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In this paper we propose a mathematical model for the growth of solid tumors which employs quiescence as a mechanism to explain
characteristic Gompertz-type growth curves. The model distinguishes between two types of cells within the tumor, proliferating and
quiescent. Empirical data strongly suggest that the larger the tumor, the more likely it is that a proliferating cell becomes quiescent and
the more unlikely it is that a quiescent cell reenters the proliferating cycle. These facts are taken as the basic assumptions of the model.
It is shown that these assumptions imply diminishing of the growth fraction (i.e. proportion of proliferating cells), a phenomenon found
in most tumors.

Three qualitatively different cases are analyzed in detail and illustrated by examples. In the case of a tumor forming a necrotic center
the model predicts that the tumor grows monotonically to its ultimate size according to a typical S-shaped Gompertz curve, and that
the growth fraction tends to zero.

In the case of true quiescence, where the dormant cells retain their capability of becoming proliferating, we distinguish between two
types of tumors: one in which only proliferating cells can die and one in which there is mortality among quiescent cells, too. In the first
case the predicted tumor growth occurs in the early stages in a way that is very similar to that of tumors forming a necrotic center; the
growth fraction still tends to zero, but ultimately the tumor grows without bound. In the second case the tumor grows to a finite limit

depending only on the vital rates, while the growth fraction decreases to a strictly positive value.

In 1825 Benjamin Gompertz published his famous
empirical law of human mortality (Gompertz, 1825).
Expressed in modern terminology he found that the age
distribution I(f) of many communities is given by

L(t) = k exp(— exp(a — bt)), (1.1)

where ¢ denotes age and k is a positive, a a real and b a
negative constant. Almost exactly one hundred years later
Wright (1926) proposed to use the function L given by (1.1)
to describe the growth of individual organisms. In this
interpretation ¢ denotes time and L(¢) is the size of the
individual at time ¢. Observe that now the constant b should
be positive and the organism grows monotonically to its
final size k.

Since the appearance of Wright’s (1926) book review a
vast number of authors have fitted the Gompertz curve
(1.1) with remarkable success to growth data for several
different animals and organisms (Laird, Tyler and Barton,

1965, Laird, 1965a). In particular the growth of solid
tumors seems to follow the Gompertz growth curve very
precisely, at least in the early stages (Laird 1964, 1965b,
McCredie et al., 1965, Norton et al., 1976). On the other
hand Burton (1966) pointed out that in the last stages a
straight line with positive slope fits the data better than the
horizontal asymptote of Gompertz’ curve.

The Gompertz growth function is completely empirical
and there is no obvious reason why tumors, for example,
should grow according to this function. Kendal (1985)
claims that Gompertzian growth is simply a consequence of
tumor heterogeneity, but as Swan (1987) correctly points
out there is no biological justification for the assumptions
on which Kendal’s model is based. It would be desirable to
explain Gompertzian growth by mathematical models
based on some mechanism within the tumor. As a step in
this direction Summer (1966) derived a model for tumor
growth starting with the assumption that tumor growth is
limited by transcapillary flux of nutrients and showed that
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this model predicted a growth curve quite similar to the
Gompertz curve. Burton (1966) considered spherical tumors
which develop necrotic centers. He assumed that the supply
of oxygen is maintained at the surface of the tumor, but
oxygen reaches the central core only by diffusion. When the
oxygen tension value falls below a critical value in some
part of the tumor this part turns necrotic and its cells
become forever incapable of dividing. Burton’s (1966)
diffusion-limitation theory predicts Gompertzian-like
growth with the exception that ultimately the tumor grows
linearly.

A tumor is a population of cells. Frenzen and Murray
(1986) presented a cell kinetics model for the growth of cell
populations. It is similar to the well known model of
maturity-time representation due to Rubinow (1968), but
in contrast to the Rubinow model the muturation velocity
is not assumed to be constant. Frenzen and Murray (1986)
showed that if the interaction between individual cells and
the entire tumor is such that an increase in the total number
of cells leads to a decrease in the individual maturation rate,
then, in their model, the tumor will grow in a Gompertzian
way.

