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The first version of these notes dates back to 2005. They were originally heavily inspired by Leah
Keshet’s beautiful book Mathematical Models in Biology (McGraw-Hill, 1988), and the reader will
notice much material “borrowed” from there as well as other sources. In time, I changed the emphasis
to be heavier on “systems biology” ideas and lighter on traditional population dynamics and ecology.
(Topics like Lotka-Volterra predator-prey models are only done as problems, the assumption being
that they have been covered as examples in a previous ODE course.) The goal was to provide students
with an overview of the field. With more time, one would include much other material, such as Turing
pattern-formation and detailed tissue modeling. Starting with Version 6, there is a first very short
chapter on difference equations, which can be skipped without loss of continuity. (And, conversely,
can be covered by itself.)

The writing is not always textbook-like, but is sometimes “telegraphic” and streamlined, so as to
make for easy reading and review. (The style is, however, not consistent, as the notes have been
written over a long period.) Furthermore, I do not use “definition/theorem” rigorous mathematical
style, so as to be more “user-friendly” to non-mathematicians. However, the reader can rest assured
that every statement made can be cast as a theorem! Also, I tried to focus on intuitive and basic ideas,
as opposed to going deeper into the beautiful theory that exists on ordinary and partial differential
equation models in biology – for which many references exist.

Please note that many figures are scanned from books or downloaded from the web, and their copy-
right belongs to the respective authors, so please do not reproduce.

Originally, the deterministic chapters (ODE and PDE) of these notes were prepared for the Rutgers
course Math 336, Dynamical Models in Biology, which is a junior-level course designed for Biomath-
ematics undergraduate majors, and attended as well by math, computer science, genetics, biomedical
engineering, and other students. Math 336 does not cover discrete methods (genetics, DNA sequenc-
ing, protein alignment, etc.), which are the subject of a companion course. With time, the notes were
extended to include the chapter on stochastic kinetics, covered in Math 613, Mathematical Founda-
tions of Systems Biology, a graduate course that also has an interdisciplinary audience. In its current
version, the material no longer fits in a 1-semester course. Without the stochastic kinetics chapter, it
should fit in one semester, though in practice, given time devoted to exam reviews, working out of
homework problems, quizzes, etc., this is unrealistic.

Pre-requisites for the deterministic part of notes are a solid foundation in calculus, up to and including
sophomore ordinary differential equations, plus an introductory linear algebra course. Students should
be familiar with basic qualitative ideas (phase line, phase plane) as well as simple methods such as
separation of variables for scalar ODE’s. However, it may be possible to use these notes without the
ODE and linear algebra prerequisites, provided that the student does some additional reading. (An
appendix provides a quick introduction to ODE’s.) The stochastic part requires good familiarity with
basic probability theory.
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I am routinely asked if it is OK to use these notes in courses at other universities. The answer is,
obviously, “of course!”. I do strongly suggest that a link to the my website be provided, so that
students can access the current version. And please provide feedback!
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2.8.3 Poincaré-Bendixson Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.8.4 The Van der Pol Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.8.5 Bendixson’s Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.9 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.9.1 How can stability be lost? . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2.9.2 One real eigenvalue moves . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.9.3 Hopf Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.9.4 Combinations of bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.9.5 Cubic Nullclines and Relaxation Oscillations . . . . . . . . . . . . . . . . . 116

2.9.6 A Qualitative Analysis using Cubic Nullclines . . . . . . . . . . . . . . . . 118

2.9.7 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.9.8 Action Potential Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.9.9 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

2.10 Problems for ODE chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3 Deterministic PDE Models 159
3.1 Introduction to PDE models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.1.1 Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3.1.2 Reaction Term: Creation or Degradation Rate . . . . . . . . . . . . . . . . . 160

3.1.3 Conservation or Balance Principle . . . . . . . . . . . . . . . . . . . . . . . 160

3.1.4 Local fluxes: transport, chemotaxis . . . . . . . . . . . . . . . . . . . . . . 163

3.1.5 Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

3.1.6 Solution for Constant Velocity and Exponential Growth or Decay . . . . . . 165

3.1.7 Attraction, Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.2 Non-local fluxes: diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

3.2.1 Time of Diffusion (in dimension 1) . . . . . . . . . . . . . . . . . . . . . . 174

3.2.2 Another Interpretation of Diffusion Times (in dimension one) . . . . . . . . 175

3.2.3 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

3.2.4 Examples of Separation of Variables . . . . . . . . . . . . . . . . . . . . . . 177



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 6

3.2.5 No-flux Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 180

3.2.6 Probabilistic Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

3.2.7 Another Diffusion Example: Population Growth . . . . . . . . . . . . . . . 182

3.2.8 Systems of PDE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

3.3 Steady-State Behavior of PDE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

3.3.1 Steady State for Laplace Equation on Some Simple Domains . . . . . . . . . 186

3.3.2 Steady States for a Diffusion/Chemotaxis Model . . . . . . . . . . . . . . . 189

3.3.3 Facilitated Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

3.3.4 Density-Dependent Dispersal . . . . . . . . . . . . . . . . . . . . . . . . . 192

3.4 Traveling Wave Solutions of Reaction-Diffusion Systems . . . . . . . . . . . . . . . 195

3.5 Problems for PDE chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4 Stochastic kinetics 209
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.2 Stochastic models of chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . 211

4.3 The Chemical Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4.3.1 Propensity functions for mass-action kinetics . . . . . . . . . . . . . . . . . 213

4.3.2 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

4.4 Theoretical background, algorithms, and discussion . . . . . . . . . . . . . . . . . . 217

4.4.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.4.2 The jump time process: how long do we wait until the next reaction? . . . . 218

4.4.3 Propensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4.4.4 Interpretation of the Master Equation and propensity functions . . . . . . . . 221

4.4.5 The embedded jump chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

4.4.6 The stochastic simulation algorithm (SSA) . . . . . . . . . . . . . . . . . . 223

4.4.7 Interpretation of mass-action kinetics . . . . . . . . . . . . . . . . . . . . . 225

4.5 Moment equations and fluctuation-dissipation formula . . . . . . . . . . . . . . . . 228

4.5.1 Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.5.2 Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

4.5.3 Reactions or order ≤ 1 or ≤ 2 . . . . . . . . . . . . . . . . . . . . . . . . . 232

4.6 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

4.7 Examples computed using the fluctuation-dissipation formula . . . . . . . . . . . . . 237

4.8 Conservation laws and stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4.9 Relations to deterministic equations, and approximations . . . . . . . . . . . . . . . 243

4.9.1 Deterministic chemical equations . . . . . . . . . . . . . . . . . . . . . . . 243

4.9.2 Unit Poisson representation . . . . . . . . . . . . . . . . . . . . . . . . . . 245



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 7

4.9.3 Diffusion approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

4.9.4 Relation to deterministic equation . . . . . . . . . . . . . . . . . . . . . . . 248

4.10 Problems for stochastic kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

A Review of ordinary differential equations 253
A.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.2 Phase-planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

A.3 Matrix Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 8



Chapter 1

Difference Equations

In this short chapter, we provide a brief introduction to scalar difference equations.1 With differen-
tial equations, things get interesting only in higher dimensions. On the other hand, with difference
equations, certain behaviors, such as periodic orbits and chaos, can already appear in models with just
one variable. In addition, it is possible to understand this material without knowledge of calculus nor
linear algebra, and as such, it provides an easy introduction to ideas about dynamics.

1.1 Iterations, the P+ and ∆ formalisms, and exponential growth

We use t to denote the time variable, which in this chapter is taken to be discrete, t = 0, 1, 2, . . ..

It is implicitly assumed that we have fixed a unit of time measurement; for example, t may be mea-
sured in generations if we are interested in genetics, or in hours, days, or years if studying population
size for cells, flies, or humans respectively.

We use the letter P for a function that describes a time-dependent quantity that we wish to study, such
as the size of a certain population. Depending on the context, we find sometimes more convenient to
write “Pt” instead of P (t)” for the population at time t.

A difference equation is a just rule that tells us how the population at the next time t + 1 depends on
the population at the current time t:

Pt+1 = F (Pt)

where “P ” is some scalar function. It is usually too hard to find closed-form solutions of such equa-
tions, but numerical experiments can help tremendously, especially if coupled with qualitative under-
standing of the type that we describe next.

It is sometimes more convenient (and it provides better intuition about the transition to differential
equations) to think of a rule that tells us not what the next state will be, but instead quantifies the
change in population that will be observed. We write this increment as “∆Pt” defined mathematically
as follows:

∆Pt := Pt+1 − Pt .
1The material here is largely “borrowed” from part of Chapter 1 of Mathematical Models in Biology: An Introduction,

2004, by Allman and Rhodes. The reader is encouraged to consult that text for much more material, including vector
systems of difference equations and for applications to molecular evolution, phylogenetic trees, classical genetics, and
epidemics.

9
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Of course, it is obvious from this definition that we can compute Pt+1 by starting from Pt and adding
the change to it:

Pt+1 = Pt + ∆Pt .

In other words, a rule for specifying ∆Pt, or a rule for specifying Pt+1, as functions of Pt are just
different ways of conveying the same information.

We adopt the following convention, to be used whenever t is clear from the context. Instead of
Pt+1 = F (Pt), we write

P+ = F (P )

(think of the superscript “+” as “step the index up by one”) and instead of ∆Pt we write ∆P , dropping
t.

1.1.1 Linear equations

Let us start with a very simple example, basically the exponential growth model described by Malthus
in the late 18th century (which may be treated also using differential equations, if time is assumed
continuous instead of discrete). Suppose that at each time t, the population change is as follows:

1. add a multiple f of the population (think of a “fecundity” due to births), and

2. subtract a fraction d of the population (think of a death rate).

Given how we said this, this specifies a rule for the change ∆P , namely:

∆Pt = fPt − dPt = (f − d)Pt .

Sometimes we write this in short form, as:

∆P = (f − d)P

but we should always remember the arguments t in both sides. Of course we also have a rule for
computing the next P+:

P+ = P + ∆P = P + (f − d)P = (1 + f − d)P = λP ,

where we write
λ := 1 + f − d

for convenience (because only the value of λ, and not the individual fecundity and death rate, matter
for the subsequent analysis); λ is called the growth rate of the population.

As a trivial example, suppose that f = 0.1, d = 0.02, so that λ = 1 + f − d = 1.08. If we specify an
“initial condition” such as P0 = 100, we may recursively compute:

P+ = 1.08P, P0 = 100
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by repeatedly multiplying by 1.08. We get

Day Population
0 100

1 (1.08)100 = 108

2 (1.08)2100 = 116.64

3 (1.08)3100 ≈ 125.971

4 (1.08)4100 ≈ 136.0489

and, obviously, we know the solution for all t in closed form: P = 100(1.08)t.

What is the meaning of non-integer populations? It depends on the units in which P is being specified.
For example, Pt may be measured in millions of individuals (cells, people) at time t, in which case
fractions have an obvious meaning: 136.0489 means 1,360,489 individuals. Or, we may be measuring
populations by weight, such as in tons if dealing with a harvest of a crop or fish. In any event, all
models are ultimately simplifications of reality, so we may view a number like “136.0489” as simply
“approximately 136” and ignore the fractional part.

A word description of such a problem might be as follows. Suppose we study an insect species for
which, in each generation, each female lays 150 eggs.2 We also assume that when eggs hatch, only
2% survive to become adult females. (The remaining eggs are assumed to not hatch or to be males.)
We assume that we measure time in generations, and all adults die before the next generation size is
computed. Thus, the death rate is d = 1 (everyone dies) and the effective fecundity is

f = .02(150) = 3

which leads to the following equation for the female population:

P+ = (1 + 3− 1)P = 3P

(we ignored males in order to simplify the model; assume that enough males are available that the
model makes sense).

2Obviously, this is nonsense. Not every female will lays the exact same number of eggs. To keep things simple,
however, we assume that they are all perfect and lay precisely 150 eggs. In probabilistic terms, we are looking at mean or
expected values.
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1.2 Some nonlinear models

The exponential growth model is, of course, not realistic: in practice, birth and death rates are depen-
dent on available resources (such as food, water, or space), and thus, at least indirectly, on the size of
the population. Thus, it is reasonable to modify the linear growth model by assuming that the growth
rate decreases as the population size increases. This is sometimes called the “density-dependent
growth” model.

To introduce the model, let us consider the per-capita growth rate over a single time step, that is to
say, the change in population per individual ∆Pt/Pt that happens between times t and t+ 1.

In the usual exponential growth model, we have a constant ∆Pt/Pt ≡ λ.

It is reasonable to assume that, for small populations, there are sufficient environmental resources to
support a positive per capita growth at rate r, but that for large populations the per-capita growth is
smaller as individuals compete for both food and space. For even larger populations, say, larger than
some numberK (called the “carrying capacity” of the environment), the per-capita growth rate should
be negative, as there are insufficient resources to maintain the population size (some will starve and
will not be able to reproduce; more will die).

So, we want a function that expresses that ∆P
P

decreases with increasing P , eventually becoming
negative, as shown in the left panel in the figure.

The simplest such function is a linear function as shown in the right panel:

∆P

P
= r

(
1− P

K

)
.

In other words, ∆Pt = rPt
(
1− Pt

K

)
, and, since Pt+1 = Pt + ∆Pt, the model can also be described

by:

P+ = P

(
1 + r

(
1− P

K

))
One calls this the logistic model. (To be more precise, one should call it the “discrete” logistic model,
to differentiate it from the continuous model studied for ODE’s.) Note that when the population is
small (meaning that P � K), P/K ≈ 0 so we have

P+ ≈ λP , where λ = 1 + r

– in other words, when the population is far below the carrying capacity, we have a behavior just as
in the simpler exponential growth model.

There is no simple expression for the iterates, comparable to “λtP0” for the exponential growth model.
However, we can numerically iterate in order to have some feel for the solutions. It is rather amazing
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that this simple model can lead to very interesting and unexpected behaviors, as we see later. For
some parameters, however, the behavior is not too surprising. For example, if we iterate

P+ = P (1 + .7(1− P/10)) , P0 = 0.4346

we obtain:

P1 = .7256, P2 = 1.1967, P3 = 1.9341, P4 = 3.0262, P5 = 4.5034, P6 = 6.2362,

P7 = 7.8792, P8 = 9.0489, P9 = 9.6514, P10 = 9.8869, P11 = 9.9652, P12 = 9.9895, . . .

as plotted below.3

(Only values at integer times t are computed; the interpolating line segments are only shown to help
your eyes to follow the behavior over time.)

Note that the population increases monotonically toward the carrying capacity value of 10, first slowly,
then more rapidly, and finally slowing up again. A “sigmoidal” picture, as often seen in lab experi-
ments, is observed.

1.2.1 Cobwebbing

A most useful qualitative tool for understanding nonlinear discrete iterations is as follows. Consider
the same example as earlier:

P+ = P (1 + .7 (1− P/10)) , P0 = 2.3

and now proceed as follows:

1. graph the parabola (defined by the equation that specifies P+ in terms of P );

2. graph the diagonal line P+ = P ;

3. mark the point (P0, P0) = (2.3, 2.3) on the diagonal;

4. to find P1, move vertically toward to the graph of the parabola, to reach the point (P0, P1);

5. to find P2, we first need to mark P1 on the x-axis, or equivalently we mark (P1, P1) on the diagonal;
we do this as follows: move horizontally from (P0, P1) toward the diagonal, hitting it at (P1, P1) (thus,
we kept the y-second coordinate same, and changed the x-coordinate);

6. finally, to find P2, we move vertically back to the parabola to find (P1, P2);

7. now iterate the procedure “vertically to parabola, horizontally to diagonal, vertically to parabola”
until the pattern becomes obvious.

3Most figures in this chapter are reproduced, or generated using their MATLAB scripts, from Allman and Rhodes’s
book.
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The figure shown below illustrates the procedure.

It is clear from the graph that, whenever the initial population P0 is between 0 and K=10, the popu-
lation increases, asymptotically approaching the carrying capacity K (formally, limt→∞ Pt = K).

Still with the same parameters r=0.7 and K=10, let us now start from P0 = 18. With this P0, and
more generally whenever P0 > K=10, the population also has limt→∞ Pt = K. The approach back
to K might be monotonically decreasing, or, if Pt+1 < K, there is first an “undershoot” followed by
a recovery.

Actually, when the population starts extremely high, the population could become negative, which
is of course nonsense. Therefore, the model is still very unrealistic. One way to fix the model is to
just truncate the parabola at zero, indicating extinction of the population, but many other changes are
possible.4

Incidentally, the MATLAB code used to plot the parabola and the diagonal is as follows:

x=0:0.01:20
y=x.*(1+0.7*(1-x));
plot(x,y,x,x,’linewidth’,2)

Note the use of “.*” because we want a component-wise product. We are using “linewidth” of 2 to
get thicker pictures for printing.

4See Section 1.4 in Allman-Rhodes for many proposed models.
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1.3 Equilibria and linearizations

In the logistic example, with the parameters used earlier (r = 0.7 and K = 10), one can verify that
Pt → K = 10 as t → ∞, no matter what is the initial state, with the only exception of the very
special state in which the population is empty, P0 = 0. Note that, in particular, if Pt = 10 exactly,
then Pt+1 = 10. Each of 0 and 10 is a steady state.

More generally, a steady state of P+ = F (P ) (also called an equilibrium or a fixed point) is a value
P ∗ with the property that

F (P ∗) = P ∗

or equivalently, if we write the iteration as ∆P = G(P ), a steady state must satisfy that there is no
change:

G(P ∗) = 0

(this second condition makes it easier to compare to equilibria in ODE’s).

