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It is commonly believed that tumor growth under ideal conditions is a simple
exponential process terminated by the exhaustion of the nutritional support
provided by the host. However, a survey of the literature shows that exponential
growth of tumors has been observed only rarely and then only for relatively brief
periods. When we consider those tumors whose growth has been followed over a
sufficiently extensive range (100 to 1000-fold range of growth or more), we find that
nearly all such tumors grow more and more slowly as the tumor gets larger, with no
appreciable period of growth at a constant specific growth rate as would be expected
for simple exponential growth. This continuous deceleration of growth has the
consequence in many cases that the diameter (if a solid tumor) or the cube root
of total cell number (if an ascites tumor) when plotted against time gives a close
approximation to a straight line (Mayneord, 1932 ; Schrek, 1935 ; Klein and
Révész, 1953 ; Patt and Blackford, 1954). Mayneord (1932) has shown that cube
root growth could be readily explained in mathematical terms if the active growth
of a solid tumor were limited to a thin layer of cells at the surface of the tumor.
However, in practice most solid tumors do not grow only at the surface, and in the
case of ascites tumors it has been possible to Jabel the DNA of nearly 100 per cent
of the tumor cells (Baserga, Kisieleski, and Halvorsen, 1960), indicating that almost
all of these cells are viable and proliferating. Hence, although cube root growth
has been empirically established for many tumors, it is difficult to relate it mathe-
matically to proliferation of tumor cells.

The present study offers a model of tumor cell proliferation that would account
for the observed course of tumor growth. Furthermore, it will be shown that there
is a distinct difference between the continuous and regular slowing characteristic
of tumor growth and the more abrupt cessation of exponential growth observed
when bacterial cultures outgrow their nutrient supply. Finally, implications of this
new interpretation of tumor growth will be discussed in relation to concepts of host-
tumor interaction.

ANALYSIS OF TUMOR GROWTH

Fig. 1 and 2 show, respectively, a semi-log and a cube root plot of the growth of
the Ehrlich ascites tumor, from the data of Klein and Révész (1953). If the ascites
cells had multiplied exponentially, the experimental points should fall on a straight
line in Fig. 1; instead they describe a smooth convex curve, no part of which is
linear for long enough to justify an interpretation of exponential growth. This fact
indicates that the specific growth rate of such tumors decreases with time (Klein and
Révész, 1953), i.e., that the second derivative of the growth function is negative, in
contrast to semi-log growth in which the specific growth rate remains constant.
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However, the cube root of total cell number plotted against time does give a
straight line, as shown in Fig. 2.

In an extension of these findings, we showed in a previous study (Laird, 1962)
that linear plots of tumor growth can be prepared for most tumors by compressing
the time axis as well as the size axis on a logarithmic scale. The only exceptions
known to the present author are several human tumors (Schwartz, 1961) whose
growth is clearly linear over 2 or 3 log cycles.
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F16. 1.—Growth of the Ehrlich ascites tumor. Log number of tumor cells plotted against time.
Dose of inoculum kept constant while physiological age of inoculum varied. Dotted lines
are freehand drawings ; black curves represent authors’ equation fitted to the data. Redrawn
after Klein and Révész (1953).

Fig. 3 shows a log-log representation of the same growth data for the Ehrlich
tumor as shown in Fig. 1 and 2. Such a log-log line is described by a power function,
y = ax®, in which y = tumor size, x = time, and @ and b are constants. The power
function representation of tumor growth necessarily includes cube root growth, for
which the exponent b has the value 3. It is a more general relation than cube root
growth, however, because for many tumors the slopes of the log-log lines differ
greatly from 3 ; indeed they range from 1-1 to 8-5 for most of the tumors included
here, although for about half the tumors the values are greater than 2-4 and less
than 3-5, and hence are close enough to 3 to permit a satisfactory approximation
to a straight line on a cube root plot. However, the log-log plot is of limited use in
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Fi1c. 2.—Same data as in Fig. 1, replotted so that the ordinate now represents the cube roots of

tumor cell number ( X 10~2) instead of the logarithms. The black lines are calculated regres-
sion lines, and the dotted lines are freehand drawings. Redrawn after Klein and Révész

(1953).
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Fi1c. 3.—Same data as in Fig. 1 and 2, replotted, log tumor cell number against log time. Data of
Klein and Révész (1953).
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providing a quantitative comparison of growth rates, because the time scale is not
additive.