The model of Frenzen and Murray (1986) provides a
mechanism explaining Gompertzian growth which seems
to be appropriate for ascitic tumors for which it has been
found that the duration of all the phases of the cell cycle
increased with the size of the tumor (Frindel and Tubiana,
1967, Tannock 1969). On the other hand this is not the case
for solid tumors. According to Tubiana’s (1971) review
article most results show that the mean duration of the cell
cycle in solid tumors is relatively constant and that for a
given solid tumor, variation in growth rate is mainly due to
variations in the ratio between proliferating and quiescent
cells. These facts have subsequently been repeatedly con-
firmed, for instance by Martinez and Griego (1980).

In this paper we propose a model for the growth of solid
tumors which employs quiescence as a mechanism to
explain characteristic Gompertz-type growth curves. In
tumors a considerable portion of the cells are resting or
quiescent. Although the reason why some cells go into
quiescence is not exactly known it has been shown by
Tannock (1968) that in parts of the tumor far from a blood
vessel the proportion of quiescent cells is considerably
higher than in parts close to a blood vessel. Indirectly this
implies that the probability of becoming quiescent increases
as the tumor grows. Theories of diffusion of oxygen and
nutrients (Burton, 1966) suggest the same thing. Many
experiments actually show that the growth fraction (i.e.
proportion of proliferating cells) diminishes with increas-
ing tumor size (Tubiana, 1971).

Quiescent cells do not lose their capability to divide.
Some human tumor cells can start recycling after years of
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quiescence. It appears that the rate at which quiescent cells
enter the proliferating compartment decreases with increased
tumor size: Gavosto and Pileri (1971) found that this rate
increased when the tumor was reduced by treatment.

In the next section we formulate a quiescence model of
tumor growth and state some results concerning the behav-
ior of its solutions. Readers unfamiliar with mathematical
models of cell population dynamics are referred to the book
of Eisen (1979). In the following section we discuss the
implications of these results and illustrate them with some
examples. The proofs of the results are given in the
Appendix.

THE MODEL AND THE MAIN RESULTS

The model we propose distinguishes between two types
of cells within the tumor, proliferating and quiescent. Pro-
liferating cells reproduce, and may become quiescent at a
rate depending on the size of the tumor. It is assumed that
the bigger the tumor, the more likely it is that a cell becomes
and remains quiescent. Quiescent cells do not reproduce
but may reenter the proliferating cycle. Both proliferating
and quiescent cells may die but mortality is not assumed to
be the same in both classes. By death we understand all
kinds of cell loss such as exfoliation, immunological cytoly-
sis and migration (metastasis). The model is given by the
following system of ordinary differential equations:

P(8) = 18 — pp — ro(NO)IPE) + (N ()Q(), (21)
Q'(6) = ro(N () P(8) - [(N () + malQ(e),  (22)
N(8) = P() +Q(¢), (2.3)

P(0) =P, >0, Q(0) =Qo >0. (2.4)

Here P(¢) is the number of proliferating cells at time 7, O(¢)
is the number of quiescent cells at time 7 and N(¢) is the total
number of cells in the tumor at time ¢ and is therefore a
measure of the size of the tumor. B is the birth or division
rate, upis the death rate of proliferating cells, and pgis the
death rate of quiescent cells. r,(N) is the rate at which
proliferating cells become quiescent and ri(N) is the transi-
tion rate into the proliferating class from the quiescent class
when the tumor size is N.

We suppose that 8 is a positive constant and upand ug
are nonnegative constants, r,(N) is a continuous nonnega-
tive nondecreasing function of N and ri(N) is a continuous
nonnegative nonincreasing function of N. In the absence of
quiescence b.= B — uris the specific growth rate or Malthu-
sian parameter of the population. Throughout the paper we
shall assume that b is strictly positive.
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It is the increasing tendency of cells to become and to
remain quiescent as the tumor becomes larger that consti-
tutes the growth limiting mechanism. The limits

Lo : = limy—ooro(N), (2.5)
4 : = limy_oori(N), (2.6)

of the transition rates as tumor size tends to infinity will
therefore play an important role in what follows. Observe
that according to our assumptions about 7, and r;, , and /;
are well-defined by (2.5)and (2.6)and that 0 <[, <0, 0</;
< oo,

Our interest is in the qualitative behavior of solutions as
time progresses. This behavior is a typical Gompertzian
growth of total tumor size N(¢) and a diminishing of the
growth fraction

G(¢) := P(t)/N(t). (2.7)

This occurs regardless of the specific choices of transition
rates r,(N) and ri(N) as long as r,(N) is nondecreasing and
r{N) nonincreasing. The results stated below are proved in
the appendix and illustrated by some numerical examples
in section 3.