Graphically, equilibria correspond to the intersection of the graph of F (P ) with the diagonal, and
algebraically, they are obtained by solving P = F (P ). For example, solving the quadratic equation
P = P (1 + .7(1− P/10)) for P gives the two solutions P = 0 and P = 10.

Although they are both equilibria, there is a major difference between 0 and 10. A population that
starts near 0 tends to move away from 0, but a population that starts near 10 tends to move toward 10.

Mathematically, we say that P ∗ = 0 is an unstable or repelling equilibrium while P ∗ = 10 is a stable
or attracting equilibrium.

To be precise, an equilibrium value P ∗ is said to be (locally, asymptotically) stable if the following
property holds:

For each ε > 0 there is some δ > 0 such that

|P0 − P ∗| < δ ⇒ |Pt − P ∗| < ε ∀ t > 0 and lim
t→∞

Pt = P ∗

This definition says that provided that we start near P ∗, we will never deviate too much from P ∗ (no
“large excursions”), and eventually will asymptotically approach it.
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For the purposes of these notes, we’ll just say “stable” and understand the property as saying that
limt→∞ Pt = P ∗ provided that we start from a P0 near enough P ∗.

Note that the notion of stability is “local” in the sense that we only ask about trajectories that start
“close enough” to P ∗. Certainly, if there is another equilibrium (such as “0” in our previous example),
then starting from that other equilibrium, there is no way that we’ll ever approach P ∗, even if P ∗ is
stable!

On the other hand, in practice it is very difficult to ever see a real system at one of its unstable
equilibria, because the smallest perturbation will take us away from that state. Think of a pen perfectly
balanced in a vertical position, of a ball placed at the top of a hill. Thus, stable equilibria are of great
interest.

1.3.1 Linearization at an equilibrium P ∗

As stability depends on what happens close to an equilibrium, we look at the deviation from an
equilibrium P ∗:

pt := Pt − P ∗

and, since

|pt+1| < |pt| ⇒ P+ moves closer to P ∗

|pt+1| > |pt| ⇒ P+ moves away from P ∗

all we need to do is to understand if the ratio
∣∣∣pt+1

pt

∣∣∣ is < 1 or > 1.

We use calculus to figure this out, remembering that the perturbation pt is ≈ 0.

Since
pt+1 = Pt+1 − P ∗ = F (Pt)− P ∗ = F (P ∗ + pt)− P ∗ ,

we have:
pt+1

pt
=

F (P ∗ + pt)− F (P ∗)

pt
≈ F ′(P ∗)

where we used the definition of derivative, which says that F (x+h)−F (x)
h

→ F ′(x) as h → 0. In other
words,

pt+1 ≈ F ′(P ∗)pt .

With a little more formalism, one can in fact prove rigorously that if P ∗ is an equilibrium for P+ =
F (Pt), then:

|F ′(P ∗)| < 1 ⇒ P ∗ stable
|F ′(P ∗)| > 1 ⇒ P ∗ unstable .

One often calls F ′(P ∗) the linearization at the given equilibrium.

Let us revisit our previous example F (P ) = P (1 + .7(1 − P/10)) using linearizations. We know
that the equilibria are 0 and 10. Now, in general, F ′(P ) = (1 + .7(1 − P/10)) + P (.7)(−1/10),
so, in particular: F ′(0) = 1.7 > 1, confirming that 0 is unstable, and F ′(10) = 1 − .7 = 0.3 < 1,
confirming that 10 is stable.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 17

When |F ′(P ∗)| = 1, one cannot decide using just first derivatives.5 To illustrate this, take the example
F (P ) = P + P 2 and the equilibrium P ∗ = 0. Note that F ′(P ∗) = 1. One can see graphically (using
cobwebbing) that starting at P0 = −0.01 results in convergence to 0, but starting at P0 = 0.01 results
in divergence from 0, so this state is in fact neither stable nor unstable.

graph of F (P ) = P + P 2 and diagonal

As an optional homework problem, you may want to analyze these two other cases where F ′(0) = 1:
F (P ) = P + P 3 and F (P ) = P − P 3.

1.4 Oscillations, Bifurcations, and Chaos

Let us continue the analysis of the logistic model P+ = P (1 + r(1−P/K). For simplicity, we’ll use
only K = 1 from now on:

F (P ) = P (1 + r(1− P )) = P (1 + r − rP )

but we will investigate the behavior of this system for different positive r’s (before, we had studied
the special case r = 0.7).

No matter the value of r, there are only two equilibria, P ∗ = 0 and P ∗ = 1, and we can easily
compute the linearizations at each: F ′(0) = 1 + r, F ′(1) = 1 − r. Thus, 0 unstable (for any given
value of the parameter r > 0), but what about P ∗ = 1? Now things get really interesting! We study
various examples one at a time.

1.4.1 0 < r ≤ 1

Since F ′(1) = 1− r and 0 ≤ 1− r < 1, P ∗ = 1 is stable. Moreover,

pt+1 ≈ F ′(1)pt = (1− r)pt

shows that the sign of pt does not change. Therefore, not only does the perturbation shrink, but an
initially positive perturbation remains positive and an initially negative one remains negative. In other
words, the population moves toward the equilibrium P = 1 without overshoot (assuming P0 ≈ P ∗).
You should see this by performing a cobwebbing on the graph shown for the example r = 0.5.

5This is quite analogous to, when checking for local minima and maxima, we get a zero second derivative - we may
have a min, a max, or an inflection point.
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1.4.2 1 < r < 2

As F ′(1) = 1−r and−1 < 1−r < 0, the equilibrium P ∗ = 1 is still stable, but since pt+1 ≈ (1−r)pt,
the sign of pt alternates between positive and negative as t increases. In other words, we expect to
see an oscillatory behavior above and below the equilibrium, as the perturbation from equilibrium
alternates in sign. The population approaches equilibrium as a damped oscillation. You should see
this by performing a cobwebbing on the graph shown for the example r = 1.5.

F (P ) and diagonal when r = 0.5 and r = 1.5

1.4.3 r > 2

Now F ′(1) = 1− r and 1− r < −1, so P ∗ = 1 is unstable.

We first study the special case, r = 2.4. It is hard to see exactly what happens here. So we first plot a
few iterates (with an initial condition of 0.3):

Some iterates when r = 2.4, quickly approaching periodic orbit

To algebraically find this period-2 oscillation, that is to say a point P0 such that P1 = F (P0) and
P2 = F (P1) = P0, we write

F 2(P ) = F (F (P )) = F (P )(3.4− 2.4F (P )) = P (3.4− 2.4P )(3.4− 2.4P (3.4− 2.4P ))
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and solve F 2(P ) = P for a fixed point P . This gives 0 and 1 (which also solve F (P ) = P , so we
already knew about that), as well as two new solutions: ≈ 0.6402812675, 1.193052066.

Cobwebbing confirms a period-2 oscillation when starting from one of these states:

Cobwebbing for r = 2.4

As r is increased further, the values in the 2-cycle change, but the existence of some 2-cycle persists,
until we hit another value of r, where a new qualitative change occurs this time we see the 2-cycle
becoming a 4-cycle.

For example, let us study another special case, r = 2.5 and again start by plotting a few iterates,
discovering that there is a period-4 orbit:

To 4 decimal digits, the numbers of this orbit are numerically found to be: 1.2250, 0.5359, 1.1577,
0.7012.

Further increases in r produce an 8-cycle, then a 16-cycle, and so forth. This is an example of what is
called the “period doubling route to chaos”.
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1.4.4 Bifurcations and chaos

To visualize the effect of changing r, we may draw a bifurcation diagram, which is produced as
follows: For each value of r on the horizontal axis, pick some value P0, then first iterate “enough
times” that transient behavior is over, discarding these values of Pt. We then plot values of consecutive
Pt, on a vertical axis above this r.

We see that, for r = 2.4, there are two values of Pt that appear (after a transient behavior that we
disregarded), consistently with our having found a periodic orbit for that value of r. We also see four
points when r = 2.5, and so forth.

Even more interestingly, when r is increased past a certain point (≈ 2.692 . . .) all the bifurcations into
2n-cycles have already taken place, and a new type of behavior emerges: the values seem to be spread
out. Take for example r = 2.75. A plot of the first few Pt’s shows what looks like “random” behavior.

r = 2.75, two different initial conditions

Of course there is nothing random (in the sense of coin-flipping): a deterministic formula produces
the values. But such irregular behavior is usually referred to as “chaotic”. An interesting feature
is that of high sensitivity to initial conditions or “butterfly effect” as it was called by the American
mathematician and meteorologist Edward Lorenz in 1961.6 For the two only slightly different initial

6The butterfly effect is the sensitive dependence on initial conditions, in which a small change in one state of a
deterministic nonlinear system can result in large differences in a later state. Lorenz used this term as a metaphor, referring
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values shown earlier, the populations change similarly only for a few time steps, but quickly become
very different, as clearly seen when superimposed.

to the details of a hurricane being influenced by minor perturbations such as the flapping of the wings of a distant butterfly
several weeks earlier.
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1.5 Problems for Scalar Difference Equations chapter

Problems SDE1: Formalisms and exponential growth

1. It is known that a given population triples each hour, due to the net effect of fecundity and
deaths.

(a) Assuming an initial population at time t = 0 of 100, compute the population sizes for
t = 1, 2, 3, 4, 5.

(b) Show the equations that model the population, in each of the two formalisms:

(i) provide a formula for P+ in terms of P

(ii) provide a formula for ∆P in terms of P .

(c) What, if anything, can you say about the fecundity and death rates for this population?

2. Suppose that you observe a frog embryo in which all cells divide roughly every half hour. In
other works, the number of cells in this embryo doubles every half hour. We start with one cell
at time t.

(a) Write down an equation for P+ in terms of P that models this situation. Explain what time
unit you are using, and what is the initial value P0.

(b) How many cells are there after 5 hours?

3. Using a calculator, compute the populations at times t = 0 to 6 for the following models:

(a) P+ = 1.3P, P0 = 1

(b) P+ = .8P, P0 = 10

(c) ∆P = .2P, P0 = 10

4. (a) Obtain 20 iterations of P+ = 1.3P , P0 = 1 using MATLAB. You may want to enter the
following command sequence:

p=1
x=1
for i=1:20

p=1.3*p
x=[x p]

end

(b) Next, graph your data, using the command:

plot([0:20],x)

Important note: instead of entering these commands one by one, it is far better to create a file,
let us say called “myprogram.m” which contains the above commands. Then you can just type
“myprogram” into MATLAB. Make sure to use a basic text editor (such as Notepad, or the
MATLAB editor), which does not insert any formatting characters.
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5. Fill-in:

(a) The model P+ = kP represents a growing population if k is any number in the range

(b) The model ∆P = rP represents a growing population if r is any number in the range

(c) The model P+ = kP represents a declining population if k is any number in the range

(d) The model ∆P = rP represents a declining population if r is any number in the range

6. Explain why the model ∆P = rP cannot be biologically meaningful for describing a popula-
tion, if r is a number < −1.

7. Suppose that the size of a certain population is affected not only by birth and death, but also by
immigration and emigration, and each of these occurs in a yearly amount that is proportional to
the size of a population.

That is, if the population is P , then within a time period of 1 year, the number of births is bP ,
the number of deaths is dP , the number of immigrants is iP , and the number of emigrants is
eP , for some positive constants b, d, i, e.

Model the population growth by a formula like “P+ = λP ” specifying a formula for r in terms
of b, d, i, e.
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Problems SDE2: Logistic model and basic cobwebbing

1. Using any software of your choice, and testing several different values for P0, investigate the
long-term behavior of the model ∆P = rP (1 − P/10) for these different parameter values:
r = .2, .8, 1.3, 2.2, 2.5, 2.9, and 3.1.

(You may have to vary the number of time steps that you run the model to study some of these)

2. (a) Rewrite the model P+ = P + .2P (10− P ) in each of the following forms:

(i) ∆P = kP (1− P/K)

(ii) ∆P = kP − hP 2

(iii) ∆P = kP (K − P )

(iv) P+ = kP − hP 2

(pick in each case an appropriate value for the constants k and h).

(b) Repeat (a) for P+ = 2.5P − .2P 2.

3. Consider the model ∆P = .8P (1− P/10).

(a) Plot ∆P as a function of P . You may want to use, for example, the following MATLAB
commands:

x=[0:.1:12];
y=.8*x.*(1-x/10);
plot(x,y)

(b) Construct a table of values of Pt for t = 0, 1, 2, 3, 4, 5 starting from P0 = 1.

(c) Graph P+ as a function of P .

(d) On your graph from part (b), construct a cobweb beginning at P0 = 1.

(You can add the diagonal line y = x to your graph by entering the commands “hold on” and
“plot(x,y,x,x)”.)

Compare the values from your cobweb to those that you obtained in part (b).

4. These are measurements of populations obtained in a laboratory experiment using insects:

P0 = .97, P1 = 1.52, P2 = 2.31, P3 = 3.36, P4 = 4.63, P5 = 5.94, P6 = 7.04, P7 = 7.76,
P8 = 8.13, P9 = 8.3, P10 = 8.36,

(a) Plot these points, to convince yourself that they are (roughly) consistent with a logistic
model. You may use these commands:

times=[0 1 2 3 4 5 6 7 8 9 10];
Ps=[0.97 1.52 2.31 3.36 4.63 5.94 7.04 7.76 8.13 8.3 8.36];
plot(times,Ps)

(b) Now estimate the parameters r andK in “∆P = rP (1−P/K)” by performing the following
steps (there are much better methods for estimating sigmoidal functions; we are just being
intuitive here):
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(i) first give a guess of K by looking at the graph (remember that K is the carrying capacity!);

(ii) then, using that P0 � K, approximate ∆P0/P0 by r; what value of r do you obtain?

Plot the data and the iteration, starting at the same P0, with the values that you obtained.

Finally, use some trial and error, increasing r, to see if you get a better fit.

5. Use cobwebbing to estimate the populations for the next six time increments in each of the
following models. (Take the initial populations as indicated by “P0”.)
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Problems SDE3: Equilibria and linearizations

1. For each of the following, determine the equilibrium points:

(a) P+ = 1.3P − .02P 2

(b) P+ = 3.2P − .05P 2

(c) ∆P = .2P (1− P/20)

(d) ∆P = αP − βP 2

(e) P+ = εP − δP 2.

2. For (a-e) of the preceding problem, linearize the model (i.e,, compute F ′(P )) first about the
steady state 0, and then about the other steady state to determine their respective stabilities. (To
compute linearizations, you must convert (c) and (d) to the iteration form “P+ = F (P )”.) In
parts (d) and (e), your answers will be algebraic conditions on the parameters.

3. Use any software of your choice to

(a) Plot the first 100 iterates of the logistic iteration with parameter r = 2.55 and initial condi-
tion (approximately) 0.5;

(b) You will see that there is a period-8 orbit for this parameter; provide the 8 numbers for this
orbit
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Problems SDE4: Oscillations, Bifurcations, Chaos

1. The following is a bifurcation diagram for a certain one dimensional iteration that depends on
a parameter “r”, for r ranging from 1.8 to 2.7. (For your convenience, shown in the right is a
zoomed version, for the region where r ranges from 2.4 to 2.6.)

Shown below are iteration plots for the parameters: r = 1.85, r = 2.2, r = 2.45, r = 2.56, r =
2.7. Using the information from the bifurcation diagram, you should label each figure that
follows by the appropriate value of r. Just write something like “r = 2.45” (or “no possible r
between 1.8 and 2.7”) next to the corresponding figure; no need to provide any justification.
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2. Using the same data as in the previous problem, shown below are cobweb plots for the param-
eters: r = 1.85, r = 2.2, r = 2.45, r = 2.56, r = 2.7. Label appropriately.



Chapter 2

Deterministic ODE models

2.1 Modeling, Growth, Number of Parameters

Let us start by reviewing a subject treated in basic differential equations courses, namely how one
derives differential equations for simple exponential growth and other simple models.

2.1.1 Exponential Growth: Modeling

Suppose that N(t) counts the population of a microorganism in culture, at time t, and write the
increment in a time interval [t, t+ h] as “g(N(t), h)”, so that we have:

N(t+ h) = N(t) + g(N(t), h) .

(The increment depends on the previous N(t), as well as on the length of the time interval.)

We expand g using a Taylor series to second order:

g(N, h) = a+ bN + ch+ eN2 + fh2 +KNh + cubic and higher order terms

(a, b, . . . are some constants). Observe that

g(0, h) ≡ 0 and g(N, 0) ≡ 0 ,

since there is no increment if there is no population or if no time has elapsed. The first condition tells
us that

a+ ch+ fh2 + . . . ≡ 0 ,

for all h, so a = c = f = 0, and the second condition (check!) says that also b = N = 0.
Thus, we conclude that:

g(N, h) = KNh + cubic and higher order terms.

So, for h and N small:
N(t+ h) = N(t) +KN(t)h , (2.1)

which says that

29
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the increase in population during a (small) time interval
is proportional to the interval length and initial population size.

This means, for example, that if we double the initial population or if we double the interval,
the resulting population growth is doubled.

Obviously, (2.1) should not be expected to be true for large h, because of “compounding” effects.
It may or may not be true for large N , as we will discuss later.

We next explore the consequences of assuming Equation (2.1) holds for all small h>0 and all N .

As usual in applied mathematics, the “proof is in the pudding”:
one makes such an assumption, explores mathematical consequences that follow from it,
and generates predictions to be validated experimentally.
If the predictions pan out, we might want to keep the model.
If they do not, it is back to the drawing board and a new model has to be developed!