Therefore we have turned to another mathematical representation of tumor
growth. According to the model we wish to propose, tumor cells proliferate by a
modified exponential process in which successive doublings occur at increasingly
longer intervals. At first the increase in doubling times was thought to be expo-
nential, as crude measurements of doubling times on graphs such as those of Fig.
1 to 3 suggested. It will be shown below, however, that the doubling times increase
more rapidly than would a simple exponential process.

One can think of such proliferation as occurring by a rapid increase in the mean
duration of successive cell generations, by a rapidly increasing loss of cells from the
generative population, or by some combination of these processes that would result
in a rapid deceleration of the growth of the tumor according to the function
described below (Equation 5). Evidence bearing on this point will be presented in
the discussion.

An exact mathematical description of our model of tumor cell proliferation is
given by a Gompertz equation of the following form:

t

-t

WIW,=e (1)
where W = tumor size, in appropriate units, at any time ¢, W, = initial tumor
size, and 4 and a are constants.

If, in Equation 1, we express e*! as a power series in af, we see at once that for
small values of «t, the growth function (Equation 1) reduces to

WIW, = et (2)

i.e., simple exponential growth. This fact has two practical corollaries: (1) In the
case that « is finite, i.e., where a retarding effect is operating on the growth of the
tumor, at will be small initially, when ¢ is still vanishingly small, and thus tumor
growth will begin as simple exponential growth and will deviate from this more and
more as time goes on. (2) In the special case that there is no retarding effect
throughout the growth of the tumor, a is equal to zero, and the growth of the tumor
will be exponential throughout. Thus this mathematical model includes simple
exponential growth as the special case in which a happens to be zero.

In Table I are given the values computed for the Gompertzian constants A,
a, and W, for a number of the tumors reported in the literature. In all cases an
arbitrary small value was first assigned to W to obtain an estimate for the values
of 4 and «. It was then possible to compute a value for W by assigning these
estimates as starting values, and computing the three parameters simultaneously
by successive approximations. The data were weighted by the reciprocal of the
tumor size for each point. For all of these operations, the computer was programmed
to find the values for 4, o, and W, that would give the Gompertzian equation with
the best fit to the experimental data, on the basis of least squares.

The values for A4 lie generally between 0-08 and 0-36, and for a between 0-01
and 0-02, but several exceptions stand out, notably the high values for A and «
found for the Krebs tumor, and the very low value for a found for one of the Walker
tumors. The ratio A4 /a, which determines the asymptote of the growth curve, is
remarkably similar in spite of the differences in the individual values for 4 and «.
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TABLE I.—Gompertzian Analysis of Tumor Growth

Values for constants 4, a, and W,, and upper limits of growth

Theoretical Approximate
Tumor Reference A a W, Upper limit Size at death
Mouse:
Krebs (1) 5-25+2-00 0-41140-056 2-7x10% cells 1310 x10% cells 800 X 10¢ cells
Ehrlich . (2) 0-0784-0-011 0-00940-0008 426 x 102 cells 2500 X 10¢ cells 1593 x 10¢ cells
MC,M, low dose . (2) 0-11940-004 0-0147+40-0015 139102 cells 427 X106 cells 467 X 10° cells
6C,HED, high dose . (3) 0-039740-003 0-01240-0015 50 X106 cells 1340 x10% cells 890 X 108 cells
6C,;HED, low dose (3) 0-0626+0-0062 0-011640-0021 10 x10° cells 2190 x 108 cells 776 x 10¢ cells
DBA lymphoma (3) 0-2764+0-023 0-023840-0021 10X 103 cells 1070 x 106 cells (1000 x 10¢ cells)*
El,, low dose . (3) 0-20740-096 0-0194-0-003 24 X108 cells 1290 X 10¢ cells 1260 x 108 cells
El,, high dose . . (3) 0-17240-097 0-02340-004 695103 cells 1240 x10% cells 1290 X 108 cells
EO771 . . . (4) 0-666-+-0-304 0-063+4-0-022 3 mm? 109 cm? 31 cm?
Osteosarcomas . (5) 1-0240-115 0-1594-0-026 0-01 cm?3 6-03 cm? 4-3 cm?
Rat :
Walker, W26bl . (6) 0-2204-0-0227 0-021840-0061 0-4g 9600 g 175 g
Walker, W12a7 . () 0-34240-040 0-02054-0-0058 4-2 mm3 72,800 cm3 212 cm?®
Walker, W10a6 . (N 0-362+40-017 0-0394-0-0037 418 mm? 1780 cm? 490 cm3
Walker, W10b4 . (7 0-13240-012 0-00340-0026 16-7 mm? — 196 cm?
R39 Sarcoma, R3a7 . (8) 1-284-0-250 0:1244-0-011 8:36 mm3 241 cm3 188 em3
R39 Sarcoma, R4c4 . (8) 0-5404+0-120 0-0784+0-012 475 mm3 496 cm3 276 cm3
R39 Sarcoma, a7R3 . (8) 0-7374+0-162 0-0634-0-0068 2.1 mm?3 270 cm3 202 cm?3
Flexner-Jobling . (9) 0-3944-0-066 0-04940-0063 0-015 g 48-4 g 18-3 g
Rabbit: .
Brown-Pearce . (8) 1-26240-270 0-1694-0-0168 18 mm?3 31-4 cm? 29-8 cm?

