn <B—ap(t))
« ela=RAt _q ]
EW@)|W(t) >0 = . 46
VB () >0 a—ﬁ{ln(ﬁ/(ﬁ—ap(t))) (46)

Minimum detection threshold ng.

Since in reality, premalignant lesions can be detected only when they are larger than a certain size,
Dewanji et al. also derived expressions for the number and size of detectable premalignant lesions
assuming a detection threshold size ng [17]. Assuming that « and § are constant, the number of
detectable premalignant lesions at time ¢, say N*(¢), is a Poisson random variable with expectation

A*(t):
A" (t) = /0 v(uw)X (u)(1 = p*(t — u))du, (47)
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where p*(t — u) is the probability that the size of the lesion is less than or equal to ng at time ¢, and is
given by
no
. @
p-w=1- - w)(Gpe-0) (18)

where p(t — u) is the same as in (44).
The distribution of the size of a detectable premalignant lesion at time ¢ is given by

Pr[W(t) = m|W(t) > ng] =

A%(t) /Ot A () (%p(t - u)) A <1 - u)>du’ (49)

where M*(u) = v(u) X (u)(1 — p*(t — u)). The expected size of a detectable premalignant lesion is given
by
1 t a no
E[W@®)|W(t) > nol = no + —— / v(u) X (u) (—p(t - u)) ela=R=uw) gy, (50)
A*(t) Jo p
Piecewise constant parameters.
If we assume that the model parameters are piecewise constant, the number of non-extinct prema-

lignant lesions, N(t), is Poisson distributed with mean [17, 38, 46]
- Vo)jX
A(t) = 1
=%
Jj=1

where n is the number of age-periods with different parameter values before age t; [t;_1,¢;],5 =1,...,n
denote the end-points of the j — th age-period; to = 0, and vy 4, a;, 5; denote the parameter values
during the j — th age-period.

The probability of having m > 1 cells in a nonextinct premalignant lesion at time ¢ satisfies [17, 38, 46]

(51)

aje{(aj—ﬁj)(tj—tj—l)} — Bj
a5 — Bj 7

1 n
Pr[W(t) = m|W(t) > 0] = o) > pi(m), (52)
j=1
where m
1 vo ;X voj—1 X\ o) — &je{*(%‘*ﬁj)(t]‘*t]‘—l)} )
, = J T _ =1,.. 53
i) m {( Qj Q1 ) o5 — 53’6{*(%*[3]‘)(%*%—1)} ") reen (53)

and v 0X/ag = 0. The parameters &; and Bj are defined recursively by

& = oj— (aj - 5j) (aj+1 — (5éj+1‘3{7(0‘j+145]'+1)(tj+17tj)})7 (55)
(@j+1 — Bjt1)

Bn = 6717 (56)

Bi = aj—(a;=p) [ ettt (57)
I=j+1

j = n—1,..,1 (58)

6.1.1 Distribution of Total Number of Premalignant Cells

Let Y (t) denote the total number of premalignant cells (in all lesions present) at time ¢. Let P, (t)
denote the probability that Y (¢) = m. Then [15]:

Po(t) = exp(—A(t)), (59)
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[u

m—

Put) = 3 2B (t)pm (1), (60)

m

=

where

e 1 g(u,t) G(u,t) §
pe(t) _/0 V(U)X(U)G(u,t) Glu,t) + g(u t) (G(u,t)+g(u,t)> du, (61)

and A(t) denotes the expected number of nonextinct premalignant lesions at time ¢.
The mean and variance of Y (¢) are

Bv) = [ vwxen | [ otws) - o] (62)

and

2G (u, t) + g(u,t)
9% (u,t)

VarlY(t)] = /OV(U)X(U) du. (63)

Constant Parameters.
When the parameters X, v, «, 8, and p are constant, we can evaluate explicitly the distribution of

Y (t):
PalY () = nl = ey (002 ) (64)
where .
C= @I g (65)

Distribution of total number of premalignant cells conditional on no prior malignancies.