2.1.2 Exponential Growth: Math

From our approximation
KN(t)h = N(t+ h)−N(t)

we have that

KN(t) =
1

h
(N(t+ h)−N(t))

Taking the limit as h → 0, and remembering the definition of derivative, we conclude that the right-

hand side converges to
dN

dt
(t). We conclude that N satisfies the following differential equation:

dN

dt
= KN . (2.2)

We may solve this equation by the method of separation of variables, as follows:

dN

N
= Kdt ⇒

∫
dN

N
=

∫
K dt ⇒ lnN = Kt+ c .

Evaluating at t = 0, we have lnN0 = c, so that ln(N(t)/N0) = Kt. Taking exponentials, we have:

N(t) = N0e
Kt (exponential growth: Malthus, 1798)

Bacterial populations tend to growth exponentially, so long as enough nutrients are available.

2.1.3 Limits to Growth: Modeling

Suppose now there is some number B (the carrying capacity of the environment) so that
populations N > B are not sustainable, i.e.. dN/dt < 0 whenever N = N(t) > B:
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It is reasonable to pick the simplest function that satisfies the stated requirement;
in this case, a parabola:

dN

dt
= rN

(
1− N

B

)
(for some constant r > 0) (2.3)

But there is a different way to obtain the same equation, as follows.
Suppose that the growth rate “K” in Equation (2.2) depends on availability of a nutrient:

K = K(C) = K(0) + κC + o(C) ≈ κC (using that K(0) = 0)

where C = C(t) denotes the amount of the nutrient, which is depleted in proportion to the population
change: 1

dC

dt
= −αdN

dt
= −αKN

(“20 new individuals formed⇒ α× 20 less nutrient”). It follows that

d

dt
(C + αN) =

dC

dt
+ α

dN

dt
= −αKN + αKN = 0

and therefore C(t) + αN(t) must be constant, which we call “C0”2

(we use this notation because C(0) + αN(0) ≈ C(0), if the population starts as N(0) ≈ 0).

So K = κC = κ(C0 − αN), and Equation (2.2) becomes the same equation as (2.3), just with
different names of constants:

dN

dt
= κ (C0 − αN)N

2.1.4 Logistic Equation: Math

We solve
dN

dt
= rN

(
1− N

B

)
= r

N(B −N)

B
using again the method of separation of variables:

∫
B dN

N(B −N)
=

∫
r dt .

We compute the integral using a partial fractions expansion:∫ (
1

N
+

1

B −N

)
dN =

∫
r dt ⇒ ln

(
N

B −N

)
= rt+c ⇒ N

B −N
= c̃ert ⇒ N(t) =

c̃B

c̃+ e−rt

1if N(t) counts the number of individuals, this is somewhat unrealistic, as it the ignores depletion of nutrient due to
the growth or individuals once they are born; it is sometimes better to think of N(t) as the total biomass at time t

2this is an example of a “conservation law”, as we’ll discuss later
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⇒ c̃ = N0/(B −N0) ⇒ N(t) =
N0B

N0 + (B −N0)e−rt

We can see that there is a B asymptote as t→∞. Let’s graph with Maple:

with(plots):

f(t):=t->(0.2)/(0.2+0.8*exp(-t)):

p1:=plot(f(t),0..8,0..1.3,tickmarks=[0,2],thickness=3,color=black):

g:=t->1:

p2:=plot(g(t),0..8,tickmarks=[0,2],thickness=2,linestyle=2,color=black):

display(p1,p2);

Gause’s 1934 Experiments

G.F. Gause carried out experiments in 1934, involving Paramecium caudatum and Paramecium aure-
lia, which show clearly logistic growth:

(# individuals and volume of P. caudatum and P. aurelia, cultivated separately, medium changed daily,
25 days.)

2.1.5 Changing Variables, Rescaling Time

We had this equation for growth under nutrient limitations:

dN

dt
= κ (C0 − αN)N

which we solved explicitly (and graphed for some special values of the parameters C0, κ, α).
But how do we know that “qualitatively” the solution “looks the same” for other parameter values?
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Can the qualitative behavior of solutions depend upon the actual numbers C0, κ, α?

First of all, we notice that we could collect terms as
dN

dt
= ((κC0)− (κα)N)N =

(
C̃0 − α̃N

)
N

(where C̃0 = κC0 and α̃ = κα), so that we might as well suppose that κ = 1 (but change α,C0).

But we can do even better and use changes of variables in N and t in order to eliminate the two
remaining parameters!

The idea is as follows. Suppose that N(t) is any solution of the differential equation

dN

dt
= f(t, N(t))

(we allow an explicit dependence of f on t in order to make the explanation more general, even though
most examples given below do not show an explicit t). Let us now introduce a new function, called
N∗, that depends on a new time variable, called t∗, by means of the following definition:

N∗(t∗) :=
1

N̂
N(t∗t̂)

where N̂ and t̂ are two constants. These two constants will be specified later; we will pick them in
such a way that the equations will end up having fewer parameters. The chain rule says that:

dN∗

dt∗
(t∗) =

t̂

N̂

dN

dt
(t∗t̂) =

t̂

N̂
f(t∗t̂, N(t∗t̂)) .

(The expression “dN/dt” above might be confusing, but it should not be. We are simply writing
“dN/dt(t∗t̂)” instead of “N ′(t∗t̂)”. The “t” variable is a dummy variable in this expression.) In
summary, we may symbolically write:

“
dN

dt
=

d(N∗N̂)

d(t∗t̂)
=

N̂

t̂

dN∗

dt∗
”

and proceed formally. Our general strategy will be:

• Write each variable (in this example, N and t) as a product of a new variable and a still-to-be-
determined constant.
• Substitute into the equations, simplify, and collect terms.
• Finally, pick values for the constants so that the equations (in this example, there is only one

differential equation, but in other examples there may be several) have as few remaining param-
eters as possible.

The procedure can be done in many ways (depending on how you collect terms, etc.), so different
people may get different solutions.

Let’s follow the above procedure with our example. We start by writing: N = N∗N̂ and t = t∗t̂,
where stars indicate new variables and the hats are constants to be chosen. Proceeding purely for-
mally, we substitute these into the differential equation:

d
(
N∗N̂

)
d
(
t∗t̂
) = κ

(
C0 − αN∗N̂

)
N∗N̂ ⇒ N̂

t̂

dN∗

dt∗
= κ

(
C0 − αN∗N̂

)
N∗N̂

⇒ dN∗

dt∗
= κt̂αN̂

(
C0

αN̂
−N∗

)
N∗
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Let us look at this last equation: we’d like to make C0

αN̂
= 1 and κt̂αN̂ = 1.

But this can be done! Just pick: N̂ :=
C0

α
and t̂ =

1

καN̂
, that is: t̂ :=

1

κC0

;
dN∗

dt
= (1−N∗)N∗ or, drop stars, and write just

dN

dt
= (1−N)N

Thus, we can analyze the simpler system.

However, we should remember that the new “N” and “t” are rescaled versions of the old ones. In
order to understand how to bring everything back to the original coordinates, note that another way to
express the relation between N and N∗ is as follows:

N(t) = N̂N∗
(
t

t̂

)
This formula allows us to recover the solutionN(t) to the original problem once that we have obtained
the solution to the problem in the N∗, t∗ coordinates. Concretely, in our example, as t/t̂ = t/ 1

κC0
:

N(t) =
C0

α
N∗ (κC0t)

If we have a plotted solution of the equation dN∗

dt∗
= (1−N∗)N∗ then the plot in original variables is

obtained by stretching or contracting the plot in these new variables.

We may think of N∗, t∗ as quantity & time in some new units of measurement. This procedure is
related to “nondimensionalization” of equations, which we’ll mention later.

2.1.6 A More Interesting Example: the Chemostat

-

-
nutrient supply

culture chamber

C0

N(t), C(t)

inflow F

outflow F

V = constant volume of solution in culture chamber
F = (constant and equal) flows in vol/sec, e.g. m3/s
N(t) = bacterial concentration in mass/vol, e.g. g/m3

C0, C(t) = nutrient concentrations in mass/vol
(C0 assumed constant)

chamber is well-mixed
(“continuously stirred tank reactor (CSTR)” in chem engr)

Assumptions (same as in second derivation of logistic growth):

• growth of biomass in each unit of volume proportional to population (and to interval length),
and depends on amount of nutrient in that volume (we think of density as the mass in a small
unit volume):

N(t+ ∆t)−N(t) due to growth = K(C(t))N(t) ∆t

(the choice of the function K(C) is discussed below)

• consumption of nutrient per unit volume proportional to increase of bacterial population:

C(t+ ∆t)− C(t) due to consumption = −α [N(t+ ∆t)−N(t)]
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2.1.7 Chemostat: Mathematical Model

total biomass: N(t)V and total nutrient in culture chamber: C(t)V

biomass change in interval ∆t due to growth:

N(t+ ∆t)V −N(t)V = [N(t+ ∆t)−N(t)]V = K(C(t))N(t) ∆t V

so contribution to d(NV )/dt is “+K(C)NV ”

bacterial mass in effluent:
in a small interval ∆t, the volume out is: F ·∆t (m

3

s
s =)m3

so, since the concentration is N(t) g/m3, the mass out is: N(t) · F ·∆t g
and so the contribution to d(NV )/dt is “−N(t)F ”

for d(CV )/dt equation:
we have three terms: −αK(C)NV (depletion), −C(t)F (outflow), and +C0F (inflow), ;

d(NV )

dt
= K(C)NV −NF

d(CV )

dt
= −αK(C)NV − CF + C0F .

Finally, divide by the constant V to get this system of equations on N,C:

dN

dt
= K(C)N −NF/V

dC

dt
= −αK(C)N − CF/V + C0F/V

2.1.8 Michaelis-Menten Kinetics

A reasonable choice for “K(C)” is as follows (later, we come back to this topic in much more detail):

K(C) =
kmaxC
kn + C

or, in another very usual notation:
VmaxC

Km + C
.

This gives linear growth for small nutrient concentrations:

K(C) ≈ K(0) +K ′(0)C =
VmaxC

Km

but saturates at Vmax as C →∞.

(More nutrient⇒ more growth, but only up to certain limits — think of a buffet dinner!)
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Note that when C = Km, the growth rate is 1/2 (“m” for middle) of maximal, i.e. Vmax/2,

We thus have these equations for the chemostat with MM Kinetics:

dN

dt
=

kmaxC
kn + C

N − (F/V )N

dC

dt
= −α kmaxC

kn + C
N − (F/V )C + (F/V )C0

Our next goal is to study the behavior of this system of two ODE’s
for all possible values of the six parameters kmax, kn, F, V, C0, α.

2.1.9 Side Remark: “Lineweaver-Burk plot” to Estimate Parameters

Suppose we measured experimentally K(Ci) for various values Ci.
How does one estimate Km and Vmax?

Solution: observe that
1

K(C)
=

Km + C

VmaxC
=

1

Vmax

+
Km

Vmax

· 1

C

therefore, 1/K(C) is a linear function of 1/C!
Thus, just plot 1/K(C) against 1/C and fit a line (linear regression).

2.1.10 Chemostat: Reducing Number of Parameters

Following the procedure outlined earlier, we write: C = C∗Ĉ, N = N∗N̂ , t = t∗t̂ , and substitute:

d(N∗N̂)

d(t∗t̂)
=

kmaxC∗Ĉ

kn + C∗Ĉ
N∗N̂ − (F/V )N∗N̂

d(C∗Ĉ)

d(t∗t̂)
= −α kmaxC∗Ĉ

kn + C∗Ĉ
N∗N̂ − (F/V )C∗Ĉ + (F/V )C0

dN
dt

= d(N∗N̂)

d(t∗ t̂)
= N̂

t̂
dN∗

dt∗
& dC

dt
= d(C∗Ĉ)

d(t∗ t̂)
= Ĉ

t̂
dC∗

dt∗
;

dN∗

dt∗
=

t̂ kmaxC∗Ĉ

kn + C∗Ĉ
N∗ − t̂F

V
N∗

dC∗

dt∗
= −α t̂ kmaxC∗

kn + C∗Ĉ
N∗N̂ − t̂F

V
C∗ +

t̂F

ĈV
C0

or equivalently:
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dN∗

dt∗
= (t̂ kmax)

C∗

kn/Ĉ + C∗
N∗ − t̂F

V
N∗

dC∗

dt∗
= −

(
αt̂ kmaxN̂

Ĉ

)
C∗

kn/Ĉ + C∗
N∗ − t̂F

V
C∗ +

t̂F

ĈV
C0

It would be nice, for example, to make kn/Ĉ = 1,
t̂F

V
= 1, and

αt̂ kmaxN̂

Ĉ
= 1. This can indeed be

done, provided that we define: Ĉ := kn, t̂ :=
V

F
, and N̂ :=

Ĉ

αt̂ kmax
=

kn

αt̂ kmax
=

knF

αV kmax

;
dN∗

dt∗
=

(
V kmax
F

)
C∗

1 + C∗
N∗ −N∗

dC∗

dt∗
= − C∗

1 + C∗
N∗ − C∗ +

C0

kn

or, introducing two new constants α1 =
(
V kmax

F

)
and α2 =

C0

kn
we end up with:

dN∗

dt∗
= α1

C∗

1 + C∗
N∗ −N∗

dC∗

dt∗
= − C∗

1 + C?
N∗ − C∗ + α2

We will study how the behavior of the chemostat depends on these two parameters, always remember-
ing to “translate back” into the original parameters and units.

The old and new variables are related as follows:

N(t) = N̂N∗
(
t

t̂

)
=

knF

αV kmax
N∗
(
F

V
t

)
, C(t) = ĈC∗

(
t

t̂

)
= knC

∗
(
F

V
t

)

Remark on units

Since kmax is a rate (obtained at saturation), it has units time−1; thus, α1 is “dimensionless”.
Similarly, kn has units of concentration (since it is being added to C, and in fact for C = kn we obtain
half of the max rate kmax), so also α2 is dimensionless.

Dimensionless constants are a nice thing to have, since then we can talk about their being “small” or
“large”. (What does it mean to say that a person of height 2 is tall? 2 cm? 2in? 2 feet? 2 meters?) We
do not have time to cover the topic of units and non-dimensionalization in this course, however.
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2.1.11 Signs of interactions among variables

It is often convenient to classify systems according to the signs of the interactions between pairs of
variables. To keep matters simple, let us restrict ourselves here to systems consisting of two compo-
nents x and y. These components might represent the concentrations of certain intracellular chemicals
–for instance, of two proteins– in molecular biology, or, in the context of ecology, the numbers of in-
dividuals of a certain pair of species.

So we have a two-dimensional system of ODE’s with variables x(t) and y(t):

dx

dt
= f(x, y)

dy

dt
= g(x, y) .

We will suppose that the signs of the partial derivatives

∂f

∂y
(x, y) and

∂g

∂x
(x, y)

are either always ≥ 0 or always ≤ 0 when evaluated at all values (x, y) of interest (typically, x ≥ 0
and y ≥ 0).3 It is useful to associate a graph to a system as follows.

Introduce two nodes, called X and Y , and:

1. draw a positive arrow from X to Y “X → Y ” provided that ∂g
∂x

(x, y) > 0,

2. draw a blunt arrow from X to Y “X a Y ” provided that ∂g
∂x

(x, y) < 0,

3. draw a positive arrow from Y to X “Y → X” provided that ∂f
∂y

(x, y) > 0,

4. draw a blunt arrow from Y to X “Y a X” provided that ∂f
∂y

(x, y) < 0

(no arrow is drawn if a partial derivative is identically zero). When analyzing examples, there is often
no need to take derivatives. For instance, suppose that

f(x, y) = e
1+x

x2y+ey+y2

(obviously a contrived mathematical example!). It is clear that an increasing y makes f decrease
(because the denominator in the exponent is an increasing function of y, and the exponential is an
increasing function), so Y a X .

Assuming that both partial derivatives are everywhere nonzero (and have constant sign), there are
three types of interactions, graphically shown here:

3We do not analyze what happens if a partial derivative is sometimes positive and sometimes negative. For example,
if g(x, y) = (x− x2)y, then dy/dt > 0 when 0 < x < 1, but dy/dt > 0 when x > 1. For example, x might be a nutrient
that is needed for the growth of y, but which is toxic when overdosing.
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Mutualism

This happens if the variables have positive (“activation”) effects on each other’s growth rates. A
positive change inA results in a positive change in the growth ofB, and vice-versa. These interactions
create a positive feedback on both variables.

Configurations like these are associated to signal amplification and production of switch-like bio-
chemical responses.

Competition or mutual inhibition

This happens if the variables have negative (“repression”) effects on each other’s growth rates. A
positive change in A results in repression of growth of B, and repression of B in turn enhances the
growth of A. These interactions also create a positive feedback on both variables.

Such configurations allow systems to exhibit multiple discrete, alternative stable steady-states, thus
providing a mechanism for memory. They also help in allowing sharp (“binary”) responses to inputs
and are important in cell decision-making (apoptosis, division, . . . ).

Activation-inhibition or predator-prey

This happens if the variables have opposite effects on each other’s growth rates. A negative feed-
back is created. Activation-inhibition configurations of this type are necessary for the generation of
periodic behaviors such as circadian rhythms or cell cycle oscillations, as well as for tight regulation
(homeostasis) of physiological variables.

Monotone systems

The first two types of systems, mutualistic (or, as is said in mathematical biology, “cooperative”), and
mutually inhibiting (“competitive”) are examples of what are called “monotone systems,” for which
a rich theory (and not just for 2-d systems) exists4. Let us illustrate a simple result for the mutually
activating case. (A similar result holds true for mutual repression.)