Literature references : (1) Patt and Blackford, 1954 ; (2) Klein and Révész, 1953 ; (3) Révész and Klein, 1954 ;
(4) Ting, 1952 ; (5) Finkel, Bergstrand, and Biskis, 1961 ; (6) Schrek, 1936a ; (7) Schrek, 1935 ; (8) Schrek, 19365 ;
(9) Sugiura and Benedict, 1920.

* This is the value for the last two experimental points on the curve ; terminal scatter of the data included two
previous points that were higher, 1290 and 1620 x 108 cells.

Although the absolute values computed for W, in many cases seem large, they
are extremely small on the scale of the growth process as a whole; except for the
6C;HED lymphoma given at high dose, the values computed for W, are not
greater than 0-1 per cent of the cell numbers finally approached in the growth of
these tumors. That is, these curves cover in nearly all cases more than a 1000-fold
increase in size of the tumor. W is an extrapolated value, lying far removed from
the data points, and hence has a very large standard error. For this reason, the
values for W, can be accepted as only suggestive ; however, they are found to be
reasonable values when the data on the authors’ original plots are extrapolated back
to the ordinate, in cases where this is possible. W, may be interpreted as indicating,
however roughly, the initial effective growth mass of the tumor. The values are
always much smaller than the initial dose of the tumor, where this figure is known,
suggesting that many of the inoculated tumor cells die, as would be expected, leav-
ing a relatively small number to establish the growing tumor.

The instability of the computed W, does not affect the rest of our analysis,
however, because the essential parameters, A and «, and their standard errors,
change little when W is deliberately varied over a relatively wide range.

A Gompertz function of the form used here, as ¢ gets very large, approaches an
asymptote whose value is given by the expression

W|W, = edl= (3)

The theoretical upper limit of size of these tumors, based on the computed
asymptote of the Gompertz function, is given in column 6 of Table I, and in column
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7 is given the size actually reached by the tumor before the death of the host.
Considering at first only the mouse ascites tumors (all the mouse tumors except
the EO771 and the primary osteosarcomas), we see that the theoretical upper
limit of tumor size varies only about 5-fold, even though the values for W, vary
about 1500-fold. To compare the limit of size of the solid tumors with that of the
ascites tumors, it is necessary to express the asymptote in similar units, i.e., in
terms of the total number of tumor cells. We can estimate this number on the
basis of previous findings: Our own earlier studies establishing a common cell
fractionation pattern for tumours (Laird, 1954 ; Laird and Barton, 1956) included
estimates of the number of cells per gram in a number of tumors of several species.
Two solid tumors of the mouse had a concentration of about 750 million cells per
gram of tumor ; in many rat tumors the concentration of cells was about 400 to
500 million cells per gram. If these figures are incorporated into our present
calculations, assuming a specific gravity for tumor tissue of 1, then the theoretical
limiting size of the osteosarcomas is about 2400 to 4500 million cells. This figure
is only slightly higher than those for the ascites tumors. On the other hand, the
growth curve of the EO771 approaches a much higher upper limit than do those of
the other mouse tumors studied ; on the basis of the above calculations, the upper
limit, expressed in terms of total cell number, would be approximately 50,000 to
75,000 million cells, if the cells were of similar size. Considered together, however,
the computed upper limits of the mouse tumors appear to fall within a relatively
narrow range. Furthermore, for the mouse tumors the actual growth achieved
before the death of the host is usually a high proportion of the theoretical limit of
growth.