To model screening for premalignant lesions in asymptomatic individuals with no prior history of
cancer, Jeon et al. derived mathematical expressions for the size distribution of premalignant lesions,
conditional on no prior malignancy in the tissue of interest [34].

Let Z(t) be the indicator variable for clinical detection of cancer. For n > 0, assuming constant
parameters X, v, «, 3, 4, the size distribution of the total number of premalignant cells conditioned on
no malignancy satisfies [34]

PY(t)=n] = Pr[Y(t)=n|Z(t) =0,Y(0) = 0] (66)
. F(UX/O(+TL) — ol /aa*n
 T'(n+ DI (vX/a) (1 <) * C (67)
where ot gt
T urae T prae o)
and
p o= 5[ta—5-pm - via— B+ dan], (69)
¢ = g|-ta-p-w+ Va5 wE T an]. (70)

6.1.2 Number and Size when Premalignant Growth is Modeled as Stochastic
Gompertz Growth

Tumors do not grow without bound and in particular several types of tumors have been shown to
be consistent with Gompertzian growth [70]. Hence, it is natural to calculate the number and size
distribution of non-extinct premalignant clones when they follow a stochastic Gompertz growth, as
defined by Tan [70].
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Suppose that the net cell proliferation as a function of the age of the clone is given by

alt —s) — Bt —s) =bexp [—a(t — s)], (71)

where b > 0 and a is any real number. Then from (37) we obtain that the mean growth of a clone as a
function of its age, t — s is

b
B(Y(t - ) = exp [—(1 - e““ﬂ , (72)
a
which is a deterministic Gompertz growth. Suppose that v = B 872 is a constant. Then under these

assumptions, the number and size distributions of non-extinct clones reduce to [48]:

—
/ Xl 79(t —5) T gt—9" (78)

polt) = 55 /0 Ane) {u —gétg(t |

It is worth mentioning that we can also obtain the number and size distributions under general
assumptions of the parameters using a generalization of the Luria—Delbriick fluctuation models proposed
by Dewanji et al. [15].

and

6.1.3 Other Developments

In addition to the formulas presented here, expressions for the joint analysis of premalignant and
malignant lesions under the TSCE model have been derived previously [16, 11]. Furthermore, Dewanji
et al. derived expressions for the analysis of longitudinal data on the number and size of premalignant
clones [14]. In particular, the joint distribution of the number of premalignant clones observed at different
points in time in the same subject was derived. In addition, De Gunst et al. developed methods to
estimate the number and size distribution of premalignant lesions assuming that transectional data is
available (stereological problem) [11, 12]. We refer the reader to the literature for further details.

7 Some Generalizations of the TSCE

There is evidence that some cancers require more than two-steps for malignant transformation. For
example, it is now accepted that more than two successive genetic transformations are required for the
onset of colorectal adenocarcinoma [49]. In particular, it has been shown that the inactivation of both
alleles of the tumor-suppressor gene APC gives rise to premalignant polyps and that the inactivation
of another tumor-suppressor gene, probably TP53, is required for the transition from premalignant to
malignant lesions [49]. For this reason, several generalizations of the TSCE model have been proposed
to accommodate the recent advances in cancer biology [71, 41, 49, 42, 44].

7.1 Multiple Clonal Expansions

Multistage carcinogenesis models with several clonal-expansion stages have been analyzed by Tan
[71], Little [41] and Little et al. [42]. Figure 3 shows a schematic representation of a multistage model
that assumes k — 1 clonal expansion stages before malignancy. The first transition event is modeled as a
non-homogeneous Poisson process and the dynamics of all subsequent stages are modeled as birth-death
and mutation processes. This implies that cells in stage ¢ (i = 1,...,k — 1) can divide into two identical
cells with birth rate «;(t), die or differentiate with rate 3;(¢) and divide into one type ¢ and one type i+ 1
cell with rate px—1(t). The last stage I, corresponds to malignancy. In this discussion we concentrate
only on the occurrence of the first malignant cell. However, if we are interested in modeling the dynamics
of malignant cells as well, we can associate the k — 1-th stage with malignancy and consider the last
transition event as clinical diagnosis. In this case, the probability of diagnosis of a malignant clone would
be proportional to its size.
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Figure 3: Multistage model with several clonal expansions.