4For instance, see an intuitive discussion of results in: E.D. Sontag. Monotone and near-monotone biochemical
networks. Systems and Synthetic Biology, 1:59-87, 2007.
http://www.springerlink.com/content/x44774083876j062/fulltext.pdf
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Claim: there cannot be any periodic orbit in such a system.

Proof by contradiction: Suppose that there would be a periodic orbit in which the motion is counter-
clockwise, as shown in the left part of this figure:

We now pick two points in this orbit with identical x coordinates, as indicated by (x, y) and (x, y′)
in the figure. These points correspond to the concentrations at two times t0, t1, with x(t0) = x(t1)
and y(t0) < y(t1). Since y(t1) is larger than y(t0), x is at the same concentration, and the species are
mutually activating, it follows that the rate of change in the concentration x should be comparatively
larger at time t1 than at time t0, that is, f(x, y′) ≥ f(x, y). However, this contradicts the fact that x(t)
is increasing at time t0 (f(x, y) ≥ 0) but is decreasing at time t1 (f(x, y′) ≤ 0). The contradiction
means that there cannot be any counterclockwise-oriented curve. To show that there cannot be any
clockwise-oriented curve, one may proceed by an entirely analogous argument, using two points
(x, y) and (x′, y) as in the figure.
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2.2 Steady States and Linearized Stability Analysis

2.2.1 Steady States

The key to the “geometric” analysis of systems of ODE’s is to write them in vector form:

dX

dt
= F (X) (where F is a vector function and X is a vector) .

The vector X = X(t) has some number n of components, each of which is a function of time.
One writes the components as xi (i = 1, 2, 3, . . . , n), or when n = 2 or n = 3 as x, y or x, y, z,
or one uses notations that are related to the problem being studied, like N and C for the concentration
(or the biomass) of a population and C for the concentration of a nutrient.
For example, the chemostat

dN

dt
= α1

C

1 + C
N −N

dC

dt
= − C

1 + C
N − C + α2

may be written as
dX

dt
= F (X) =

(
f(N,C)
g(N,C)

)
, provided that we define:

f(N,C) = α1
C

1 + C
N −N

g(N,C) = − C

1 + C
N − C + α2 .

By definition, a steady state or equilibrium5 is any root of the algebraic equation

F (X̄) = 0

that results when we set the right-hand side to zero.

For example, for the chemostat, a steady state is the same thing as a solution X = (N,C) of the two
simultaneous equations

α1
C

1 + C
N −N = 0

− C

1 + C
N − C + α2 = 0 .

Let us find the equilibria for this example.

A trick which sometimes works for chemical and population problems, is as follows.
We factor the first equation: (

α1
C

1 + C
− 1

)
N = 0 .

5the word “equilibrium” is used in mathematics as a synonym for steady state, but the term has a more restrictive
meaning for physicists and chemists
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So, for an equilibrium X̄ = (N̄ , C̄),

either N̄ = 0 or α1
C̄

1 + C̄
= 1 .

We consider each of these two possibilities separately.

In the first case, N̄ = 0. Since also it must hold that

− C̄

1 + C̄
N̄ − C̄ + α2 = −C̄ + α2 = 0 ,

we conclude that X̄ = (0, α2) (no bacteria alive, and nutrient concentration α2).
In the second case, C̄ = 1

α1−1
, and therefore the second equation gives N̄ = α1

(
α2 − 1

α1−1

)
(check!).

So we found two equilibria:

X̄1 = (0, α2) and X̄2 =

(
α1

(
α2 −

1

α1 − 1

)
,

1

α1 − 1

)
.

However, observe that an equilibrium is physically meaningful only if C̄ ≥ 0 and N̄ ≥ 0. Negative
populations or concentrations, while mathematically valid, do not represent physical solutions.6

The first steady state is always well-defined in this sense, but not the second.
This equilibrium X̄2 is well-defined and makes physical sense only if

α1 > 1 and α2 >
1

α1 − 1
(2.4)

or equivalently:
α1 > 1 and α2(α1 − 1) > 1 . (2.5)

Reducing the number of parameters to just two (α1 and α2) allowed us to obtain this very elegant and
compact condition. But this is not a satisfactory way to explain our conclusions, because α1, α2 were
only introduced for mathematical convenience, but were not part of the original problem.

Since, t̂ := V
F

, α1 = t̂ kmax = V
F
kmax and α2 = t̂F

ĈV
C0 = C0

Ĉ
= C0

kn
, the conditions are:

kmax >
F

V
and C0 >

kn
V
F
kmax − 1

.

The first condition means roughly that the maximal possible bacterial reproductive rate is larger than
the tank emptying rate, which makes intuitive sense. As an exercise, you should similarly interpret
“in words” the various things that the second condition is saying.

Meaning of Equilibria: If a point X̄ is an equilibrium, then the constant vector X(t) ≡ X̄ is a solu-
tion of the system of ODE’s, because a constant has zero derivative: dX̄/dt = 0, and since F (X̄) = 0
by definition of equilibrium, we have that dX̄/dt = F (X̄).
Conversely, if a constant vector X(t) ≡ X̄ is a solution of dX(t)/dt = F (X(t)), then, since
(d/dt)(X(t)) ≡ 0, also then F (X̄) = 0 and therefore X̄ is an equilibrium.
In other words, an equilibrium is a point where the solution stays forever.
As you studied in your ODE class, an equilibrium may be stable or unstable (think of a pencil perfectly
balanced on the upright position). We next review stability.

6Analogy: we are told that the length L of some object is a root of the equation L2 − 4 = 0. We can then conclude
that the length must be L = 2, since the other root, L = −2, cannot correspond to a length.
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2.2.2 Linearization

We wish to analyze the behavior of solutions of the ODE system dX/dt = F (X) near a given steady
state X̄ . For this purpose, it is convenient to introduce the displacement (translation) relative to X̄:

X̂ = X − X̄

and to write an equation for the variables X̂ . We have:

dX̂

dt
=

dX

dt
− dX̄

dt
=

dX

dt
− 0 =

dX

dt
= F (X̂ + X̄) = F (X̄)︸ ︷︷ ︸

=0

+F ′(X̄)X̂ + o(X̂)︸ ︷︷ ︸
≈0

≈ AX̂

where A = F ′(X̄) is the Jacobian of F evaluated at X̄ .
We dropped higher-order-than-linear terms in X̂ because we are only interested in X̂ ≈ 0
(small displacements X ≈ X̄ from X̄ are the same as small X̂’s).

Recall that the Jacobian, or “derivative of a vector function,” is defined as the n × n matrix whose
(i, j)th entry is ∂fi/∂xj , if fi is the ith coordinate of F and xj is the jth coordinate of x.

One often drops the “hats” and writes the above linearization simply as dX/dt = AX ,
but it is extremely important to remember that what this equation represents:
it is an equation for the displacement from a particular equilibrium X̄ .
More precisely, it is an equation for small displacements from X̄ .
(And, for any other equilibrium X̄ , a different matrix A will, generally speaking, result).

For example, let us take the chemostat, after a reduction of the number of parameters:

d

dt

(
N
C

)
= F (N,C) =

(
α1

C
1+C

N −N
− C

1+C
N − C + α2

)
so that, at any point (N,C) the Jacobian A = F ′ of F is:(

α1
C

1+C
− 1 α1N

(1+C)2

− C
1+C

− N
(1+C)2

− 1

)
.

In particular, at the point X̄2, where C̄ = 1
α1−1

, N̄ = α1(α1α2−α2−1)
α1−1

we have: 0 β (α1 − 1)

− 1

α1

−β(α1 − 1) + α1

α1


where we used the shorthand: β = α2(α1 − 1)− 1. (Prove this as an exercise!)

Remark. An important result, the Hartman-Grobman Theorem, justifies the study of linearizations.
It states that solutions of the nonlinear system dX

dt
= F (X) in the vicinity of the steady state X̄ look

“qualitatively” just like solutions of the linearized equation dX/dt = AX do in the vicinity of the
point X = 0.7

For linear systems, stability may be analyzed by looking at the eigenvalues of A, as we see next.
7The theorem assumes that none of the eigenvalues of A have zero real part (“hyperbolic fixed point”). “Looking like”

is defined in a mathematically precise way using the notion of “homeomorphism” which means that the trajectories look
the same after a continuous invertible transformation, that is, a sort of “nonlinear distortion” of the phase space.
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2.2.3 Review of (Local) Stability

For the purposes of this course, we’ll say that a linear system dX/dt = AX , where A is n×n matrix,
is stable if all solutions X(t) have the property that X(t)→ 0 as t→∞. The main theorem is:

stability is equivalent to: the real parts of all the eigenvalues of A are negative

For nonlinear systems dX/dt = F (X), one applies this condition as follows:8

• For each steady state X̄ , compute A, the Jacobian of F evaluated at X̄ , and test its eigenvalues.

• If all the eigenvalues of A have negative real part, conclude local stability:
every solution of dX/dt = F (X) that starts near X = X̄ converges to X̄ as t→∞.

• If A has even one eigenvalue with positive real part, then the corresponding nonlinear system
dX/dt = F (X) is unstable around X̄ , meaning that at least some solutions that start near X̄
will move away from X̄ .

The linearization dX/dt = AX at a steady state X̄ says nothing at all about global stability, that is
to say, about behaviors of dX/dt = F (X) that start at initial conditions that are far away from X̄ .
For example, compare the two equations: dx/dt = −x− x3 and dx/dt = −x+ x2.
In both cases, the linearization at x = 0 is just dx/dt = −x, which is stable.
In the first case, it turns out that all the solutions of the nonlinear system also converge to zero.
(Just look at the phase line.)
However, in the second case, even though the linearization is the same, it is not true that all solutions
converge to zero. For example, starting at a state x(0) > 1, solutions diverge to +∞ as t→∞.
(Again, this is clear from looking at the phase line.)

It is often confusing to students that from the fact that all solutions of dX/dt = AX converge to zero,
one concludes for the nonlinear system that all solutions converge to X̄ .
The confusion is due simply to notations: we are really studying dX̂/dt = AX̂ , where X̂ = X − X̄ ,
but we usually drop the hats when looking at the linear equation dX/dt = AX .

Regarding the eigenvalue test for linear systems, let us recall, informally, the basic ideas.

The general solution of dX/dt = AX , assuming9 distinct eigenvalues λi for A, can be written as:

X(t) =
n∑
i=1

ci e
λitvi

where for each i, Avi = λivi (an eigenvalue/eigenvector pair) and the ci are constants (that can be fit
to initial conditions).

It is not surprising that eigen-pairs appear: if X(t) = eλtv is solution, then λeλtv = dX/dt = Aeλtv,
which implies (divide by eλt) that Av = λv.

8Things get very technical and difficult if A has eigenvalues with exactly zero real part. The field of mathematics
called Center Manifold Theory studies that problem.

9If there are repeated eigenvalues, one must fine-tune a bit: it is necessary to replace some terms ci eλitvi by ci t eλitvi
(or higher powers of t) and to consider “generalized eigenvectors.”
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We also recall that everything works in the same way even if some eigenvalues are complex, though
it is more informative to express things in alternative real form (using Euler’s formula).

To summarize:

• Real eigenvalues λ correspond10 to terms in solutions that involve real exponentials eλt, which
can only approach zero as t→ +∞ if λ < 0.

• Non-real complex eigenvalues λ = a + ib are associated to oscillations. They correspond11 to
terms in solutions that involve complex exponentials eλt. Since one has the general formula
eλt = eat+ibt = eat(cos bt+ i sin bt), solutions, when re-written in real-only form, contain terms
of the form eat cos bt and eat sin bt, and therefore converge to zero (with decaying oscillations
of “period” 2π/b) provided that a < 0, that is to say, that the real part of λ is negative. Another
way to see this if to notice that asking that eλt → 0 is the same as requiring that the magnitude∣∣eλt∣∣ → 0. Since

∣∣eλt∣∣ = eat
√

(cos bt)2 + (sin bt)2 = eat, we see once again that a < 0 is the
condition needed in order to insure that eλt → 0

Special Case: 2 by 2 Matrices

In the case n = 2, it is easy to check directly if dX/dt = AX is stable, without having to actually
compute the eigenvalues. Suppose that

A =

(
a11 a12

a21 a22

)
and remember that

traceA = a11 + a22 , detA = a11a22 − a12a21 .

Then:

stability is equivalent to: traceA < 0 and detA > 0.

(Proof: the characteristic polynomial is λ2 + bλ + c where c = detA and b = −traceA. Both roots
have negative real part if

(complex case) b2 − 4c < 0 and b > 0

or
(real case) b2 − 4c ≥ 0 and − b±

√
b2 − 4c < 0

and the last condition is equivalent to
√
b2 − 4c < b, i.e. b > 0 and b2 > b2−4c, i.e. b > 0 and c > 0.)

Moreover, solutions are oscillatory (complex eigenvalues) if (traceA)2 < 4 detA, and exponential
(real eigenvalues) otherwise. We come back to this later (trace/determinant plane).

(If you are interested: for higher dimensions (n>2), one can also check stability without computing
eigenvalues, although the conditions are more complicated; google Routh-Hurwitz Theorem.)

10To be precise, if there are repeated eigenvalues, one may need to also consider terms of the slightly more complicated
form “tkeλt” but the reasoning is exactly the same in that case.

11For complex repeated eigenvalues, one may need to consider terms tkeλt.
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2.2.4 Chemostat: Local Stability

Let us assume that the positive equilibrium X̄2 exists, that is:

α1 > 1 and β = α2(α1 − 1)− 1 > 0 .

In that case, the Jacobian is:

A = F ′(X̄2) =

 0 β (α1 − 1)

− 1

α1

−β(α1 − 1) + α1

α1


where we used the shorthand: β = α2(α1 − 1)− 1.

The trace of this matrix A is negative (because β > 0, α1 − 1 > 0, α1 > 0), and the determinant is
positive:

α1 − 1 > 0 and β > 0 ⇒ β(α1 − 1)

α1

> 0 .

So we conclude (local) stability of the positive equilibrium.

So, at least, if the initial the concentration X(0) is close to X̄2, then X(t)→ X̄2 as t→∞.
(We later see that global convergence holds as well.)

What about the other equilibrium, X̄1 = (0, α2)? We compute the Jacobian:

A = F ′(X̄1) =

 α1
C

1 + C
− 1

α1N

(1 + C)2

− C

1 + C
− N

(1 + C)2
− 1


∣∣∣∣∣∣∣
N=0,C=α2

=

 α1
α2

1 + α2

− 1 0

− α2

1 + α2

−1


and thus see that its determinant is:

1− α1
α2

1 + α2

=
1 + α2 − α1α2

1 + α2

=
1 + α2(1− α1)

1 + α2

= − β

1 + α2

< 0

and therefore the steady state X̄1 is unstable.

It turns out that the point X̄1 is a saddle: small perturbations, where N(0) > 0, will tend away from
X̄1. (Intuitively, if even a small amount of bacteria is initially present, growth will occur. As it turns
out, the growth is so that the other equilibrium X̄1 is approached.)
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2.3 More Modeling Examples

2.3.1 Effect of Drug on Cells in an Organ

A modification of the chemostat model can be used as a simple model of how
a drug in the blood (e.g. a chemotherapy agent) affects a cells in a certain organ

(or more specifically, a subset of cells, such as cancer cells).

Now, “C0” represents the concentration of the drug in the blood flowing in,
and V is the volume of blood in the organ, or, more precisely,
the volume of blood in the region where the cells being treated (e.g., a tumor).

-

-
drug in blood

organ

C0

N(t), C(t)

inflow Fin

outflow Fout

V = volume of blood
F = Fin, Fout are the blood flows
N(t) = number of cells (assumed equal in mass)

exposed to drug
C0, C(t) = drug concentrations

In drug infusion models, if a pump delivers the drug at a certain concentration,
the actual C0 would account for the dilution rate when injected into the blood.

We assume that things are “well-mixed” although more realistic models use the fact
that drugs may only affect e.g. the outside layers of a tumor.

The flow F represents blood brought into the organ through an artery, and the blood coming out.

The key differences with the chemostat are:

• the cells in question reproduce at a rate that is, in principle, independent of the drug,

• but the drug has a negative effect on the growth, a “kill rate” that we model by some function
K(C), and

• the outflow contains only (unused) drug, and not any cells.

If we assume that cells reproduce exponentially and the drug is consumed at a rate proportional to the
kill rate K(C)N , we are led to:

dN

dt
= −K(C)N + kN

dC

dt
= −αK(C)N − CFout

V
+
C0Fin
V

.
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2.3.2 Compartmental Models

? ?

??

�

-

u2u1

d2d1

F21

F12

21

Compartmental models are very common in pharmacology and many other biochemical applications.

They are used to account for different behaviors in different tissues.

In the simplest case, there are two compartments, such as an organ and the blood in circulation.

We model the two-compartment case now (the general case is similar).

We use two variables x1, x2, for the concentrations (mass/vol) of a substance
(such as a drug, a hormone, a metabolite, a protein, or some other chemical) in each compartment,
and m1,m2 for the respective masses.

The flow (vol/sec) from compartment i to compartment j is denoted by Fij .

When the substance happens to be in compartment i, a fraction di ∆t of its mass, degrades, or is
consumed, in any small interval of time ∆t,

Sometimes, there may also be an external source of the substance, being externally injected; in that
case, we let ui denote the inflow (mass/sec) into compartment i.

On a small interval ∆t, the increase (or decrease, if the number is negative) of the mass in the first
compartment is:

m1(t+ ∆t)−m1(t) = −F12x1∆t+ F21x2∆t− d1m1∆t+ u1∆t .

(For example, the mass flowing in from compartment 1 to compartment 2 is computed as:

flow× concentration in 1× time =
vol

time
× mass

vol
× time .)