In contrast to the mouse tumors, the rat tumors show no evidence of constancy
of the theoretical upper limit of size, and indeed the asymptotes calculated for the
Walker tumor curves are so large as to be biologically meaningless. The size
actually reached by the rat tumors before the death of the host is, however, much
more nearly constant, the range lying between about 200 and 300 grams or c.c. for
all the tumors except the Flexner-Jobling, which in the study included here reached
only about 18 grams, and one of the Walker tumors, the W10a6, which grew to
about 480 c.c.

The Brown-Pearce tumor of the rabbit, at least in the example chosen for
computation, reached approximately the theoretical upper limit before the death
of the host.

The Gompertz function is not usually considered in terms of doublings and
doubling times, and the relation of the constants 4 and « to the doubling process is
not immediately evident. However, because our model of tumour growth is
conceived in terms of doublings of over-all tumor size, and possibly also in terms
of mean generation times of proliferating tumor cells, it is useful in this context to
transform the information given by the Gompertz function into doublings and
doubling times. It must be emphasized that these are interpretations of the
theoretial functions alone, and are * true »’ for the tumors only to the extent that
one accepts the Gompertz function as a valid representation of the realities of
tumor growth.

The growth equation (Equation 1) can be rearranged as follows to give t as a
function of W /W, :

1 A
b= In [a(A J& — In W/Wo)] ()
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The times required for the first doubling of tumor size, as estimated from the
corresponding theoretical functions, are given in Table II, column 2. The tumors
included in this study fall into several more or less homogeneous classes with respect
to the initial doubling times. The shortest times, about 2:5 to 6 hours, were ob-
served for the ascitic mouse tumors. The solid mouse tumors and the rat tumors,
which were also solid, usually required about 1 to 5 days for the first doubling. The
two exceptional ascitic tumors, the 6C;HED lymphomas, which had been given
at doses that were high relative to the theoretical and physiological upper limits of
size for mouse ascites tumors, grew very slowly from the start ; about 12 hours was
required at the low dose and 20 hours at the high dose to double the initial effective
tumor mass.

TaBLE I1.—Analysis of Theoretical Gompertz Functions in Terms of Doublings

Approx. No.

Gompertz curve Duration, Ratio, second to doublings to
Corresponding to : initial doubling, first doubling time upper limit
Krebs 3-26 hours 1-06 . 18
Ehrlich . 9-26 hours 1-10 . 12

MC, M., low dose 6-09 hours 1-11 . 11
6C,HED, high dose . 19-6 hours 1-44 . 4-5
6C,HED, low dose 119 hours 1-19 . 75
DBA lymphoma 2-59 hours 1-07 . 16

El,, low dose . 3:46 hours 1-08 . 15

E1,, high dose 4-23 hours 1-12 . 10
EO771 1-08 days 1-09 . 15
Osteosarcomas 5-03 days 1-15 . 9
Walker, W26b1l 3-26 days 1-08 . 14
Walker, W12a7 2-07 days 1-05 . 23
Walker, W10a6 1-99 days 1-09 . 13
Walker, W10b4 5-29 days 1:-02 . 62

R39, R3a7 0-56 days 1-08 . 14

R39, R4c4 1-35 days 1-13 . 9-5
R39, a7R3 . 0-97 days 1-07 . 16
Flexner-Jobling 1-84 days 1-11 . 11
Brown-Pearce . 0-576 days 1-12 . 10

A significant degree of retardation occurs in these Gompertz functions by the
second doubling of W/W,; the ratio of the duration of the second to the first
doubling is given in column 3 of Table II. A prolongation of 2 to 10 per cent is
evident by the second doubling for most of these functions, and is as great as 44
per cent in the case of the function corresponding to the 6C;HED lymphoma, high
dose.