Proposition 2.1

Suppose po=0, r(N)=0forall N=0and /,> b. Then N(¢)
is increasing, bounded and lim;-. N(f) =N*, where N* is the
unique solution of

b(N* = Qo) = /NN‘ ro(N)dN. (2.8)

If ro(No) > b, then N(¢) is concave; but if r.(Ng) < b, then
N(?) has a turning point at the unique value of N such that

ro(N) =b. (2.9)

Further, lim;-» P(¢) = 0 and, consequently, G* := lim;-- G(?)
=0.

The assumption ug = 0, r; = 0 means that a cell that has
once entered the quiescent class will neither die nor reenter
the proliferating cycle but remain inactive forever. Thus in
this case the model does not really describe quiescence but
rather the situation where part of the tumor becomes
necrotic. The assumption /, = limy-wro(N) > b = 8 — uphas
a natural biological interpretation. It says that for very
large tumors the rate at which cells become quiescent or die
is greater than the rate of recruitment of new cells. If we
suppose that transition to quiescence and death take place
immediately after mitosis, then the assumption means that
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for very large tumors on average more than one of the two
cells produced at mitosis will either become quiescent or
die.

The next proposition applies to the situation in which
there is still no mortality in the quiescent class but quiescent
cells can become proliferating again.

Proposition 2.2

Suppose uo = 0 and there exist positive constants r;, 7: such
thatr; < r(N)<Tforall N=0. Then N(¢)is increasing and
limie N(2) = 0. Let G* = lim;~wP(¢)/ N(?). If r,(N) is
bounded in N, then lim;-.P(¢) = * and

G* = (L + (L? + 4b4)*/3) /(2b), (2.10)
where L:=b — i — I,. If ro(N) is unbounded, then
lim sup,_, o, P(t) < lim supy_, o Nri(N)/ro(N), (2.11)
lim infy oo N1i(N)/ro(N) < lim infe, o P(t) (2.12)
and consequently, G* = 0.

Our last result is concerned with the case in which quies-
cent cells can also suffer from death. This time we have to
assume that r, is not only nondecreasing but actually
strictly increasing. The assumption about 7; remains the
same as before.

Proposition 2.3

Suppose (i) po > 0, (ii) r,(0) < b(1 + r(0)/ no), (iii) b(1 +
i/ po) < l,and (iv) b< ri(N) +ro(N) + uoforall N=0. Then
there exists a unique nontrivial equilibrium (P*, Q*). This
equilibrium is globally asymptotically stable in the sense
that all solutions of (2.1)-(2.4) approach (P*, 0*) as t — o°.
The total tumor size N(¢) tends to the unique solution N* of

ro(N*) =b(1+r;(N*)/uqg) (2.13)

and the growth fraction G(7) tends to G* :=pg/ (b+ug)ast

— OO,

Assumptions (ii) and (iii) mean, roughly speaking, the
following: for very small tumors the tendency to become
quiescent is low and the tendency of quiescent cells to
become proliferating again is high, whereas the opposite
holds true for very large tumors. If for instance r, is linearly
proportional to the total tumor size, then both (ii) and (iii)
are automatically satisfied. Assumption (iv) is a technical
assumption which is hard to interpret biologically since it
involves all the vital rates.

S S b e—
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DiIScUSSION

The basic assumption in our tumor growth modelis that
transition into quiescence and back into the proliferating
cycle depends on the total size of the tumor in the following
way: an increase in tumor size increases the tendency of
proliferating cells to enter quiescence and decreases the
tendency of quiescent cells to reenter proliferation. Even if
tumor size is not directly a factor determining the probability
of quiescence, our assumption is a logical consequence of
the hypotheses supported by Burton (1966) and Tannock
(1968) that nutrient supply and distance from a blood vessel
are such quiescence determining factors.

We consider three special cases of the model. In all three
cases the model predicts Gompertzian-like tumor growth,
although the asymptotic behavior is qualitatively different
in all three cases. These different situations will be illus-
trated by numerical examples and plots. It should be noted
that all our examples and plots are chosen to illustrate the
general qualitative features of the model and they are not
based on real data. The units of time and tumor size are
completely arbitrary.