Similarly, we have an equation of m2. We divide by ∆t and take limits as τ → 0, leading to the
following system of two linear differential equations:

dm1

dt
= −F12m1/V1 + F21m2/V2 − d1m1 + u1

dm2

dt
= F12m1/V1 − F21m2/V2 − d2m2 + u2

(we used that xi = mi/Vi). So, for the concentrations xi = mi/Vi, we have:

dx1

dt
= −F12

V1

x1 +
F21

V1

x2 − d1x1 +
u1

V1

dx2

dt
=

F12

V2

x1 −
F21

V2

x2 − d2x2 +
u2

V2
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2.4 Geometric Analysis: Vector Fields, Phase Planes

2.4.1 Review: Vector Fields

One interprets dX
dt

=F (X) as a “flow” in Rn: at each position X , F (X) is a vector that indicates in
which direction to move (and its magnitude says at what speed).

(“go with the flow” or “follow directions”).

We draw pictures in two dimensions, but this geometric interpretation is valid in any dimension.

“Zooming in” at steady states12 X̄ amounts to looking at the linearization F (X) ≈ AX ,
where A = Jacobian F ′(X̄) evaluated at this equilibrium.

You should work-out some phase planes using JOde or some other package.

2.4.2 Review: Linear Phase Planes

Cases of distinct real and nonzero13 eigenvalues λ1 6= λ2:

1. both λ1, λ2 are negative: sink (stable node)

all trajectories approach the origin, tangent to the direction of eigenvectors corresponding to the
eigenvalue which is closer to zero.

2. both λ1, λ2 are positive: source (unstable node)

all trajectories go away from the origin, tangent to the direction of eigenvectors corresponding
to the eigenvalue which is closer to zero.

3. λ1, λ2 have opposite signs: saddle

Cases of complex eigenvalues λ1, λ2, i.e. = a± ib (b 6= 0):

1. a = 0: center

12Zooming into points that are not equilibria is not interesting; a theorem called the “flow box theorem” says (for a
vector field defined by differentiable funcions) that the flow picture near a point X̄ that is not an equilibrium is quite
“boring” as it consists essentially of a bundle of parallel lines.

13The cases when one or both eigenvalues are zero, or are both nonzero but equal, can be also analyzed, but they are a
little more complicated.
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solutions14 look like ellipses (or circles);

to decide if they more clockwise or counterclockwise, just pick one point in the plane and see
which direction Ax points to;

the plots of x(t) and y(t) vs. time look roughly like a graph of sine or cosine.

2. a < 0: spiral sink (stable spiral)

trajectories go toward the origin while spiraling around it, and direction can be figured out as
above;

the plots of x(t) and y(t) vs. time look roughly like the graph of a sine or cosine that is dying
out (damped oscillation).

3. a > 0: spiral source (unstable spiral)

trajectories go away from the origin while spiraling around it, and direction can be figured out
as above;

the plots of x(t) and y(t) vs. time look roughly like the graph of a sine or cosine that that is
exploding (increasing oscillation).

Trace/Determinant Plane

We next compute the type of the local equilibria for the chemostat example,
assuming that α1 > 1 and α2(α1 − 1)− 1 > 0 (so X̄2 is positive).

Recall that the we had computed the Jacobian at the positive equilibrium X̄2 =
(
α1

(
α2 − 1

α1−1

)
, 1
α1−1

)
:

A = F ′(X̄2) =

 0 β (α1 − 1)

− 1

α1

−β(α1 − 1) + α1

α1


where we used the shorthand: β = α2(α1 − 1)− 1.

We already saw that the trace is negative. Note that:

tr(A) = −1−∆ , where ∆ = det(A) =
β(α1 − 1)

α1

> 0

and therefore tr2 − 4det = 1 + 2∆ + ∆2 − 4∆ = (1−∆)2 > 0, so the point X̄2 is a stable node.15

Show as an exercise that X̄1 is a saddle.
14Centers are highly “non-robust” in a way that we will discuss later, so they rarely appear in realistic biological models.
15If ∆ 6= 1; otherwise there are repeated real eigenvalues; we still have stability, but we’ll ignore that very special case.
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2.4.3 Nullclines

Linearization helps understand the “local” picture of flows.16

It is much harder to get global information, telling us how these local pictures fit together
(“connecting the dots” so to speak).

One useful technique when drawing global pictures is that of nullclines.

The xi-nullcline (if the variables are called x1, x2, . . .) is the set where dxi
dt

= 0.
This set may be the union of several components (curves and lines), or just one such component.17

The intersections between the nullclines are the steady states. This is because each nullcline is the set
where dx1/dt = 0, dx2/dt = 0, . . ., so intersecting gives points at which all dxi/dt = 0, that is to say
F (X) = 0 which is the definition of steady states.

As an example, let us take the chemostat, for which the vector field is F (X) =

(
f(N,C)
g(N,C)

)
, where:

f(N,C) = α1
C

1 + C
N −N

g(N,C) = − C

1 + C
N − C + α2 .

The N -nullcline is the set where dN/dt = 0, that is, where α1
C

1+C
N −N = 0.

Since we can factor this as N(α1
C

1+C
− 1) = 0, we see that:

the N -nullcline is the union of a horizontal and a vertical line: C =
1

α1 − 1
and N = 0 .

On this set, the arrows are vertical, because dN/dt = 0 (no movement in N direction).

The C-nullcline is obtained by setting − C
1+C

N − C + α2 = 0.
We can describe a curve in any way we want; in this case, it is a little simpler to solve N = N(C)
than C = C(N):

the C-nullcline is the curve: N = (α2 − C)
1 + C

C
= −1− C +

α2

C
+ α2 .

On this set, the arrows are parallel to the N -axis, because dC/dt = 0 (no movement in C direction).

To plot, note that N(α2) = 0 and N(C) is a decreasing function of C and goes to +∞ as C ↘ 0,
and then obtain C = C(N) by flipping along the main diagonal (dotted and dashed curves in the
graph, respectively):

16Actually, linearization is sometimes not sufficient even for local analysis. Think of dx/dt = x3 and dx/dt = −x3,
which have the same linearization (dx/dt = 0) but very different local pictures at zero. The area of mathematics called
“Center manifold theory” deals with such very special situations, where eigenvalues may be zero or more generally have
zero real part.

17Some authors like to call each component a “nullcline” but I prefer to say that the nullcline is one object, which may
have more than one component. It is just a question of semantics.
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In summary, the nullclines look as follows:

Assuming that α1 > 1 and α2 > 1/(α1 − 1), so that a positive steady-state exists, we have the two
intersections: (0, α2) (saddle) and

(
α1

(
α2 − 1

α1−1

)
, 1
α1−1

)
(stable node).

To decide whether the arrows point up or down on the N -nullcline, we need to look at dC/dt.

On the line N = 0 we have:

dC

dt
= − C

1 + C
N − C + α2 = −C + α2

{
> 0 if C < α2

< 0 if C > α2

so the arrows point up if C < α2 and down otherwise. On the line C = 1
α1−1

:

dC

dt
= − C

1 + C
N − C + α2 = α2 −

1

α1 − 1
− N

α1

 > 0 if N < α1

(
α2 − 1

α1−1

)
< 0 if N > α1

(
α2 − 1

α1−1

)
so the arrow points up if N < α1

(
α2 − 1

α1−1

)
and down otherwise.

To decide whether the arrows point right or left (sign of dN/dt) on the C-nullcline, we look at:

dN

dt
= N

(
α1

C

1 + C
− 1

) 
> 0 if C >

1

α1 − 1

< 0 if C <
1

α1 − 1

(since N ≥ 0, the sign of the expression is the same as the sign of α1
C

1+C
− 1).

A shortcut for determining directions on nullclines
Observe that directions cannot change in any segment (in-between intersections with the other null-
cline), since a change of direction would means that the other derivative is zero (and theerfore that we
must cross the other nullcline).

So, we may simply pick any point in such a segment to determine the direction.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 53

For example, for the two components of the N -nullcline, we have:

(1) on the line N = 0: dC
dt

= −C + α2, so > 0 at C = 0 and < 0 as C → +∞;

(2) on line C = 1
α1−1

: dC
dt

= α2 − 1
α1−1

− N
α1

, so > 0 at N = 0 (because α2 − 1
α1−1

> 0) and < 0 as
N → +∞

On the C-nullcline, dN
dt

= N
(
α1

C
1+C
− 1
)

is > 0 as C → α2 (because α1
α2

1+α2
− 1 > 0) and < 0 at

C = 0.

This information is enough to determine the signs on each segment.

We have, therefore, this picture:

What about the direction of the vector field elsewhere, not just on nullclines?

The key observation is that the only way that arrows can “reverse direction” is by crossing a nullcline.

For example, if dx1/dt is positive at some point A, and it is negative at some other point B, then A and
B must be on opposite sides of the x1 nullcline. The reason is that, were we to trace a path between
A and B (any path, not necessarily a solution of the system), the derivative dx1/dt at the points in
the path varies continuously18 and therefore (intermediate value theorem) there must be a point in this
path where dx1/dt = 0.

In summary: if we look at regions demarcated by the nullclines19 then the orientations of arrows
remain the same in each such region.

For example, for the chemostat, we have 4 regions, as shown in the figure.

In region 1, dN/dt > 0 and dC/dt < 0, since these are the values in the boundaries of the region.
Therefore the flow is “Southeast” (↘) in that region. Similarly for the other three regions.

We indicate this information in the phase plane:

18assuming that the vector field is continuous
19the “connected components” of the complement of the nullclines, think of them as the “territories” separated by the

nullclines
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Note that the arrows are just “icons” intended to indicate if the flow is
generally “SE” (dN/dt > 0 and dC/dt < 0), “NE,” etc, but the actual numerical slopes will vary
(for example, near the nullclines, the arrows must become either horizontal or vertical).

2.4.4 Global Behavior

We already know that trajectories that start near the positive steady state X̄2 converge to it (local
stability)

and that most trajectories that start near X̄1 go away from it (instability).

(Still assuming, obviously, that the parameters have been chosen in such a way that the positive steady
state exists.)

Let us now sketch a proof that, in fact, every trajectory converges to X̄2

(with the exception only of those trajectories that start with N(0) = 0).

The practical consequences of this “global attraction” result are that,
no matter what the initial conditions, the chemostat will settle into the steady state X̄2.

It is helpful to consider the following line:

(L) N + α1C − α1α2 = 0

which passes through the points X̄1 = (0, α2) and X̄2 =
(
α1

(
α2 − 1

α1−1

)
, 1
α1−1

)
.

Note that (α1α2, 0) is also in this line.
The picture is as follows20 where the arrows are obtained from the flow direction, as shown earlier.

20you may try as an exercise to show that the C-nullcline is concave up, so it must intersect L at just two points, as
shown
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We claim that this line is invariant, that is, solutions that start in L must remain in L. Even more
interesting, all trajectories (except those that start with N(0) = 0) converge to L.

For any trajectory, consider the following function:

z(t) = N(t) + α1C(t)− α1α2

and observe that

z′ = N ′ + α1C
′ = α1

C

1 + C
N −N − α1

(
C

1 + C
N − C + α2

)
= −z

which implies that z(t) = z(0)e−t. Therefore, z(t) = 0 for all t > 0, if z(0) = 0 (invariance), and in
general z(t)→ 0 as t→ +∞ (solutions approach L).
Moreover, points in the line N + α1C − α1α2 = m are close to points in L if m is near zero.

Since L is invariant and there are no steady states in L except X̄1 and X̄2, the open segment from X̄1

to X̄2 is a trajectory that “connects” the unstable state X̄1 to the stable state X̄2. Such a trajectory is
called a heteroclinic connection.21

Now, we know that all trajectories approach L, and cannot cross L (no trajectories can ever cross, by
uniqueness of solutions, as seen in your ODE class).

Suppose that a trajectory starts, and hence remains, on top of L (the argument is similar if remains
under L), and with N(0) > 0.
Since the trajectory gets closer and closer to L, and must stay in the first quadrant (why?), it will either
converge to X̄2 “from the NW” or it will eventually enter the region with the “NW arrow” – at which
point it must have turned and start moving towards X̄2. In summary, every trajectory converges.

21Exercise: check eigenvectors at X̄1 and X̄2 to see that L matches the linearized eigen-directions.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 56

2.5 Epidemiology: SIRS Model

The modeling of infectious diseases and their spread is an important part of mathematical biology,
part of the field of mathematical epidemiology.

Modeling is an important tool for gauging the impact of different vaccination programs on the control
or eradication of diseases.

We will only study here a simple ODE model, which does not take into account age structure nor
geographical distribution. More sophisticated models can be based on compartmental systems, with
compartments corresponding to different age groups, partial differential equations, where independent
variables specify location, and so on, but the simple ODE model already brings up many of the
fundamental ideas.

The classical work on epidemics dates back to Kermack and McKendrick, in 1927. We will study
their SIR and SIRS models without “vital dynamics” (births and deaths).

To explain the model, let us think of a flu epidemic, but the ideas are very general.

In the population, there will be a group of people who are Susceptible to being passed on the virus by
the Infected individuals.

At some point, the infected individuals get so sick that they have to stay home, and become part of
the Removed group. Once that they recover, they still cannot infect others, nor can they be infected
since they developed immunity.

The numbers of individuals in the three classes will be denoted by S, I , and R respectively, and hence
the name “SIR” model.

Depending on the time-scale of interest for analysis, one may also allow for the fact that individuals
in the Removed group may eventually return to the Susceptible population, which would happen if
immunity is only temporary. This is the “SIRS” model (the last S to indicate flow from R to S),
which we will study next.

We assume that these numbers are all functions of time t, and that the numbers can be modeled as
real numbers. (Non-integers make no sense for populations, but it is a mathematical convenience. Or,
if one studies probabilistic instead of deterministic models, these numbers represent expected values
of random variables, which can easily be non-integers.)

The basic modeling assumption is that the number of new infectives I(t+∆t)−I(t) in a small interval
of time [t, t+ ∆t] is proportional to the product S(t)I(t) ∆t.

Let us try to justify intuitively why it makes sense. (As usual, experimentation and fitting to data
should determine if this is a good assumption. In fact, alternative models have been proposed as
well.)

Suppose that transmission of the disease can happen only if a susceptible and infective are very close
to each other, for instance by direct contact, sneezing, etc.

We suppose that there is some region around a given susceptible individual, so that he can only get
infected if an infective enters that region:

We assume that, for each infective individual, there is a probability p = β∆t that this infective will
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happen to pass through this region in the time interval [t, t + ∆t], where β is some positive constant
that depends on the size of the region, how fast the infectives are moving, etc. (Think of the infective
traveling at a fixed speed: in twice the length of time, there is twice the chance that it will pass by this
region.) We take ∆t� 0, so also p� 0.

The probability that this particular infective will not enter the region is 1− p, and, assuming indepen-
dence, the probability than no infective enters is (1− p)I .

So the probability that some infective comes close to our susceptible is, using a binomial expansion:
1− (1− p)I ≈ 1− (1− pI +

(
I
2

)
p2 + . . .) ≈ pI since p� 1.

Thus, we can say that a particular susceptible has a probability pI of being infected. Since there are
S of them, we may assume, if S is large, that the total number infected will be S × pI .

We conclude that the number of new infections is:

I(t+ ∆t)− I(t) = pSI = βSI ∆t

and dividing by ∆t and taking limits, we have a term βSI in dI
dt

, and similarly a term −βSI in dS
dt

.

This is called a mass action kinetics assumption, and is also used when writing elementary chemical
reactions. In chemical reaction theory, one derives this mass action formula using “collision theory”
among particles (for instance, molecules), taking into account temperature (which affects how fast
particles are moving), shapes, etc.

We also have to model infectives being removed: it is reasonable to assume that a certain fraction of
them is removed per unit of time, giving terms νI , for some constant ν.

Similarly, there are terms γR for the “flow” of removeds back into the susceptible population.

The figure is a little misleading: this is not a compartmental system, in which the flow from S to I is
just proportional to S. For example, when I = 0, no one gets infected; hence the product term in the
equations:

dS

dt
= −βSI + γR

dI

dt
= βSI − νI

dR

dt
= νI − γR

(There are many variations possible; here are some. In a model with vital dynamics, one also adds
birth and death rates to this model. Another one: a vaccine is given to a certain percentage of the
susceptibles, at a given rate, causing the vaccinated individuals to become “removed”. Yet another
one: there is a type of mosquito that makes people infected.)
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2.5.1 Analysis of Equations

Let N = S(t) + I(t) +R(t). Since dN/dt = 0, N is constant, the total size of the population.

Therefore, even though we are interested in a system of three equations, this conservation law allows
us to eliminate one equation, for example, using R = N − S − I .

We are led to the study of the following two dimensional system:

dS

dt
= −βSI + γ(N − S − I)

dI

dt
= βSI − νI

I-nullcline: union of lines I = 0 and S = ν/β.

S-nullcline: curve I = γ (N−S)
Sβ+γ

.

The steady states are

X̄1 = (N, 0) and X̄2 =

(
ν

β
,
γ(N − ν

β
)

ν + γ

)
,

where X̄2 only makes physical sense if the following condition is satisfied:

“σ” or “R0” = Nβ/ν > 1

some estimated values of R0 are as follows (Wikipedia Oct 2014):
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For example, if N = 2, β = 1, ν = 1, and γ = 1, the I-nullcline is the union of I=0 and S=1,
the S-nullcline is given by I = (2−S)

S+1
, and the equilibria are at (2, 0) and (1, 1/2)

The Jacobian is, at any point: [
−Iβ − γ −Sβ − γ

Iβ Sβ − ν

]
so the trace and determinant at X̄1 = (N, 0) are, respectively:

−γ +Nβ − ν and − γ(Nβ − ν)

and thus, provided R0 = Nβ/ν > 1, we have det< 0 and hence a saddle.