7.1.1 Forward Kolmogorov Differential Equation

Let
ige = PIL(E) = d1,s o, I(t) = 5| 11(0) = 0, ..., I (0) = 0] (74)
and let ) )
Wy, ey t) = D Pig(Oud oyl (75)
J1sesJk

be the probability generating function of the process. This model is again a Markov process, hence
U(y1, ..., Yk, t) satisfies the forward Kolmogorov differential equation:

Pyt _ )y X (000, i )
k—alt (76)
43 (s = aslt) = 65(0) — )1 =yl + () 2L )
=1 Yi

As mentioned before, the PGF contains all the probabilistic information of the process, so equation
(76) can be used to obtain expressions for the hazard, the survival function and the distributions of the
number of cells in each compartment. In particular, the survival function of the time of appearance of
the first malignant cell is given by

S(t)=v(1,...,1,0,t), (77)

which we can obtain by solving the characteristic equations of (76). It is important to mention that
it is very difficult to solve (76) analytically when several clonal expansion stages are assumed, so nu-
merical methods are usually needed. To obtain the hazard, we must use numerical approximations to
U(1,...,1,0,t) to approximate the logarithmic derivative of S(t). This increases the number of compu-
tations required to calculate the hazard and makes it more difficult to control the error of the numerical
approximations. A better alternative is to use the Kolmogorov backward differential equations of the
process as shown below.

7.1.2 Backward Kolmogorov Differential Equations

The model shown in figure 3 can also be seen as a multi-type branching process [24]. This implies
that for each fixed ¢, the following set of conditional probability generating functions characterize the
whole process [24]:

Uy, yenmit) = Ei™, Ly DL (r) =0,..., I(r) = 0],
(Y1, ey it) = Eyi oyt DL (r) = 1, (1) = 0,..., Iu(7) = 0],
: (78)
. _ I (t) I (t) _ _ _
O 1 (Y1, ey st) = Eyi? Lyt L) = 0, i (1) = 1, Ix(7) = 0],
Oyt i t) = Byl Dyt O (r) = 0,y i (7) = 0, I (7) = 1] = g,

where 0 < 7 < ¢. Notice that the last equation expresses the fact that we are interested only in the first
transition to the malignant stage Ij.
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It is easy to show that ¥ (y1, ..., yk, 75 t), P1(Y1, -y Yk, T58) 5oersPr—1 (Y1, -, Yk, 73 t) satisfy the backward
Kolmogorov differential equations [24]:

T~ o)Xt (@a(rt) - 1),
LD~ pir) + () + Au(r) + m @) (7:8)
—pa (1) @1 (75 ) P2 (731) — (1) @1 (7311),
(79)
76(1%:,;7_(T;t) = —B-1(7) + (k—1(7) + Br—1(7) + pr—1(7)) Pr—1(751)

— 1 (T)Pp—1(75)Pp (75 8) — ak—l‘l)i,l(T; t),

where the dependency on (yi, ..., yx) has been omitted for convenience. Let y; = 1,...,yx,—1 = 1,y =0
and s =t — 7 . Following the derivations of Little et al. [42] and Crump [9], we obtain the differential

equations
WD o= )X (= )W) (@1 (5:0) 1),
DD = X (¢~ )W (5:)(@a(s:) — 1) + W(s:)@) s8],
IR = Gult—s) = (@l )+ Bilt = ) + gt~ 9)Pa(si
Hpa(t — 5) @1 (s;)Pa(s5) + an (t — 5) B3 (s 1),
PO~ (e =)+ falt = 5) + gt~ ) s:1)
an(t = 5)[ ) (55 s (s: 1) + B (53 )53 )
+2a4 (t — 8)P1(s; )P (s;1),
(30)
PO (b= 8) — (ena(t = 5) + Broalt — )
-1 (t = 8))Pp_1(s;t) + ag_1(t — s)PF_,(s;t),
P (st 5) 4 a6 )+ a0 = 5) By )