This retardation increases as growth continues ; the rate of increase in retarda-
tion is given by the following equation, in which the doubling time, At, is expressed
as a function of time ¢ :

1 aln2
—_ _ T pat
At = aln [1 [ © ] >0 (5)

It is evident from this expression that successive doubling times will increase
slowly at first while ¢ is small and will increase more and more rapidly as ¢ becomes
large*. Correspondingly, the slowing of tumor growth described by a Gompertz

* If A < aln2, there is no doubling since the final value of W /W, e4/%, isless than 2. If A > aln2,
the right hand side of Equation (5) has meaning only for

t<t*=11n[A:|.
a

aln2
At time ¢t = t*, W/W equals 1/2 ed/,
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function is evident as a relatively small delay very early, which then increases in a
continuously accelerated fashion.

The Gompertzian growth equation (Equation 1) indicates that the value of W /W
increases from the value 1 at time zero to the final value e4/* at the asymptote, i.e.,
In W|W, increases from 0 to 4 /. Since one doubling represents an increment of
In2 in In W|W,, the total number of doublings () from time zero to reaching the
asymptote is given by the expression

A
~a.In2 (6)

It is clear that n is directly related to the ratio of 4 to a ; i.e., the larger the ratio
A |a, the greater the number of doublings that will be possible before the Gompertz
function reaches its asymptote. A Gompertz function corresponding to the 6C;HED
lymphoma, high dose, with 4 /o = 3-3, will pass through only about 4-5 doublings,
while a Gompertz function corresponding to the Walker tumor, W10b4, with
Ao = 44, will permit 62 doublings to take place before the upper limit is reached.
An example of a Gompertz plot of tumor growth, that of the Krebs ascites
carcinoma, is shown in Fig. 4. This figure also includes an exponential curve,
illustrating the course tumor growth would have followed if no retardation had
occurred. For comparison, a curve of bacterial growth is also shown ; the data for
this curve were obtained by automatic counting of a culture of E. colt during its
growth (data kindly given us by H. Kubitschek, of the Argonne National Labora-
tory). Such bacterial growth also deviates from exponential growth, as environ-
mental conditions become limiting. However, when the fit of bacterial growth
to a Gompertz function was tested, the Gompertzian model of growth was found
to be statistically incompatible with the data. This is to be expected, because, as
stated above, the retardation described by a Gompertz function increases very
slowly at first, and then faster and faster, according to Equation 5 ; the retarda-
tion observed when bacterial cultures approach a limit is, compared to a Gompert-
zian retardation, very abrupt, changing quickly from essentially zero in the
logarithmic phase of growth to an infinitely large value as growth stops.

n

DISCUSSION

The expectation that tumor growth under ideal conditions would prove to be
exponential until it terminates with the exhaustion of the host has not been borne
out in many careful studies of the growth of a wide variety of tumors. The devia-
tion from a semi-log line is not just a terminal finding ; in most cases tumor growth
is smoothly curvilinear on a semi-log plot throughout observed growth. This find-
ing implies directly that the specific growth rate of tumors is usually not constant
even for a short time, but decreases steadily.

In the present study we have shown that tumor growth is well described by a
Gompertz function, according to which the times required to double the tumor mass
increase according to an exponential function. Other functions might be used that
would fit the data equally well, but all would necessarily be functions in which the
doubling times become longer at a continuously increasing rate, because the tumor
data themselves show this property. The Gompertz function used here was chosen
because it gives an exact mathematical description of a useful model of cell pro-
liferation, one in which cells are regarded as multiplying exponentially, but their
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F1G. 4.—An arithmetic plot of (1) the theoretical Gompertz curve giving the best fit by the
method of least squares to the experimental data, Krebs ascites carcinoma. The circles are the
original experitnental points. Data of Patt and Blackford (1954). (2) Growth curve of Esche-
richia coli, B/r, grown in broth culture.* (3) An exponential curve fitted to the early growth
data, showing the course growth would have taken if no retardation had occurred in either
the bacterial culture or the tumor. The small scale of the graph obscures the fact that the early
experimental points for the tumor also deviate from the exponential curve, as would be neces-
sary to allow us to compute an upper limit of growth on the basis of a Gompertz function.

* Data kindly given us by H. Kubitschek, of the Argonne National Laboratory.

net accumulation is subjected to some retarding factor(s) whose effect increases
during growth according to an exponential function. This retarding effect might
be due to an increase in mean generation times without a change in the proportion
of reproducing cells, or it might be due to a loss in reproductive cells without
change in the mean generation time of the cells, or it is possible that these two
factors might be conbined in such a way as to result in the observed slowing of
tumor growth according to an exponential function.