Proposition 1 describes the growth dynamics of a tumor
forming a necrotic center. The ultimate size N* of the
tumor is finite and depends on the initial state. N(¢) grows
montonically to N* and has a unique turning point, which
is attained at the moment when the net rate of production
of new cells equals the transition rate into quiescence. Thus
the growth curve N(¢) has the typical S-shape of the Gom-
pertz and logistic curves. Incidentally, if the transition rate
ro(N)is a logarithmic or linear function of the tumor size N,
then the solutions N(z) of (2.1)-(2.4) are exactly Gompertz
or logistic curves, respectively, for certain choices of initial
values. Forexampletake b=8— up=1,r=0,r,(N)=1+log
N, Py =1, Qo = 0 and the solution of (2.1)-(2.4) is

P(t) = exp(1 -t — exp(—t}), (3.1)
Q(t) = exp(1 — exp(—t))(1 — exp(—t)), (3:2)
N(t) = exp(1 — exp(—t)). (3.3)

Thus N(¢?) has the Gompertzian form (1.1). On the other
hand,if 5=2,r,=0,r,(N)= N, Py=1, Qo = 1, then one can
easily check that the solution N(z) of (2.1)-(2.4) satisfies the
logistic equation

N'=2N - %N’. (3.4)
The two examples above are mentioned merely as curios-

ities and we do not attach any special significance to them.
Feller (1939) showed that there is nothing unique about the

N

tumor size

growth fraction G
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logistic law of growth and his arguments apply to the
Gompertz growth law as well. In the situation of Proposi-
tion 1, different choices of transition rates and initial states
lead to very similar S-shaped curves of N(z) which, how-
ever, are neither exactly Gompertzian nor logistic. We
illustrate this by showing the tumor growth curve for a
quadratic transition rate in Figure 1. In Figure 2 the corres-
ponding growth fraction is plotted against time.

FIGURE 1. Tumor size as function of time. b = 1, ug = 0, ro(N) =
0.0IN, =0, P =1, Q=0.

time t

FIGURE 2. Growth fraction as a function of time. b= 1, ug =0,
ro(N) = 0.01N* r;=0, Po=1, Qo= 0.

Truely quiescent cells retain their capability to divide.
Proposition 2, which assumes that the transition rate from
quiescence to proliferation is positive, applies to this situa-
tion. It is still assumed that quiescent cells do not die. If
ro(N) is bounded in N, then the growth fraction G(f) con-
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verges to a postive value independent of the initial data. If
ro(N)is unbounded in N, then G(f) converges to 0 as ¢ tends
to infinity.

In the case of necrosis described by Proposition 1 the
choice of r,(N) had little influence on the shape of N(¢).
Now the situation is completely different. Since N'=b Pthe
relations (2.11) and (2.12) show that if r,(N) = a; +a;log N,
then N(7) will tend to infinity with a slope tending to
infinity; if ro(N) = a; +a, N, then N(¢) has a straight line with
slope /;/ a; as asymptote; and if r,(N) increases faster than a
linear function, then the total tumor size N(¢) increases very
slowly (but still without limit) the slope tending to zero.
This last case is illustrated in Figures 3 and 4 with the same
quadratic r,(N) as before and a constant r; which is small
compared with b. This is realistic since the mean residence
time in the quiescent state is typically much longer than the
mean cycle time of proliferating cells. Observe how very
similar the growth curves in Figure 1 and Figure 3 are.

time t

FIGURE 3. Tumor size as a function of time. b= 1, ug =0, r,(N) =
0.01N% r;=0.01, P,=1, Qo = 0.
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FIGURE 4. Growth fraction as a function of time. b = 1, up = 0,
ro(N) = 0.01N*, ;= 0.01, Po= 1, Qo = 0.
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In Propositions 1 and 2 we assumed no mortality in the
quiescent class. This is a realistic assumption, since in some
tumors the cells which die seem to be the proliferating ones
(Tubiana, 1971). In other types of tumors, however, disap-
pearing cells are for the most part quiescent (Tannock,
1968). Proposition 3 is concerned with tumors of this kind.
If quiescent cells do not die then the tumor size increases
and the possible limit depends on the initial state. With
mortality in the quiescent class the situation is different. All
solutions N(?) tend to the same limit N*, which depends
only on the vital rates and not on the initial condition. N(¢)
need not approach N* monotonically. For some combina-
tions of the vital rates N(¢) exhibits damped oscillations, for
others N(f) crosses its own asymptote at most once. The
asymptotic behavior of N(¢) is determined by the location
of the eigenvalues of the corresponding linearized system.
For instance, it is easily seen that if ; is constant and greater
than or equal to ug, and if r,(N) is a linear function, then
damped oscillations are excluded. Whether N(7) in this case
aproaches N* monotonically or not depends on the initial
condition. This is illustrated in Figures 5 and 6. Notice how
the monotonic growth curve in Figure 5 again resembles
the characteristic S-shaped curves of Gompertzian or logis-
tic growth.
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time t