+2ap_1(t — 8)Pp_1(s;8)®_;(s:1),

for W(s;t), ®1(s;t), ..., Pr_1(s;t) and their derivatives with respect to t. Here, ’ represents differentiation
with respect to t. The initial conditions are

V0;t)=1 , W(0;t) =0,
®1(0;¢) =1 , ®(0;¢) =0,
: (81)
Dp_2(0;t) = 1,9, _5(0;t) =0,
Pp—1(05t) = 1,04 1(0;1) = —pupe—1.

The hazard and survival functions of the model are then given by

Si(t) = [Y(t:1)] (82)
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and V()
hi(t) = — L.
Alternatively let ¢(s,t) = —In [¥(s,t)]. Then the second equation of (81) can be replaced with
oY’ (s,t
% =yt — $)X(t — 5)P(s,1). (84)
s

Clearly hy(t) = ¢'(t, t) so we can solve simultaneously for Sy (t) and hy(t) if we substitute the second
equation in (81) for (84). As mentioned above, it is very difficult to obtain closed form expressions for
the hazard and survival function when several clonal expansion stages are assumed even with constant
parameters, so numerical methods are normally required. As pointed out by Little et al. [42] and Crump
et al. [9], solving the system of backward Kolmogorov differential equations (81) & (84) to compute the
hazard and survival functions of the model is more efficient and allows for better numerical error control
than any other alternative methods available in the literature. Moreover, let hy ;(¢) and Sk ;(t) denote
the hazard and survival function of a cell that starts in stage ¢ at birth, i =1, ...,k — 1. Then,

Sk,i(t) = Pr_i(t, 1)

and ,

_ (I)k—i (tv t)
Py (t, t) ’

which is a nice property, especially if we are interested in comparing the cancer risk coming from cells

that start at different stages of the process (see, for example, the chapter on gestational mutations).

hii(t) = (85)

7.2 Several Pre-initiation Stages with Constant Parameters

Luebeck and Moolgavkar [49] showed that a k-stage model with two rare and one fast event before
initiation is consistent with the incidence of colorectal cancer. A graphical representation of a general
k-stage model with more than one pre-initiation stages is shown in Figure 4. In this model, it is assumed
that normal susceptible stem cells (stage 0) have to go through k& — 2 pre-initiation stages, before being
able to expand clonally (initiated stage). Normal cells become pre-initiated according to a Poisson
process with intensity poX (), where X (¢) is the number of normal stem cells at age s. Each cell in the
pre-initiation stage ¢ can divide (with rate u;) into one stage ¢ and one stage i + 1 cell, i = 1,....k — 2.
Once a cell reaches the initiation stage (k — 1), it expands clonally via a birth and death process. Each
time an initiated cell divides, it can produce two initiated cells (with birth rate «) or one initiated and
one malignant cell (with rate pg_1). Initiated cells can also die or differentiate with rate 3.

malignant
adenoma  transformation

(o] ﬂ

Normal

stem cells L J L —— malignant
pre-initiated cells clonal expansion cell
of initiated cells
B-D(a—f)

Figure 4: k-stage carcinogenesis model.

The probability generating function of the process satisfies the forward Kolmogorov differential equa-
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tion [49]:
W = (y— DXOvO)Y (Y1, -, yi t)
- Z {s0)(1 = gy T ) -
Hllapos —a = a1 - gy + 9T,

which is identical to (76) when «; = 5; = 0, for ¢ = 1,...,k — 2, i.e., when cells don’t die or proliferate
in any stage before k — 1.