For a loss of cells to account entirely for the observed retardation, such loss
would have to increase in successive generation times, according to Equation 5.
A loss of cells that remained constant per generation time would merely depress the
growth rate, leaving the growth process semi-logarithmic, since the remaining
viable cells would still increase in geometric progression ; the growth curve would
therefore still be a straight line on a semi-log plot, not the curved line that is
actually observed. In a search for dying cells as a possible explanation for the
deviation from semi-log growth observed in their own work, both Klein and Révész
(1953), studying the Ehrlich ascites tumor, and Patt and Blackford (1954), study-
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ing the Krebs ascites carcinoma, noted that the proportion of non-viable cells in
these tumors is very low, and does not change significantly with time. Unless we
assume that an exponentially increasing loss of cells was completely obscured by
the immediate removal of dying cells from the population, the data do not suggest
that cell loss alone was the cause of the decreasing rate of exponential growth.
Furthermore, in essential agreement with these results, Baserga, Kisieleski, and
Halvorsen (1960) found nearly 100 per cent of the cells of an Ehrlich tumor
labeled by titrated thymidine when the tumor was exposed to the label at intervals
over a period equal to only a single generation time ; they also found that the
per cent of cells labeled 4 hours after a single injection of tritiated thymidine did
not change significantly between the second and eleventh day of tumor growth.
In contrast to these findings with transplanted tumors, the results of Mendelsohn’s
(1962) labeling experiments with an autochthonous mammary tumor of the mouse
suggested the presence of a significant fraction of non-proliferating cells in the
tumor. It should be noted in passing that if slowing of tumor growth were entirely
due to an increase in generation times with no change in the proportion of viable
cells, a reduction in the per cent of labeled cells would ultimately be detected as
tumor growth progressed, if the duration of DNA synthesis remained constant ;
if, on the other hand, the duration of DNA synthesis increased in proportion to the
increase in generation time, no change in the per cent of labeled cells would be
observed. In any case, Mendelsohn’s data do not allow us to determine whether
any change in the proportion of non-proliferating cells occurred with time, and as
we noted above, a constant proportion of non-proliferating cells would merely
depress the rate of a semi-log growth process, but would not in itself produce the
deceleration actually observed in tumor growth.

Although necrosis is evident in the majority of solid tumors, especially if
growth is prolonged, dead cells and their proteins tend to remain in situ, as shown
by Reid and White (1959) in a radioautographic study of several rat and mouse
tumors, and hence the earlier contribution to tumor size remains ; the only loss is
in the proportion of reproductive cells contributing to later tumor growth. How-
ever, this loss, to account by itself for the observed deviation from semi-log growth,
must be more than a constant loss per generation, must in fact be an exponentially
increasing loss, as discussed above. Hence, considering the data available at the
present time, it seems likely that the observed deceleration of tumor growth is due
at least in part to an actual increase in the mean generation time during tumor
growth.

A Gompertz function of the form used here is a function with a horizontal
asymptote. The upper limit of growth as computed for these tumors is a theoretical
projection based on the measured growth of the tumor. For all the tumors included
in the present survey, enough data were presented in the original studies to allow
us to fit such a function to the data, and to project the theoretical upper limit of
growth. For most of the tumors the growth actually observed before the death of
the host was a large fraction of the projected growth, falling short of the asymptote
by only one or at most two doublings of tumor size. If we were to confine our
attention to these cases alone, we would probably conclude that the slowing of
tumor growth simply reflects a terminal failure of the host to give nutritional
support to the tumor. However, for several of the tumors, the observed growth
fell far short of the projected upper limit, although the tumors all reached about
the same size before the death of the host. Stated conversely, the projected limit
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of size for the latter tumors was very much greater than any tumor could possibly
reach, and hence little retardation was observed even during the terminal illness
and death of the host. Nevertheless, we would not be able to compute an upper
limit for the latter group of tumors if some retardation were not indicated by the
data even this early in the growth process. These facts together suggest that the
marked slowing of growth that is observed terminally for many tumors is not
simply due to failure of the host to support growth, but is a product of host-tumor
interaction that is evident from earliest tumor growth.