FIGURES. Tumor size as a function of time. b= 1, uo=0.1,r,(N) =
0.1N,r=0.1, Po=1, Qo= 0 (solid line) and Po = 10, Qo = 0 (dashed
line).

The model we have considered in this paper is unstruc-
tured in the sense that the vital rates are assumed to be the
same for all cells within the same class. However, the death
rate and the transition rate into quiescence seem to depend
on the phase of the cell cycle in such a way that the probabil-
ity of dying or becoming quiescent is highest shortly after
mitosis (Tubiana, 1971). In a previous paper (Gyllenberg
and Webb, 1987) we investigated an age-size structured
model, which incorporated the above mentioned behavior
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FIGURE 6. Growth fraction as a function of time. b =1, o= 0.1,
ro(N)=0.1N,ri=0.1, Po=1, Qo = 0 (solid line) and Po =10, Qo=0
(dashed line).
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of individual cells. That model was, however, linear and did
not take the dependence on the total population size into
account. Work on nonlinear structured models with quies-
cence is in progress (Gyllenberg and Webb, 1989). It is our
intention to apply the structured models to problems of
optimal radio- and chemotherapy. Here quiescence plays
animportant role: It is known that quiescent cells are not as
sensitive to drugs and radiation as are proliferating ones
and damage to a tumor triggers a recruitment of quiescent
cells into the proliferation class (Tubiana, 1982).

APPENDIX

In the analysis of the system (2.1)-(2.4) we use only
elementary results and techniques from the theory of ordi-
nary differential equations that can be found in any intro-
ductory book on the subject, e.g., Simmons, (1972).

The existence of a unique solution to (2.1)-(2.4) satisfy-
ing P(f) > 0and Q(z) = 0 for all = 0 can be established by
standard methods.

Proof of Proposition 1. Addition of (2.1) and (2.2) yields

(4.1)

N'(¢) = bP(t),

t>0,

from which it follows that N/(t) is increasing. From (2.1) and (A.1) we obtain

(4.2)

which implies

(A.3)

N"(t) = (b —ro(N(2)))N'(e),

N(t)
N'(¢) = /N o BT MR 4 8P(), ¢2 0020

Since limy_. oo ro(N) > b it follows that lime_,o N'(t) = 0, N* := lim,_, o, N(t) < oo, and N*

satisfies (2.8). Then (A.1), (A.2), and (A.3) imply the remaining claims of the proposition. I
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Proof of Proposition 2. From (2.1) and (A.1) we obtain for ¢ > to > 0
(4.49) PO = o [ [ (6= (V) = e = (N ()] Pl
+ [ exp [ 6= oW ) = (A ()] (W) W)
(4.5) N(t) = N(to) +b /t ' P(s)ds

Then (A.5) implies that N (t) is increasing. Let N* := lim; o N(t) < 00. Assume N* < oo and let
¢ =ro(N*) + 7 —b. From (A.4) and (A.5) we obtain

(A.8) P(t) > r;N(to) /‘ exp[—c(t —s)]ds, t>t 20

{r.-N(to)(t-to) if c<0
>

; =

[r; N (to)/c](1 — exp[—c(t — t0)]) if ¢>0.

E Then (A.5) and (A.6) imply N* = co, which is a contradiction.
k Suppose that limy_.e 7o(N) < 00. Then (A.6) implies lim¢ .o P(t) = co. From (2.1) and

| (A.1) G(t) satisfies the Ricatti equation

(A.7) G'(t) = [b— ro(N(t)) — r:(N(£))IG(t) + r:(N(t)) — bG(t)?.

Let F(G) = LG + ¢; — bG? and notice that F(G*) = 0. Let ¢ > 0 such that F(G* —¢) < F(G) for

0 < G < G* — ¢. There exists t, > 0 and § > 0 such that if ¢t > ¢, and G(t) < G* —¢, then

(4.8) G'(t) = F(G(t)) + [to — ro(N())IG(t) + [& — ri(N ()]G () + [& — ri(N(2))]

>F(G*—¢€)—6>0.