At X̄2 we have: trace = −Iβ − γ < 0 and det = Iβ(ν + γ) > 0, and hence this steady state is stable.

Therefore, at least for close enough initial conditions (since the analysis is local, we cannot say more),
and assuming R0 > 1, the number of infected individuals will approach

Isteady state =
γ(N − ν

β
)

ν + γ
.

2.5.2 Interpreting R0

Let us give an intuitive interpretation of R0.

We make the following “thought experiment”:
suppose that we isolate a group of P infected individuals, and allow them to recover.

Since there are no susceptibles in our imagined experiment, S(t) ≡ 0, so dI
dt

= −νI , so I(t) = Pe−νt.

Suppose that the ith individual is infected for a total of di days, and look at the following table:
cal. days→
Individuals 0 1 2 . . . d1 ∞
Ind. 1 X X X X X X = d1 days
Ind. 2 X X X X = d2 days
Ind. 3 X X X X X = d3 days
. . .

Ind. P X X X X = dP days
=I0 =I1 =I2 . . .

It is clear that d1 + d2 + . . . = I0 + I1 + I2 + . . .
(supposing that we count on integer days, or hours, or some other discrete time unit).
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Therefore, the average number of days that individuals are infected is:

1

P

∑
di =

1

P

∑
Ii ≈

1

P

∫ ∞
0

I(t) dt =

∫ ∞
0

e−νt dt =
1

ν
.

On the other hand, back to the original model, what is the meaning of the term “βSI” in dI/dt?

It means that I(∆t)− I(0) ≈ βS(0)I(0)∆t.

Therefore, if we start with I(0) infectives, and we look at an interval of time of length ∆t = 1/ν,
which we agreed represents the average time of an infection, we end up with the following number of
new infectives:

β(N − I(0))I(0)/ν ≈ βNI(0)/ν

if I(0) � N , which means that each individual, on the average, infected (βNI(0)/ν)/I(0) = R0

new individuals.

We conclude, from this admittedly hand-waving argument22, that R0 represents the expected number
infected by a single individual (in epidemiology, the intrinsic reproductive rate of the disease).

2.5.3 Nullcline Analysis

For the previous example, N = 2, β = 1, ν = 1, and γ = 1:

dS

dt
= −SI + 2− S − I

dI

dt
= SI − I

with equilibria at (2, 0) and (1, 1/2), the I-nullcline is the union of I=0 and S=1.

When I = 0, dS/dt = 2− S,
and on S = 1, dS/dt = 1− 2I ,
so we can find if arrows are right or left pointing.

On the S-nullcline I = (2−S)
S+1

we have

dI

dt
=

(S − 1)(2− S)

S + 1

and therefore arrows point down if S < 1, and up
if S ∈ (1, 2). This in turn allows us to know the
general orientation (NE, etc) of the vector field.

Here are computer-generated phase-planes23 for this example as well as for a modification in which
we took ν = 3 (so R0 < 1).

22among other things, we’d need to know that ν is large, so that ∆t is small
23Physically, only initial conditions with I + S ≤ 2 make sense; why?
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In the first case, the system settles to the positive steady state, no matter where started,
as long as I(0) > 0.

In the second case, there is only one equilibrium, since the vertical component of the I-nullcline is at
S = 3/1 = 3, which does not intersect the other nullcline. The disease will disappear in this case.

Example simulation (β = .003, ν = 1, γ = 0.5):

Another example simulation (same parameters, different initial):
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2.5.4 Immunizations

The effect of immunizations is to reduce the “threshold” N needed for a disease to take hold.

In other words, for N small, the condition R0 = Nβ/ν > 1 will fail, and no positive steady state will
exist.

Vaccinations have the effect to permanently remove a certain proportion p of individuals from the
population, so that, in effect, N is replaced by pN . Vaccinating just p > 1 − 1

R0
individuals gives

(1− p)R0 < 1, and hence suffices to eradicate a disease!

2.5.5 A Variation: STD’s

Suppose that we wish to study a virus that can only be passed on by heterosexual sex. Then we should
consider two separate populations, male and female. We use S̄ to indicate the susceptible males and
S for the females, and similarly for I and R.

The equations analogous to the SIRS model are:

dS̄

dt
= −β̄S̄I + γ̄R̄

dĪ

dt
= β̄S̄I − ν̄Ī

dR̄

dt
= ν̄Ī − γ̄R̄

dS

dt
= −βSĪ + γR

dI

dt
= βSĪ − νI

dR

dt
= νI − γR .

This model is a little difficult to study, but in many STD’s (especially asymptomatic), there is no
“removed” class, but instead the infecteds get back into the susceptible population. This gives:

dS̄

dt
= −β̄S̄I + ν̄Ī

dĪ

dt
= β̄S̄I − ν̄Ī

dS

dt
= −βSĪ + νI

dI

dt
= βSĪ − νI .

Writing N̄ = S̄(t) + Ī(t) and N = S(t) + I(t) for the total numbers of males and females, and using
these two conservation laws, we can just study the following set of two ODE’s:

dĪ

dt
= β̄(N̄ − Ī)I − ν̄Ī

dI

dt
= β(N − I)Ī − νI .
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2.5.6 A Variation, “SIR”

Now assume no recovery from Removed to Susceptibles:

dS

dt
= −βSI

dI

dt
= βSI − νI

dR

dt
= νI

a simulation (β = .003, ν = 1) is shown below:

Note the interesting behavior: – analyze it as a homework problem!

In particular, think of these: why does I(t) peak and go down? Why is there a residual S?

2.5.7 Another variation: “SEIR”

The SIR model has no latent stage, so it is inappropriate for certain diseases.

Thus we may add an “incubation period” as an intermediate stage between Susceptibles and Infect-
eds; this leads to the “SEIR” model with subpopulations: “Susceptible”, “Exposed”, “Infected”, and
“Removed”. A natural set of differential equations for the SEIR model is as follows:

dS/dt = −βI(t)S(t)

dE/dt = βI(t)S(t)− εE(t)

dI/dt = εE(t)− νI(t)

dR/dt = νI(t)

where we may interpret ν and ε as inverses of infection and incubation periods.
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As an example of SEIR models, consider the 2009-2010 flu pandemic in Istanbul (in June 2009, the
World Health Organization declared A/H1N1 a pandemic).

In the paper “A susceptible-exposed-infected-removed (SEIR) model for the 2009-2010 A/H1N1 epi-
demic in Istanbul” by Funda Samanlioglu, Ayse Humeyra Bilge, Onder Ergonul (arXiv 1205.2497),
this model is used to fit data on medical reports, dates of hospitalization, and recovery or death, from
major Istanbul hospitals. The following best-fit was obtained there:

This is fairly good, qualitatively at least.

The parameters in the model are I0, ν, ε and β, where I0 is the percentage of people infected ini-
tially. The authors assumed for fitting that the number of fatalities was proportional to the number of
removed individuals, and the number of hospitalizations proportional to the number of infections.

The parameters that they found for the best fit to the model were: ν = 0.09, I0 = 10−7.4, ε =
0.32, β = 0.585 and this gave a mean-squared error of 10% and 2.6% to infections and fatalities
respectively.
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2.6 Chemical Kinetics

Elementary reactions (in a gas or liquid) are due to collisions of particles (molecules, atoms).

Particles move at a velocity that depends on temperature (higher temperature⇒ faster).

The law of mass action is:

reaction rates (at constant temperature) are proportional to products of concentrations.

This law may be justified intuitively in various ways, for instance, using an argument like the one that
we presented for disease transmission.

In chemistry, collision theory studies this question and justifies mass-action kinetics.

To be precise, it isn’t enough for collisions to happen - the collisions have to happen in the “right
way” and with enough energy for bonds to break.

For example24 consider the following simple reaction involving a collision between two molecules:
ethene (CH2=CH2) and hydrogen chloride (HCl), which results om chloroethane.

As a result of the collision between the two molecules, the double bond between the two carbons is
converted into a single bond, a hydrogen atom gets attached to one of the carbons, and a chlorine atom
to the other.

But the reaction can only work if the hydrogen end of the H-Cl bond approaches the carbon-carbon
double bond; any other collision between the two molecules doesn’t produce the product, since the
two simply bounce off each other.

The proportionality factor (the rate constant) in the law of mass action accounts for temperature,
probabilities of the right collision happening if the molecules are near each other, etc.

We will derive ordinary differential equations based on mass action kinetics. However, it is important
to remember several points:
• If the medium is not “well mixed” then mass-action kinetics might not be valid.
• If the number of molecules is small, a probabilistic model should be used. Mass-action ODE models
are only valid as averages when dealing with large numbers of particles in a small volume.
• If a catalyst is required for a reaction to take place, then doubling the concentration of a reactants
does not mean that the reaction will proceed twice as fast.25 We later study some catalytic reactions.

24discussion borrowed from http://www.chemguide.co.uk/physical/basicrates/introduction.html
25As an example, consider the following analog of a chemical reaction, happening in a cafeteria: A + B → C, where

A is the number of students, B is the food on the counters, and C represents students with a full tray walking away from
the counter. If each student would be allowed to, at random times, pick food from the counters, then twice the number of
students, twice the number walking away per unit of time. But if there is a person who must hand out food (our “catalyst”),
then there is a maximal rate at which students will leave the counter, a rate determined by how fast the cafeteria worker
can serve each student. In this case, doubling the number of students does not mean that twice the number will walking
away with their food per unit of time.
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2.6.1 Equations

We will use capital letters A,B, . . . for names of chemical substances (molecules, ions, etc), and
lower-case a, b, . . . for their corresponding concentrations.

There is a systematic way to write down equations for chemical reactions, using a graph description
of the reactions and formulas for the different kinetic terms. We discuss this systematic approach
later, but for now we consider some very simple reactions, for which we can write equations directly.
We simply use the mass-action principle for each separate reaction, and add up all the effects.

The simplest “reaction” is one where there is only one reactant, that can degrade26 or decay (as in
radioactive decay), or be transformed into another species, or split into several constituents.

In either case, the rate of the reaction is proportional to the concentration:
if we have twice the amount of substance X in a certain volume, then, per (small) unit of time, a
certain % of the substance in this volume will disappear, which means that the concentration will
diminish by that fraction.
A corresponding number of the new substances is then produced, per unit of time.

So, decay X k−→ · gives the ODE:
dx/dt = −kx ,

a transformation X k−→ Y gives:

dx/dt = −kx
dy/dt = kx ,

and a dissociation reaction Z k−→ X + Y gives:

dx/dt = kz

dy/dt = kz

dz/dt = −kz .

A bimolecular reaction X + Y
k+−→ Z gives:

dx/dt = −k+xy

dy/dt = −k+xy

dz/dt = k+xy

and if the reverse reaction Z
k−−→ X + Y also takes place:

dx/dt = −k+xy + k−z

dy/dt = −k+xy + k−z

dy/dt = k+xy − k−z .
26Of course, “degrade” is a relative concept, because the separate parts of the decaying substance should be taken

account of. However, if these parts are not active in any further reactions, one ignores them and simply thinks of the
reactant as disappearing!
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Note the subscripts being used to distinguish between the “forward” and “backward” rate constants.

Incidentally, another way to symbolize the two reactions X + Y
k+−→ Z and Z

k−−→ X + Y is as
follows:

X + Y
k+−→
←−
k−

Z .

Here is one last example: X + Y
k−→ Z and Z k′−→ X give:

dx/dt = −kxy + k′z

dy/dt = −kxy
dz/dt = kxy − k′z .

Conservation laws are often very useful in simplifying the study of chemical reactions.

For example, take the reversible bimolecular reaction that we just saw:

dx/dt = −k+xy + k−z

dy/dt = −k+xy + k−z

dz/dt = k+xy − k−z .

Since, clearly, d(x + z)/dt ≡ 0 and d(y + z)/dt ≡ 0, then, for every solution, there are constants x0

and y0 such that x+ z ≡ x0 and y+ z ≡ y0. Therefore, once that these constants are known, we only
need to study the following scalar first-order ODE:

dz/dt = k+(x0 − z)(y0 − z)− k−z .

in order to understand the time-dependence of solutions. Once that z(t) is solved for, we can find x(t)
by the formula x(t) = x0 − z(t) and y(t) by the formula y(t) = y0 − z(t).

Note that one is only interested in non-negative values of the concentrations, which translates into the
constraint that 0 ≤ z ≤ min{x0, y0}.27

The equation dz/dt = k+(x0 − z)(y0 − z) − k−z is easily shown to have a unique, and globally
asymptotically stable, positive steady state, subject to the constraint that 0 ≤ z ≤ min{x0, y0}.
(Simply intersect the line u = k−z with the parabola u = k+(x0 − z)(y0 − z), and use a phase-line
argument: degradation is larger than production when to the right of this point, and viceversa.)

We’ll see an example of the use of conservation laws when modeling enzymatic reactions.

2.6.2 Chemical Networks

We next discuss a formalism that allows one to easily write up differential equations associated with
chemical reactions given by diagrams like

2H +O ↔ H2O . (2.6)

27This is a good place for class discussion of necessary and sufficient conditions for forward-invariance of the non-
negative orthant. To be added to notes.
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In general, we consider a collection of chemical reactions that involves a set of ns “species”:

Si, i ∈ {1, 2, . . . ns} .

These “species” may be ions, atoms, or molecules (even large molecules, such as proteins). We’ll just
say “molecules”, for simplicity. For example, (2.6) represents a set of two reactions that involve the
following ns = 3 species (hydrogen, oxygen, water):

S1 = H, S2 = O, S3 = H2O ,

one going forward and one going backward. In general, a chemical reaction network (“CRN”, for
short) is a set of chemical reactionsRj , j ∈ {1, 2, . . . , nr}:

Rj :
ns∑
i=1

αijSi →
ns∑
i=1

βijSi (2.7)

where the αij and βij are some nonnegative integers, called the stoichiometry coefficients.

The species with nonzero coefficients on the left-hand side are usually referred to as the reactants, and
the ones on the right-hand side are called the products, of the respective reaction. (Zero coefficients are
not shown in diagrams.) The interpretation is that, in reaction 1, α11 molecules of species S1 combine
with α21 molecules of species S2, etc., to produce β11 molecules of species S1, β21 molecules of
species S2, etc., and similarly for each of the other nr − 1 reactions.

The forward arrow means that the transformation of reactants into products only happens in the di-
rection of the arrow. For example, the reversible reaction (2.6) is represented by the following CRN,
with nr = 2 reactions:

R1 : 2H +O → H2O

R2 : H2O → 2H +O .

So, in this example,

α11 = 2, α21 = 1, α31 = 0, β11 = 0, β21 = 0, β31 = 1,

and
α12 = 0, α22 = 0, α32 = 1, β12 = 2, β22 = 1, β32 = 0 .

It is convenient to arrange the stoichiometry coefficients into an ns × nr matrix, called the stoichiom-
etry matrix Γ = Γij , defined as follows:

Γij = βij − αij , i = 1, . . . , ns , j = 1, . . . , nr . (2.8)

The matrix Γ has as many columns as there are reactions. Each column shows, for all species (ordered
according to their index i), the net “produced−consumed”. For example, for the reaction (2.6), Γ is
the following matrix:  −2 2

−1 1
1 −1

 .

Notice that we allow degradation reactions like A→ 0 (all β’s are zero for this reaction).
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We now describe how the state of the network evolves over time, for a given CRN. We need to find a
rule for the evolution of the vector: 

[S1(t)]
[S2(t)]

...
[Sns(t)]


where the notation [Si(t)] means the concentration of the species Si at time t. For simplicity, we drop
the brackets and write Si also for the concentration of Si (sometimes, to avoid confusion, we use
instead lower-case letters like si to denote concentrations). As usual with differential equations, we
also drop the argument “t” if it is clear from the context. Observe that only nonnegative concentrations
make physical sense (a zero concentration means that a species is not present at all).

The graphical information given by reaction diagrams is summarized by the matrix Γ. Another ingre-
dient that we require is a formula for the actual rate at which the individual reactions take place.

We denote by Rj(S) be algebraic form of the jth reaction. The most common assumption is that of
mass-action kinetics, where:

Rj(S) = kj

ns∏
i=1

S
αij
i for all j = 1, . . . , nr .

This says simply that the reaction rate is proportional to the products of concentrations of the reactants,
with higher exponents when more than one molecule is needed. The coefficients ki are “reaction
constants” which usually label the arrows in diagrams. Let us write the vector of reactions as R(S):

R(S) :=


R1(S)
R2(S)

...
Rnr(S)

 .

With these conventions, the system of differential equations associated to the CRN is given as follows:

dS

dt
= ΓR(S) . (2.9)

Example

As an illustrative example, let us consider the following set of chemical reactions:

E + P
k1−→
←−
k−1

C
k2−→ E +Q, F +Q

k3−→
←−
k−3

D
k4−→ F + P, (2.10)

which may be thought of as a model of the activation (for instance, by phosphorylation) of a protein
substrate P by an enzyme E; C is an intermediate complex, which dissociates either back into the
original components or into a product (activated protein) Q and the enzyme. The second reaction
transforms Q back into P , and is catalyzed by another enzyme F (for instance, a phosphatase that
removes the phosphorylation). A system of reactions of this type is sometimes called a “futile cycle”,
and reactions of this type are ubiquitous in cell biology. The mass-action kinetics model is then
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obtained as follows. Denoting concentrations with the same letters (P , etc) as the species themselves,
we have the following vector of species, stoichiometry matrix Γ and vector of reaction rates R(S):

S =


P
Q
E
F
C
D

 , Γ =


−1 1 0 0 0 1
0 0 1 −1 1 0
−1 1 1 0 0 0
0 0 0 −1 1 1
1 −1 −1 0 0 0
0 0 0 1 −1 −1

 R(S) =


k1EP
k−1C
k2C
k3FQ
k−3D
k4D

 .