A further argument that the retardation of tumor growth is not due to simple
passive failure of the host to provide nutritional support is based on the difference
between the mathematical nature of the tumor retardation and the slowing of
growth seen when bacterial cells grow in a closed system, with a fixed nutritional
limitation. In the later case, so long as an excess of nutrient is present, the cells
proliferate exponentially ; relatively suddenly the concentration of nutrient is
reduced below a threshold value by the metabolic activity of the bacterial cells,
whereupon growth slows rapidly and soon ceases. In such cases, the limit of growth
is usually a linear function of the concentration of the limiting nutrient in the
surrounding medium (see Monod, 1949). It seems probable, although we have not
tested the hypothesis, that to force bacterial growth to follow a Gompertzian model,
it would be necessary to grow such bacteria in a chemostat-like environment, with
a progressively increasing reduction of the limiting nutrient, in addition to the
exhaustion of nutrient by the bacteria themselves. In other words, the retardation
of growth described by a Gompertzian model appears to be an actively increasing
depression of the specific growth rate, rather than a passive, pre-set limitation
imposed by exhaustion of the available growth-supporting factors in the environ-
ment.

Both for this reason, and because even the terminal illness and death of the
host does not produce extensive retardation in the growth of a tumor if it is still
well below the theoretical upper limit of size, it seems probable that growth of
tumors in an animal host meets some more active resistance than just a failure of
the blood supply, etc. The biological nature of such resistance is not demonstrated
in the present mathematical analysis of tumor growth ; it might be an immune
response (but not just immunity to transplanted tumors, because retardation of
the characteristic type is seen as well in primary tumors as in transplanted tumors),
or it might be some as yet poorly understood ‘‘ feedback > control exerted by the
whole organism on the growth of its parts, to which the tumors are still responsive
to a greater or lesser extent.

Yet a physiologic limit to tumor growth does seem relatively constant ;
the host can tolerate so much growing tumor, and then dies. If the physiologic
limit and the theoretical limit of tumor growth are in some cases independent, and
if some of the retarding factors are active, as posited above, it is then conceivable
that the growth-retarding factors might be artificially stimulated, producing a
slowing of tumor growth toward a theoretical limit that is less than the physiologic
limit imposed by the tolerance of the host. Carcinoma ¢n situ might be an example
of a normal occurrence of such a phenomenon ; indeed, Dunn (1961) reports on
the basis of two epidemiological studies that the incidence of carcinoma in situ of
the human cervix uteri is in excess of that required to produce the known incidence
of invasive cancer, suggesting that some carcinomas ¢n situ, perhaps as many as
one-third to one-half the total, fail to progress to invasive carcinoma.
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Search for natural growth-regulating mechanisms is of practical importance,
because the clinical disease of cancer in both animals and humans, i.e., the systemic
illness and death of the host, is limited to the time of the last two or three doublings
of tumor size. Thus for most tumors a relatively small stimulation of growth-
retarding factors might prevent a tumor from reaching the physiologic limit of host
survival, with the consequence that the systemic illness might be delayed, or even
in some cases eliminated, if the delay should exceed the normal life-expectancy of
the host.

SUMMARY

The growth of nearly all tumors reported in the literature is characterized by a
continuous deceleration from the earliest periods of observation. Growth of this
nature is well described by a Gompertz function of the form :

4, -at
WIW, — px e )
in which W, = initial tumor size, W = tumor size at time ¢, and A and « are
constants.

Such a function has been fitted to the growth data of a number of tumors in the
mouse, rat and rabbit, and has been shown to follow growth through a 1000-fold
increase in tumor size.

A Gompertz function of this type has a horizontal asymptote ; this fact implies
that growth of tumors progresses toward an upper limit of size. The upper limits
computed for the mouse tumors fell within a relatively narrow range, and the size
actually achieved by the tumor before the death of the host was usually a high
proportion of the theoretical limit of growth In contrast, the theoretical limits for
the rat tumors were usually so high as to be biologically meaningless ; however,
a relatively constant physiological limit was placed on tumor size by the death of
the host. In these cases, no terminal increase in retardation was observed, even
in a dying host.

For several reasons, the observed retardation of tumor growth appears to be
due to an actively increasing depression of the growth rate. Stimulation of natural
growth-retarding factors might be of practical importance in reducing the incidence
of clinical cancer, i.e., the systemic illness and death of the host, if tumor growth
could be retarded enough to bring it to an upper limit that is within the physio-
logical tolerance of the host.

The author is grateful to Sylvanus A. Tyler and Merlin H. Dipert of this depart-
ment for their generous assistance in the mathematical analysis.
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