From (A.8) it follows that there exists t; > tc such that G* —e < G(t) for t > ¢t;. A similar argument
shows there exists t; such that G(t) < G* + ¢ for all ¢ > ¢;. Thus, (2.10) is proved.

Suppose that limy . ro(N) = co. Let ¢(t) = ro(N(t)) + r; — b and let ¢(to) > 0. Then (A.4)

implies that for ¢ > 2o.

(A.9) P(t) < exp[—¢(to) (t — to)]P(to) + ri(N(to))N(t) /; exp[—c(to)(t — s)]ds 4‘

< exp|—¢(to) (t — o)]P(to) + ri(N(to)) N (¢) /<(to)-

| From (A.9) we have that lim;— o P(t)/N(t) = 0. Then for £> 0, lim; .o N(t + £)/N(t) =1 (since
E 0<1-N()/N(t+ 4= bf‘He P(s)ds/N(t + ¢) < blsupy 4,4 P(s)/N(s)) and the convergence is
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uniform in bounded intervals of £.

To prove (2.11) let M, := limsupy_, o, Nri(N)/ro(N) < oo. Let 0 < € < 1 and choose t; > 0

such that if ¢ > ¢;, then N(t + ¢)/N(t) < 1+efor 0 < £ <2, N(t)r;(N(t))/e(t) < (1 + €)M,

and exp(—¢(t)) < e. Let M3 := max(supyy, ¢, 41 P(t), (1+€)?M1/(1—¢€)). Let t > ¢t; such that
1 P(t) < M; and let 1 < £ < 2. Then (A.9) implies

B

P(t+8) < exp(—c(t)O)P(t) + (N(t)r:(N(¢))/c(t)) (N (¢ + &) /N ()
< eM; + (14 €)*M,

<e[(1+€)?/(1—¢)] M1+ (1+€)°M,

= (1+€)*My/(1- ) < My.

mepaae

Then P(t) < (1+ €)My /(1 —€) on [ty + 1,¢, + 2], [t1 + 2,1 + 3], - -+, which implies (2.11).

To prove (2.12) let ¢(t) = ro(N(t)) +7; — b and let €(to) > 0. Then (A.4) implies that for t > ¢o
(A.10) P(t) > r;(N(t))N(to) /“ exp[—c(t)(t — s)]ds

and (A.10) implies

P(to +1) > (N(to + 1)ri(N(to + 1)) /ro(N(to + 1))
(ro(N(to + 1)) /e(to + 1)) |

(N(to)/N(to + 1)) (1 — exp[-Z(to + 1)])

which implies (2.12). 1

Proof of Proposition 2.8. From (2.1) and (2.2) we obtain:
5 (4.11) P'(t) = [b = ri(N(t)) — ro(N())]P(t) + ri(N(£)) N (2)

(4.12) N'(£) = [b+ ual () — N (¢)

From (A.11) and (A.12) one sees that N’ = 0 on the straight line

(A.13) P=(pg/(b+p))N

and that P’ = 0 on the curve
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(A.14)
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P = ri(N)N/(rs(N) + ro(N) — b).

It follows from assumptions (i)-(iii) that the curves (A.13) and (A.14) intersect exactly once, at

(N*, P*) with N* the unique solution of (2.13) and P* = G*N*. Moreover, for large values of N, the

curve (A.14) is below the curve (A.13). The phase portrait of (A.11), (A.12) in the (N, P)-plane thus

has a clockwise flow about (N*, P*), and any orbit starting in {2 := {(N,P):0<P<N, N>0}is

bounded. According to the Poincaré-Bendixon theorem every orbit will either tend to (N*, P*) or

to a limit cycle. But according to the Bendixon criterion (Guckenheimer and Holmes, 1983) there

are no closed orbits in {1, since

8/3P{[b— ri(N) — ro(N)|P + ri(N)N}

+38/3N{[b+ pg|P— pgN} =b—ri(N) —ro(N) —pq

does not change sign in Q1 by virtue of assumption (iv).m

Remark: Assumption (iv) is made in order to apply the Bendixon criterion. It is possible that

one can prove the nonexistence of closed orbits without it.

REFERENCES

BURTON, A.C. 1966. Rate of growth of solid tumours as a problem of
diffusion. Growth 30, 157-176.