Using the forward Kolmogorov equation for the PGF of the process, we can obtain in a straightforward
manner the survival function of the time of appearance of the first malignant cell, which is given by [49]

t — - s
fsk72 b _—3[S2(t—sp_2) l]d\k,271]

t t
Si(t) = exp{ / 0 X (s1)[eler 101 sy, (87)
0

where Sa(u) is the survival function of the TSCE model [62, 56]:

He—2

52@):(&) o (88)

qge P¥ — pe— v

and

p=3[(ca+ 8+ ma) = Vo= B—pe1)? +dam) (89)

R R

1=3 {(_Oé‘f'ﬁ-f—ﬂk—l)‘f'\/(a_ﬁ_ﬂk—l)2+4aﬂk—l} . (90)

As an example, the 4-stage survival is given by

¢ t
S4(t) = exp {/ 10X (s1) [efsl p1[S2(t—s2)—1]ds2 _ 1} d81} .
0

The corresponding hazard is easily calculated using definition (2). In particular, the three and four-stage
hazards when the number of stem cells is assumed to be constant are [49]

hs(t) = po X [1 - (i)wa} (91)

qe Pt — pe—at

! q—p nalo
h4(t) =pupX | 1 —exp /0 o5 (qe_p(t_u) — pe_q(t_u)) — 1| du . (92)

7.3 Concluding Remarks

and

We reviewed some of the most important multistage carcinogenesis models that have been developed.
In particular, the Armitage-Doll and the TSCE model were discussed in detail. Both models have been
used extensively to analyze cancer epidemiological and experimental data [1, 62, 56, 63, 54, 60, 59, 47, 29,
39, 6, 23, 28, 10, 30, 25, 27, 46, 26, 68, 52, 53, 13, 22]. Recent evidence suggests that more than two-stages
are required for malignant transformation in some tissues [19, 49, 53, 45]. Some generalizations of the
TSCE model that accommodate these findings were also discussed. Models with several clonal expansions
have been used previously by Little [43] and Little et al. [41, 42, 40, 53] to analyze epidemiological data
of leukemia, lung and colorectal cancer. Luebeck and Moolgavkar [49] and Meza et al. [53] used models
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with several pre-initiation stages to analyze the incidence of colorectal cancer in the SEER database.
Further generalizations that incorporate alternative pathways to malignancy have been analyzed by Tan
[71] and Little et al. [44]. In particular, Little et al. [44, 40] used multiple-pathway models to investigate
the relevance of genetic instability in colorectal carcinogenesis. From a mathematical perspective, it is
relatively straightforward to extend the models discussed here to models with multiple pathways. Hence,
we refer the reader to the literature for additional details.

8 Modeling Dose-Response in the TSCE and MSCE Models

The effects of carcinogenic agents on cancer risk can be evaluated by estimating the dose-response of
TSCE or MSCE model parameters. In general, it is not convenient to assume apriori a specific mechanism
of action of an agent. Therefore, in any analysis we should allow in principle all identifiable parameters
in a model to be dose-dependent, and then use statistical analysis to identify the relevant effects. In the
following we describe a standard approach to modeling the dose-response in biologically-based models.

Single agent. Let d(s) denote the exposure of an individual to a specific agent at age s. We can
then assume that each of the identifiable parameters of the model has a dose-response given by

Ocar(d(s)) = 0(1 4 0.d(s)%), (93)

where 6 is the background parameter, and 6, and 6. are the dose-response coefficients. This functional
form of the dose-response (power law) is quite general and covers a wide range of possible behaviors, and
should suffice in most cases. For example, previous analyses using the TSCE model of the relationship
between smoking (cigarettes per day) and lung cancer incidence or mortality rates suggested that power
laws are good models for smoking dose-response [28, 27, 52]. However other functional forms can be also
implemented if supported by additional information.