From here, we can write the equations (2.9). For example,
dP

dt
= (−1)(k1EP ) + (1)(k−1C) + (1)(k4D) = k4D − k1EP + k−1C .

Conservation Laws

Let us consider the set of row vectors c such that cΓ = 0. Any such vector is a conservation law,
because

d(cS)

dt
= c

dS

dt
= cΓR(S) = 0

for all t, in other words,
c S(t) = constant

along all solutions (a “first integral” of the motion). The set of such vectors forms a linear subspace
(of the vector space consisting of all row vectors of size ns).

For instance, in the previous example, we have that, along all solutions, one has that

P (t) +Q(t) + C(t) +D(t) ≡ constant

because (1, 1, 0, 0, 1, 1)Γ = 0. Similarly, we have two more linearly independent conservation laws,
namely (0, 0, 1, 0, 1, 0) and (0, 0, 0, 1, 0, 1), so also

E(t) + C(t) and F (t) +D(t)

are constant along trajectories. Since Γ has rank 3 (easy to check) and has 6 rows, its left-nullspace
has dimension three. Thus, a basis of the set of conservation laws is given by the three that we have
found.

2.6.3 Introduction to Enzymatic Reactions

Catalysts facilitate reactions, converting substrates into products, while remaining basically unchanged.

Catalysts may act as “pliers” that place an appropriate stress to help break a bond,
they may bring substrates together, or they may help place a chemical group on a substrate.
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In molecular biology, certain types of proteins, called enzymes, act as catalysts.

Enzymatic reactions are one of the main ways in which information flows in cells.

One important type of enzymatic reaction is phosphorylation, when an enzyme X (called a
kinase when playing this role) transfers a phosphate group (PO4) from a “donor” molecule
such as ATP to another protein Y, which becomes “activated” in the sense that its energy is
increased.

(Adenosine triphosphate (ATP) is a nucleotide that is the major energy currency of the cell:

Figure from Essential Cell Biology, Second Edition, published by Garland Science in 2004; c©by Alberts et al

Once activated, protein Y may then influence other cellular components, including other proteins,
acting itself as a kinase.

Normally, proteins do not stay activated forever; another type of enzyme, called a phosphatase, even-
tually takes away the phosphate group.

In this manner, signaling is “turned off” after a while, so that the system is ready to detect new signals.

Chemical and electrical signals from the outside of the cell are sensed by receptors.

Receptors are proteins that act as the cell’s sensors of outside conditions, relaying information to the
inside of the cell.

In some ways, receptors may be viewed as enzymes: the “substrate” is an extracellular ligand (a
molecule, usually small, outside the cell, for instance a hormone or a growth factor), and the “prod-
uct’ might be, for example, a small molecule (a second messenger) that is released in response to
the binding of ligand to the receptor. (Or, we may view a new conformation of the receptor as the
“product” of the reaction.)

This release, in turn, may trigger signaling through a series of chemical reactions inside the cell.

Cascades and feedbacks involving enzymatic (and other) reactions, as well as the action of proteins
on DNA (directing transcription of genes) are “life”.

Below we show one signaling pathway, extracted from a recent paper by Hananan and Weinberg
on cancer research. It describes the top-level schematics of the wiring diagram of the circuitry (in
mammalian cells) responsible for growth, differentiation, and apoptosis (commands which instruct
the cell to die). Highlighted in red are some of the genes known to be functionally altered in cancer
cells. Almost all the main species shown are proteins, acting many of them as enzymes in catalyzing
“downstream” reactions.
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Some More on Receptors

As shown in the above diagram, most receptors are designed to recognize a specific type of ligand.

Receptors are usually made up of several parts.

• An extracellular domain (“domains” are parts of a protein) is exposed to the exterior of the cell, and
this is where ligands bind.

• A transmembrane domain serves to “anchor” the receptor to the cell membrane.

• A cytoplasmic domain helps initiate reactions inside the cell in response to exterior signals, by
interacting with other proteins.

As an example, a special class of receptors which constitute a common target of pharmaceutical drugs
are G-protein-coupled receptors (GPCR’s).

The name of these receptors arises from the fact that, when their conformation changes in response to
a ligand binding event, they activate G-proteins, so called because they employ guanine triphosphate
(GTP) and guanine diphosphate (GDP) in their operation.

GPCR’s are made up of several subunits (Gα,Gβ ,Gγ) and are involved in the detection of metabolites,
odorants, hormones, neurotransmitters, and even light (rhodopsin, a visual pigment).
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2.6.4 Differential Equations

The basic elementary reaction is:

S + E
k1−→
←−
k−1

C
k2−→ P + E

and therefore the equations that relate the concentrations of substrate, (free) enzyme, complex (en-
zyme with substrate together), and product are:

ds

dt
= k−1c− k1se

de

dt
= (k−1 + k2)c− k1se

dc

dt
= k1se− (k−1 + k2)c

dp

dt
= k2c

which is a 4-dimensional system.
Since the last equation, for product formation, does not feed back into the first three,
we can simply ignore it at first, and later, after solving for c(t), just integrate so as to get p(t).

Moreover, since de
dt

+ dc
dt
≡ 0, we also know that e+ c is constant. We will write “e0” for this sum:

e(t) + c(t) = e0 .

(Often c(0) = 0 (no substrate), so that e0 = e(0), the initial concentration of free enzyme.)

So, we can eliminate e from the equations:

ds

dt
= k−1c− k1s(e0 − c)

dc

dt
= k1s(e0 − c)− (k−1 + k2)c .

We are down to two dimensions, and could proceed using the methods that we have been discussing.

However, Leonor Michaelis and Maud Leonora Menten formulated in 1913 an approach that allows
one to reduce the problem even further, by doing an approximation. Next, we review this approach,
as reformulated by Briggs and Haldane in 192528, and interpret it in the more modern language of
singular perturbation theory.

Although a two-dimensional system is not hard to study, the reduction to one dimension is very useful:
• When “connecting” many enzymatic reactions, one can make a similar reduction for each one of
the reactions, which provides a great overall reduction in complexity.
• It is often not possible, or it is very hard, to measure the kinetic constants (k1, etc), but it may be
easier to measure the parameters in the reduced model.

28Michaelis and Menten originally made an the “equilibrium approximation” k−1c(t) − k1s(t)e(t) = 0 in which one
assumes that the first reaction is in equilibrium. This approximation is very hard to justify. The Briggs and Haldane
approach makes a different approximation. The final form of the production rate (see later) turns out to be algebraically
the same as in the original Michaelis and Menten work, but the parameters have different physical interpretations in terms
of the elementary reactions.
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2.6.5 Quasi-Steady State Approximations and Michaelis-Menten Reactions

Let us write
ds

dt
= k−1c− k1s(e0 − c)

dc

dt
= k1s(e0 − c)− (k−1 + k2)c = k1

[
s e0 − (Km + s)c

]
, where Km =

k−1 + k2

k1

.

The MM approximation amounts to setting dc/dt = 0. The biochemical justification is that, after a
transient period during which the free enzymes “fill up,” the amount complexed stays more or less
constant.

This allows us, by solving the algebraic equation:

s e0 − (Km + s)c = 0

to express c in terms of s:
c =

s e0
Km + s

. (2.11)

We then have, for the production rate:
dp

dt
= k2 c =

Vmaxs

Km + s
. (2.12)

Also, substituting into the s equation we have:

ds

dt
= k−1

s e0
Km + s

− k1s

(
e0 −

s e0
Km + s

)
= − Vmaxs

Km + s
(2.13)

where we denote Vmax = k2e0. If we prefer to explicitly show the role of the enzyme as an “input”,
we can write these two equations as follows:

ds

dt
= −e0

k2 s

Km + s
dp

dt
= e0

k2 s

Km + s

showing the rate at which substrate gets transformed into product with the help of the enzyme.

This is all very nice, and works out well in practice, but the mathematical justification is flaky: setting
dc/dt = 0 means that c is constant. But then, the equation c = s e0

Km+s
implies that s must be constant,

too. Therefore, also ds/dt = 0.

But then Vmaxs
Km+s

= −ds/dt = 0, which means that s = 0. In other words, our derivation can only be
right if there is no substrate, so no reaction is taking place at all!

One way to justify these derivations is as follows. Under appropriate conditions, s changes much
more slowly than c.
So, as far as c is concerned, we may assume that s(t) is constant, let us say s(t) = s̄.
Then, the equation for c becomes a linear equation, which converges to its steady state, which is given
by formula (2.11) (with s = s̄) obtained by setting dc/dt = 0.
Now, as s changes, c “catches up” very fast, so that this formula is always (approximately) valid.
From the “point of view” of s, the variable c is always catching up with its expression given by
formula (2.11), so, as far as its slow movement is concerned, s evolves according to formula (2.13).
(An exception is at the start of the whole process, when c(0) is initially far from its steady state value.
This is the “boundary layer behavior”.)
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2.6.6 A quick intuition with nullclines

Let us introduce the following rescaled variables:

x =
s

s0
, y =

c

e0
,

and write also ε = e0/s0, where we think of s0 as the initial concentration s(0) of substrate.
We will make the assumption that the initial concentration e0 of enzyme e is small compared to that of
substrate, i.e. that the ratio ε is small29. Note that x, y, ε are “non-dimensional” variables.

It is clear from the equations that, if we start with c(0) = 0, then s(t) is always ≤ s0, and c(t) is
always ≤ e0. Therefore, 0 ≤ x(t) ≤ 1 and 0 ≤ y(t) ≤ 1.

Using these new variables, the equations become:

dx

dt
= ε [k−1 y − k1s0 x (1− y)]

dy

dt
= k1

[
s0 x − (Km + s0 x)y

]
.

The y nullcline is the graph of:

y =
s0 x

Km + s0 x
(2.14)

(which is the same as saying that the c nullcline is the graph of c =
se0

Km + s
) and the x nullcline is the

graph of:

y =
s0 x

k−1

k1
+ s0 x

. (2.15)

Now, since k−1

k1
< k−1+k2

k1
= Km, it follows that the y-nullcline lies under the x-nullcline.

In addition, using that ε is small, we can say that the vector field should be quite “vertical” (small x
component compared to y component), at least if we are far from the y-nullcline.

(The x component is small because ε is small, since x and y are both bounded by one. The y compo-
nent will be ≈ 0 when we are near the y-nullcline.)

It is easy to see then that the phase plane looks as follows, qualitatively (two typical trajectories are
shown):

29It would not make sense to just say that the amount of enzyme is “small,” since the meaning of “small” depends on
units. On the other hand, the ratio makes sense, assuming of course that we quantified concentrations of enzyme and
substrate in the same units. Typical values for ε may be in the range 10−2 to 10−7.
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In fact, with s0 = e0 = k− = k−1 = k2 = 1, this is the actual phase plane (nullclines and vector field
shown).

It was generated using the following MATLAB code:
eps = 0.1;s0 = 1;
[X,Y]=meshgrid(0:0.1:1, 0:0.1:1);
z1= eps.*(Y - s0.*X.*(1-Y));z2= s0.*X-((2+s0.*X).*Y);
quiver(X,Y,z1,z2,’LineWidth’,2)
title(’phase plane’)
hold;
x=0:0.1:1;
plot(x,x./(2.+x),’LineWidth’,2,’color’,’r’)
plot(x,x./(1.+x),’LineWidth’,2,’color’,’r’)

The key point is that (in these coordinates) trajectories initially move almost “vertically” toward the
y-nullcline, and subsequently stay very close to this nullcline, for large times t. This means that, for

large t, c(t) ≈ s(t) e0
Km + s(t)

, which is what the MM approximation (2.11) claims.
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Using “c(t) = s(t) e0
Km+s(t)

” is called a “quasi-steady state approximation,” because it formally looks like
“dc/dt = 0,” which would be like saying that the c component is at the value that it would be if the
system were at steady state (which it really isn’t).

To make all this more precise mathematically, one needs to do a “time scale analysis” which studies
the dynamics from c’s point of view (slow time scale) and s’s (fast time scale) separately. The next
few sections provide some more details. The reader may wish to skip to subsection 2.6.9.

2.6.7 Fast and Slow Behavior

Let us start again from the equations
dx

dt
= ε [k−1 y − k1s0 x (1− y)]

dy

dt
= k1

[
s0 x − (Km + s0 x)y

]
.

in the coordinates x = s
s0

, y = c
e0

.

Since ε ≈ 0, we make the approximation “ε= 0” and substitute ε= 0 into these equations. (Note that
x and y are bounded by 1, so they remain bounded.)

So dx/dt = 0, which means that x(t) equals a constant x̄, and hence the second equation becomes:

dc

dt
= k1

[
e0 s̄ − (Km + s̄)c

]
(substituting s0x = s and e0y = c to express in terms of the original variables, and letting s̄ = s0x̄).
In this differential equation, c(t) converges as t→∞ to the steady state

c =
e0 s̄

Km + s̄

which is also obtained by setting dc/dt = 0 in the original equations if s(t) ≡ s̄ is assumed constant.

(Observe that the speed of convergence is determined by k1(Km + s̄), which does not get small as
ε→ 0.)

In this way, we again obtain formula (2.12) for dp/dt (s̄ is the “present” value of s).

This procedure is called a “quasi-steady state approximation” (QSS), reflecting the fact that one re-
places c by its “steady state” value e0 s

Km+s
obtained by pretending that s would be constant. This is not

a true steady state of the original equations, of course.

In summary, assuming ε ≈ 0, we made the approximation “ε= 0” leading to dx/dt ≡ 0 and x(t) ≡ x̄.

However, “ε ≈ 0” is not the same as “ε= 0”, so we cannot really say that dx/dt = 0. Eventually,
x(t) changes!

Yet, the idea still works, but we need to make a more careful argument using time-scale separation:
the key point is that c approaches its steady state value fast relative to the movement of s, which may,
therefore, supposed to be constant while this convergence happens.

So we “iterate” the reasoning: s moves a bit, using c’s steady state value. Then, c “reacts” to this new
value of s, converging to a new steady state value (corresponding to the new s̄), and the process is
iterated in this fashion.

The main problem with saying things in this manner is that, of course, it is not true that c and s take
turns moving, but both move simultaneously (although at very different speeds).
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Long-time behavior (fast time scale)

In order to be more precise, it is convenient to make a change of time scale, using:

τ =
e0
s0
k1t .

We may think of τ as a fast time scale, because τ = εk1t, and therefore τ is small for any given t.

For example, if εk1 = 1/3600 and t is measured in seconds, then τ = 10 implies that t = 36000; thus,
“τ = 10” means that ten hours have elapsed, while “t = 10” means that only ten seconds elapsed.

Substituting s = s0x, c = e0y, and

dx

dτ
=

1

e0k1

ds

dt
,

dy

dτ
=

s0
e2
0k1

dc

dt
,

we have:

dx

dτ
=

k−1

k1

y − s0 x (1− y)

ε
dy

dτ
= s0 x − (Km + s0 x)y .

Still assuming that ε� 1, we make an approximation by setting ε = 0 in the second equation:

ε
dy

dτ
= s0 x − (Km + s0 x)y

leading to the algebraic equation s0x − (Km + s0 x)y = 0 which we solve for y = y(x) = s0x
Km+s0 x

,
or equivalently

c =
e0s

Km + s
, (2.16)

and finally we substitute into the first equation:

dx

dτ
=

k−1

k1

y − s0 x (1− y) = −(−k−1 +Kmk1) s0 x

k1(Km + s0 x)
= − k2 s0 x

k1(Km + s0 x)

(recall that Km = k−1+k2
k1

).

In terms of the original variable s=s0x, using
ds

dt
= e0k1

dx

dτ
, and recalling that Vmax = k2e0, we have

re-derived (2.13):
ds

dt
= − Vmax s

Km + s
.

The important point to realize is that, after an initial convergence of c (or y) to its steady state, once
that c has “locked into” its steady state (2.16), it quickly “catches up” with any (slow!) changes in s,
and this catch-up is not “visible” at the time scale τ , so c appears to track the expression (2.16).
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Short initial-time behavior (slow time scale)

One special case is that of small initial times t, when c (or y) has not yet converged to a steady state.
For t ≈ 0, we may assume that s̄ = s0, and therefore the equation for c is approximated by:

dc

dt
= k1

[
e0 s0 − (Km + s0)c

]
. (2.17)

One calls this the boundary layer equation, because it describes what happens near initial times
(boundary of the time interval).

Putting it all Together

Let’s suppose that s(0) = s0 and c(0) = c0.

(1) As we remarked earlier, for t ≈ 0 we have equation (2.17) (with initial condition c(0) = c0).

(2) For t large , we have the approximations given by (2.16) for c, and (2.13) for s.

The “Method of Matched Asymptotic Expansions” (not covered here) is used to patch the inner or
boundary-layer solution with the outer or fast time scale solution in order to obtain a globally valid
solution.

The approximation is best if ε is very small, but it works quite well even for moderate ε.
Here is a numerical example.

Let us take k1 = k−1 = k2 = e0 = 1 and s0 = 10, so that ε = 0.1. Note that Km = 2 and Vmax = 1.