EISEN, M. 1979. Mathematical models in cell biology and cancer chemo-
therapy. Lecture Notes in Biomathematics. Berlin, Heidelberg, New
York: Springer-Verlag.

FELLER, W. 1939. On the logistic law of growth and its empirical verifica-
tions in biology. Acta Biotheoretica 5, 51-66.

FRENZEN, C.L. & MURRAY, J.D. 1986. A cell kinetics justification for
Gompertz’ equation. SIAM J. Appl. Math. 46, 614-629.

FRINDEL, E. & TUBIANA, M. 1967. Duree du cycle cellulaire au cours de la
croissance d’une ascite experimentale de la souris C3H. Comptes-
Rendus del I’Academie des Sciences (Paris). 265D, 829-832.

GavosTo, F. & PILERL A. 1971. Cell cycle of cancer in man. In the Cell
Cycle and Cancer (ed. R. Baserga), 99-128. New York: Marcel
Dekker.

GOMPERTZ, B. 1825. On the nature of the function expressive of the law of
human mortality, and on a new mode of determining the value of life
contingencies. In a letter to Francis Batly, Esq. F.R.S. Phil. Trans.
Roy. Soc. 115, 513-585.

GUCKENHEIMER, J. & HOLMES, PH. 1983. Nonlinear Oscillations, Dynam-
ical Systems and Bifurcations of Vector Fields. Berlin, Heidelberg,
New York: Springer.

GYLLENBERG, M. & WEBB, G.F. 1987. Age-size structure in populations
with quiescence. Math. Biosci. 86, 67-95.

GYLLENBERG, M. & WEBB, G.F. 1989. A structured cell population model
of tumor growth with quiescence. Abstract, Annual Meeting of the
American Mathematical Society. Phoenix, Arizona.

KENDAL, W.S. 1985. Gompertzian growth as a consequence of tumor hete-
rogeneity. Math. Biosci. 73, 103-107.

LAIRD, A.K. 1964. Dynamics of tumor growth. Br. J. Cancer 18, 490-502.

LAIRD, A.K. 1965a. Dynamics of relative growth. Growth 29, 249-263.

LAIRD, A.K. 1965b. Dynamics of tumor growth: Comparisons of growth
rates and extrapolation of growth curve to one cell. Br. J. Cancer 19,
278-291.

LAIRD, A.K., TYLER, S.A. & BARTON, A.D. 1965. Dynamics of normal
growth. Growth 29, 233-248.

MARTINEZ, A.O. & GRIEGO, R.J. 1980. Growth dynamics of multicell
spheroids from three murine tumors. Growth 44, 112-122.

MCCREDIE, J.A., INCH, W.R., KRUUV, J. & WATSON, T.A. 1965. The rate
of tumor growth in animals. Growth 29, 331-347.

NORTON, L., SIMON, R., BRERETON, H.D. & BOGDEN, A.E. 1976. Predicting
the course of Gompertzian growth. Nature 264, 542-545.

RUBINOW, S.I. 1968. A maturity-time representation for cell populations.
Biophysical Journal 8, 1055-1073.

SIMMONS, G.F. 1972. Differential Equations with Applications and Histor-
ical Notes. International Series in Pure and Applied Mathematics.
New York: McGraw-Hill.

SUMMERS, W.C. 1966. Dynamics of tumor growth: A mathematical model.
Growth 30, 333-338.

SWAN, G.W. 1987. Tumor growth models and cancer chemotherapy. In
Cancer Modeling (eds. J.R. Thompson and B.W. Brown), 91-171.
New York and Basel: Marcel Dekker.

TANNOCK, L.F. 1968. The relation between cell proliferation and the vas-
cular system in a transplanted mouse mammary tumour. Br. J. Cancer
22, 258-273.

TANNOCK, LF. 1969. A comparison of cell proliferation parameters in solid
and ascites Ehrlich tumours. Cancer Research 29, 1527-1534.

TuBIANA, M. 1971. The kinetics of tumour cell proliferation and radio-
therapy. Br. J. Radiology 44, 325-341.

TuBIANA, M. 1982. L.H. Gray medal lecture: Cell kinetics and radiation
oncology. Int. J. Radiation Oncology Biol. Phys. 8, 1471-1489.

WRIGHT, S. 1926. Book review. J. Am. Stat. Assoc. 21, 493-497.

53
|