Multiple agents. When we have information about the exposure levels of several agents, we can
assume that the model parameters are function of all the exposures simultaneously. In particular, let’s
assume that we have information about the exposure of an individual to m agents. Let d;(s) denote the
exposure to the j — th agent at age s, j = 1,...,m. The following dose-response function has been used
in the past to evaluate the effects of several agents combined [28, 26]

Ocar(di(5),da(s), ..., dm(5)) = O(1 4 c1dyi(5)" + Oeada(5)0<2 + ... 4 Oepndpn (5)7em), (94)

where 6 is the background parameter, and 6.; and 6.; are the dose-response coeflicients corresponding
to the j — th agent, j = 1,...,m. This functional form of the dose-response assumes that all the agents
act independently from each other at the cellular level . However, this doesn’t necessarily imply that
the risks due to exposure to multiple agents predicted by the TSCE or MSCE models would behave in
an additive way.

Effects on cell division and cell death rates. The cell division and cell death rates in the TSCE
and MSCE model cannot be estimated independently when using incidence data alone, however, the
approximate net cell proliferation rate, —(p+ ¢) = (v —  — pg—1) is an identifiable parameter [31]. The
effects of non-genotoxic agents on cancer risk can be evaluated by estimating the effect of such agents
on the cell proliferation (or promotion) rate in the TSCE or MSCE model.

9 Analysis of Epidemiological Data

9.0.1 Cancer Registry Data

Secular trends in cancer data, like cancer registry data, can be analyzed using traditional Age-Period-
Cohort (APC) models. However, these models are limited by a well-known non-identifiability problem
by which any of the estimated trends can be transformed linearly on the log scale [7, 8, 33]. Replacing
the age effects in an APC model with the hazard function of a biologically based model solves, at least
in principle, the non-identifiability issue [49]. In addition, if exposure data is available, the use of a
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biologically-based model may allow the estimation of the effects of agents exposure on cancer risk. Here
we describe how to fit a biologically-based model to tabular data, while adjusting for calendar year (i.e.,
period) and birth cohort effects.

Likelihood Function (Poisson Regression).

Assume we have cancer incidence (or mortality) data in tabular form for j=1,...,J calendar years,
covering i=1,....I age groups. For each age-group, the number of cancer cases diagnosed during calendar
year j can be assumed to follow a Poisson distribution with mean:

Aij = b; jc;PY; jh(a;), (95)

where a; is the mean age of the i — th age group, b; ; and c¢; are coefficients that adjust for birth cohort
and calendar year effects, respectively, PY; ; is the person years at risk, and h(a;) represents the hazard
function of a biologically-based model evaluated at age a;.

The overall likelihood £ for the observed incidence in all age-calendar year groups is given by

011 —Alj

L= H Aje (96)

where o0; ; is the number of cases in the i — th age group during calendar year j.

The likelihood can be used to estimate not only the secular terms (birth cohort and period effects),
but also the parameters of the biologically based model. In addition, if the data can be broken further
by carcinogen(s) exposure (dose and duration) by age and period, one can also estimate in principle
dose-response parameters.

9.0.2 Individual Data

In this section we briefly describe how to compute the likelihood function in case we have cancer
incidence (or mortality) data with detailed individual exposure information.

Likelihood Function.

For prospective cohort data, the likelihood function is the product of individual likelihoods over all
the subjects in the cohort. Assuming that participants are cancer free at their age of entry the study
(ae;), and that we censor individuals in case of death from other causes or in case they survive cancer
until the end of follow-up, the individual likelihoods are given by

_ S'(al g’(dl)) _ h(ali;0(d;))S(ali;0(di))
Lilals, aess B(de)) = { o335 %000 S(aes 7)) for cancer cases (97)
i(ali, aei; O(a; S(ali;6(di)) otherwise
S(ae;;0(d;)) 7

where al; is the individual’s censoring or failure (cancer diagnosis) age, h(t; 0(d;)) and S(t; 6(d;)) denote
the hazard and survival function at age ¢ of an individual with exposure history d;, respectively, and
f(d;) denotes the vector of identifiable model parameters given the exposure history d; (see equations
(93) and (94)). Note: the prime denotes derivative with respect to t.

The overall likelihood is then

L= HLi(ali,aei;é(di)), (98)

where the product is taken over all the subjects in the cohort(s).

10 Examples
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