We show below, together, the following plots:

• in black, the component c(t) of the true solution of the system

ds

dt
= c− s(1− c) , dc

dt
= s− (2 + s)c

with initial conditions s(0) = s0, c(0) = 0,

• in red, c = s/(2 + s), where s(t) solves ds
dt

= −s/(2 + s) (slow system) with s(0) = s0,

• in blue, the solution of the fast system at the initial time, dc
dt

= s0 − (2 + s0)c, with c(0) = 0.

Since it is difficult to see the curves for small t, we show plots both for t ∈ [0, 25] and for t ∈ [0, 0.5]:



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 80

As expected, the blue curve approximates well for small t and the red one for larger t.

FYI, here is the Maple code that was used (for Tmax = 0.5 and 25):

restart:with(plots):with(DEtools):
s0:=10:Tmax:=0.5:N:=500:
sys:=diff(s(t),t)=c(t)-s(t)*(1-c(t)),diff(c(t),t)=s(t)-(2+s(t))*c(t):
sol:=dsolve(sys,s(0)=s0,c(0)=0,type=numeric):
plot1:=odeplot(sol,[[t,c(t)]],0..Tmax,numpoints=N,color=black,thickness=3):
sysslow:= diff(s(t),t) = - s(t)/(2+s(t)):
solslow:=dsolve(sysslow,s(0)=s0,type=numeric):
solns:= t→ op(2,op(2,solslow(t))):
plot2:=plot(solns/(2+solns),0..Tmax,numpoints=N,color=red,thickness=3):
sysfast:=diff(c(t),t)=s0-(2+s0)*c(t):
solfast:=dsolve(sysfast,c(0)=0,type=numeric):
plot3:=odeplot(solfast,[[t,c(t)]],0..Tmax,numpoints=N,color=blue,thickness=3):
display(plot1,plot2,plot3);

2.6.8 Singular Perturbation Analysis

The advantage of deriving things in this careful fashion is that we have a better understanding of what
went into the approximations. Even more importantly, there are methods in mathematics that help to
quantify the errors made in the approximation. The area of mathematics that deals with this type of
argument is singular perturbation theory.

The theory applies, in general, to equations like this:

dx

dt
= f(x, y)

ε
dy

dt
= g(x, y)

with 0 < ε � 1. The components of the vector x are called slow variables, and those of y fast
variables.

The terminology is easy to understand: dy/dt = (1/ε)(. . .) means that dy/dt is large, i.e., that y(t) is
“fast,” and by comparison x(t) is slow.30

The singular perturbation approach starts by setting ε = 0,
then solving (if possible) g(x, y) = 0 for y = h(x) (that is, g(x, h(x)) = 0),
and then substituting back into the first equation.

Thus, one studies the reduced system:

dx

dt
= f(x, h(x))

on the “slow manifold” defined by g(x, y) = 0.

30The theory covers also multiple, not just two, time scales, as well partial differential equations where the domain is
subject to small deformations, and many other situations as well.
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There is a rich theory that allows one to mathematically justify the approximations.

A particularly useful point of view us that of “geometric singular perturbation theory.” We will not
cover any of that in this course, though.

2.6.9 Inhibition

Let us discuss next inhibition, as a further example involving enzymes.

In competitive inhibition, a second substrate, called an inhibitor, is capable of binding to an enzyme,
thus block binding of the primary substrate.

If the primary substrate cannot bind, no “product” (such as the release of signaling molecules by a
receptor) can be created.

For example, the enzyme may be a cell surface receptor, and the primary substrate might be a growth
factor, hormone, or histamine (a protein released by the immune system in response to pollen, dust, etc).

Competitive inhibition is one mechanism by which drugs act. For example, an inhibitor drug will
attempt to block the binding of the substrate to receptors in cells that can react to that substrate, such
as for example histamines to lung cells. Many antihistamines work in this fashion, e.g. Allegra.31

A simple chemical model is as follows:

S + E
k1−→
←−
k−1

C1
k2−→ P + E I + E

k3−→
←−
k−3

C2

31In pharmacology, an agonist is a ligand which, when bound to a receptor, triggers a cellular response. An antagonist
is a competitive inhibitor of an agonist. when we view the receptor as an enzyme and the agonist as a substrate.
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where C1 is the substrate/enzyme complex, C2 the inhibitor/enzyme complex, and I the inhibitor.

In terms of ODE’s, we have:
ds

dt
= k−1c1 − k1se

de

dt
= (k−1 + k2)c1 + k−3c2 − k1se− k3ie

di

dt
= k−3c2 − k3ie

dc1

dt
= k1se− (k−1 + k2)c1

dc2

dt
= k3ie− k−3c2

dp

dt
= k2c1 .

It is easy to see that c1 + c2 + e is constant (it represents the total amount of free or bound enzyme,
which we’ll denote as e0). This allows us to eliminate e from the equations. Furthermore, as before,
we may first ignore the equation for p. We are left with a set of four ODE’s:

ds

dt
= k−1c1 − k1s(e0 − c1 − c2)

di

dt
= k−3c2 − k3ie

dc1

dt
= k1s(e0 − c1 − c2)− (k−1 + k2)c1

dc2

dt
= k3i(e0 − c1 − c2)− k−3c2 .

(We could also use a conservation law i + c2 ≡ i0 = total amount of inhibitor, free or bound to
enzyme, to reduce to just three equations, but it is better for time-scale separation purposes not to do
so.) One may now do a quasi-steady-state approximation, assuming that the enzyme concentrations
are small relative to substrate, amounting formally to setting dc1/dt = 0 and dc2/dt = 0. Doing so
gives:

c1 =
Kie0s

Kmi+Kis+KmKi

(
Km =

k−1 + k2

k1

)
c2 =

Kme0i

Kmi+Kis+KmKi

(
Ki =

k−3

k3

)
.

The product formation rate is dp/dt = k2c1, so, again with Vmax = k2e0, one has the approximate
formula:

dp

dt
=

Vmax s

s+Km(1 + i/Ki)
The formula reduces to the previous one if there is no inhibitor (i = 0).

We see that the rate of product formation is smaller than if there had been no inhibition, given the
same amount of substrate s(t) (at least if i�1, k3�1, k−3�1).

But for s very large, the rate saturates at dp/dt = Vmax, just as if there was no inhibitor (intuitively, there
is so much s that i doesn’t get chance to bind and block). Thus, to affect the amount of product being
formed when the substrate amounts are large, potentially a huge amount of drug (inhibitor) would
have to be administered! Allosteric inhibition, described next, does not have the same disadvantage.
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2.6.10 Allosteric Inhibition

In allosteric inhibition32, an inhibitor does not bind in the same place where the catalytic activity
occurs, but instead binds at a different effector site (other names are regulatory or allosteric site),
with the result that the shape of the enzyme is modified. In the new shape, it is harder for the enzyme
to bind to the substrate.

A slightly different situation is if binding of substrate can always occur, but product can only be
formed (and released) if I is not bound. We model this last situation, which is a little simpler.
Also, for simplicity, we will assume that binding of S or I to E are independent of each other.
(If we don’t assume this, the equations are still the same, but we need to introduce some more kinetic
constants k’s.)

A reasonable chemical model is, then:

E + S
k1−→
←−
k−1

ES
k2−→ P + E

EI + S
k1−→
←−
k−1

EIS

E + I
k3−→
←−
k−3

EI

ES + I
k3−→
←−
k−3

EIS

where “EI” denotes the complex of enzyme and inhibitor, etc.

It is possible to show that there results under quasi-steady state approximation a rate

dp

dt
=

Vmax

1 + i/Ki
· s

2 + as+ b

s2 + cx+ d

for some suitable numbers a = a(i), . . . and a suitably defined Ki.

Notice that the maximal possible rate, for large s, is lower than in the case of competitive inhibition.

One intuition is that, no matter what is the amount of substrate, the inhibitor can still bind, so maximal
throughput is affected.

32Merriam-Webster: allosteric: “all+steric”; and steric means “relating to or involving the arrangement of atoms in
space” and originates with the word “solid” in Greek
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2.6.11 A digression on gene expression

A very simple model of gene expression is as follows.

We let D, M , and P denote respectively the concentration of active promoter sites (“concentration”
in the sense of proportion of active sites in a population of cells), mRNA transcript, and protein.

The network of reactions is:

D
α−→D +M , M

β−→0 , M
θ−→M + P , P

δ−→0

which represent, respectively, transcription and degradation of mRNA, translation, and degradation
(or dilution due to cell growth) in protein concentrations.

Remark: This model ignores a huge amount of biochemistry and biophysics, such as the dynamics of
mRNA polymerase’s transcriptional process.

Nonetheless, it is a very useful model, and the one most often employed.

Using mass-action kinetics, we have the following rates:

R1 = αD , R2 = βM , R3 = θM , R4 = δP

for some positive constants α, β, θ, δ. The stoichiometry matrix is:

Γ =

 0 0 0 0
1 −1 0 0
0 0 1 −1

 .

Note that, since D is not being changed, we could equally well, in this model, replace the first two

reactions by 0
α−→M β−→0, and drop D from the description. However, we include D because we will

consider repression below.

A promoter region is a part of the DNA sequence of a chromosome that is recognized by RNA poly-
merase. In prokaryotes, the promoter region consists of two short sequences placed respectively 35
and 10 nucleotides before the start of the gene. Eukaryotes require a far more sophisticated transcrip-
tional control mechanism, because different genes may be only active in particular cells or tissues at
particular times in an organism’s life; promoters act in concert with enhancers, silencers, and other
regulatory elements
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Now let’s add repression to the chemical network model.

Suppose that a molecule (transcription factor) R can repress transcription by binding to DNA, hence
affecting the activity of the promoter.

The model then will add an equation:

D +R
k1−→
←−
k−1

C

representing complex formation between promoter and repressor.

This is closely analogous to enzyme inhibition. There is an exercise that asks for an analysis of this
model.

2.6.12 Cooperativity

Let’s take a situation where n molecules of substrate must first get together with the enzyme in order
for the reaction to take place:

nS + E
k1−→
←−
k−1

C
k2−→ P + E

This is not a very realistic model, since it is unlikely that n+1 molecules may “meet” simultaneously.

It is, nonetheless, a simplification of a more realistic model in which the bindings may occur in
sequence.

One says that the cooperativity degree of the reaction is n, because n molecules of S must be present
for the reaction to take place.

Highly cooperative reactions are extremely common in biology, for instance, in ligand binding to cell
surface receptors, or in binding of transcription factors to DNA to control gene expression.

We only look at this simple model in this course. We have these equations:

ds

dt
= nk−1c− nk1s

ne

de

dt
= (k−1 + k2)c− k1s

ne

dc

dt
= k1s

ne− (k−1 + k2)c

dp

dt
= k2c
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Doing a quasi-steady state approximation, under the assumption that enzyme concentration is small
compared to substrate, we may repeat the previous arguments and look at the c-nullcline, which leads
to the same expression as earlier for product formation, except that a different exponent appears:

dp

dt
=

Vmax s
n

Km + sn

The integer n is called the Hill coefficient.

One may determine Vmax, n, and Km experimentally, from knowledge of the rate of product formation
dp/dt as a function of current substrate concentration (under the quasi-steady state approximation
assumption).

First, Vmax may be estimated from the rate dp/dt corresponding to s → ∞. This allows the computa-
tion of the quantity dp/dt

Vmax−dp/dt . Then, one observes that the following equality holds (solve for sn and
take logs):

n ln s = lnKm + ln

(
dp/dt

Vmax − dp/dt

)
.

Thus, by a linear regression of ln
(

dp/dt
Vmax−dp/dt

)
versus ln s, and looking at slope and intersects, n and

Km can be estimated.

Since the cooperative mechanism may include many unknown and complicated reactions, including
very complicated allosteric effects, it is not uncommon for fractional powers to be appear (even if the
above model makes no sense in a fractional situation) when fitting parameters.

One often writes the product formation rate, redefining the constant Km, as dp
dt

= Vmax sn

Kn
m +sn

.

This has the advantage that, just as earlier, Km has an interpretation as the value of substrate s for
which the rate of formation of product is half of Vmax.

For our subsequent studies, the main fact that we observe is that, for n > 1, one obtains a “sigmoidal”
shape for the formation rate, instead of a “hyperbolic” shape.

This is because, if f(s) = Vmaxsn

Kn
m +sn

, then f ′(0) > 0 when n = 1, but f ′(0) = 0 if n > 1.

In other words, for n > 1, and as the function is clearly increasing, the graph must start with
concavity-up. But, since the function is bounded, the concavity must change to negative at some
point.

Here are graphs of two formation rates, one with n = 1 (hyperbolic) and one with n = 3 (sigmoidal):

Cooperativity plays a central role in allowing for multi-stable systems, memory, and development, as
we’ll see soon.

Here is a more or less random example from the literature33 which shows fits of Vmax and n (“nH” for
“Hill”) to various data sets corresponding to an allosteric reaction.

33Ian J. MacRae et al., “Induction of positive cooperativity by amino acid replacements within the C-terminal domain
of Penicillium chrysogenum ATP sulfurylase,” J. Biol. Chem., Vol. 275, 36303-36310, 2000
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(Since you asked: the paper has to do with an intracellular reaction having to do with the incorporation
of inorganic sulfate into organic molecules by sulfate assimilating organisms; the allosteric effector is
PAPS, 3’-phosphoadenosine-5’-phosphosulfate.)

The fit to the Hill model is quite striking.
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2.7 Multi-Stability

2.7.1 Hyperbolic and Sigmoidal Responses

Let us now look at the enzyme model again, but this time assuming that the substrate is not being
depleted.

This is not as strange a notion as it may seem.

For example, in receptor models, the “substrate” is ligand, and the “product” is a different chemical
(such as a second messenger released inside the cell when binding occurs), so the substrate is not
really “consumed.”

Or, substrate may be replenished and kept at a certain level by another mechanism.

Or, the change in substrate may be so slow that we may assume that its concentration remains constant.

In this case, instead of writing

S + E
k1−→
←−
k−1

C
k2−→ P + E ,

it makes more sense to write

E
k1s−→
←−
k−1

C
k2−→ P + E .

The equations are as before:

de

dt
= (k−1 + k2)c− k1se

dc

dt
= k1se− (k−1 + k2)c

dp

dt
= k2c

except for the fact that we view s as a constant.

Repeating exactly all the previous steps, a quasi-steady state approximation leads us to the product
formation rate:

dp

dt
=

Vmax s
n

Kn
m + sn

with Hill coefficient n = 1, or n > 1 if the reaction is cooperative.

Next, let us make things more interesting by adding a degradation term −λp.

In other words, we suppose that product is being produced, but it is also being used up or degraded,
at some linear rate λp, where λ is some positive constant.

We obtain the following equation:

dp

dt
=

Vmax s
n

Kn
m + sn

− λp

for p(t).

As far as p is concerned, this looks like an equation dp
dt

= µ−λp, so as t→∞ we have that p(t)→ µ
λ

.
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Let us take λ = 1 just to make notations easier.34 Then the steady state obtained for p is:

p(∞) =
Vmax s

n

Kn
m + sn

Let us first consider the case n = 1.

By analogy, if s would be the displacement of a slider or dial, a light-dimmer behaves in this way:

the steady-state as a function of the “input” concentration s (which we are assuming is some constant)
is graded, in the sense that it is proportional to the parameter s (over a large range of values s;
eventually, it saturates).

The case n = 1 gives what is called a hyperbolic response, in contrast to sigmoidal response that
arises from cooperativity (n > 1).

As n gets larger, the plot of Vmaxsn

Kn
m +sn

becomes essentially a step function with a transition at s = Km.

Here are plots with Vmax = 1, Km = 0.5, and n = 3, 20:

The sharp increase, and saturation, means that a value of s which is under some threshold (roughly,
s < Km) will not result in an appreciable result (p ≈ 0, in steady state) while a value that is over this
threshold will give an abrupt change in result (p ≈ Vmax, in steady state).

A “binary” response is thus produced from cooperative reactions.

The behavior of closer to that of a doorbell: if we don’t press hard enough, nothing happens;
if we press with the right amount of force (or more), the bell rings.

Ultrasensitivity

Sigmoidal responses are characteristic of many signaling cascades, which display what biologists call
an ultrasensitive response to inputs. If the purpose of a signaling pathway is to decide whether a gene

34If λ is arbitrary, just replace Vmax by Vmax/λ everywhere.
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should be transcribed or not, depending on some external signal sensed by a cell, for instance the
concentration of a ligand as compared to some default value, such a binary response is required.

Cascades of enzymatic reactions can be made to display ultrasensitive response, as long as at each
step there is a Hill coefficient n > 1, since the derivative of a composition of functions f1 ◦f2 ◦ . . .◦fk
is, by the chain rule, a product of derivatives of the functions making up the composition.

Thus, the slopes get multiplied, and a steeper nonlinearity is produced. In this manner, a high effective
cooperativity index may in reality represent the result of composing several reactions, perhaps taking
place at a faster time scale, each of which has only a mildly nonlinear behavior.

2.7.2 Adding Positive Feedback

Next, we build up a more complicated situation by adding feedback to the system.

Let us suppose that the substrate concentration is not constant, but instead it depends monotonically
on the product concentration.35

For example, the “substrate” smight represent a transcription factor which binds to DNA and instructs
the production of mRNA for a protein p, and the protein p, in turn, instructs the transcription of s.

Or, possibly, p = s, meaning that p serves to enhance its own transcription. (autocatalytic process).

The effect of p on s may be very complex, involving several intermediaries.
However, since all we want to do here is to illustrate the main ideas, we’ll simply say that s(t) =
αp(t), for some constant α.

Therefore, the equation for p becomes now:

dp

dt
=

Vmax (αp)n

Kn
m + (αp)n

− λp

or, if we take for simplicity36 α = 1 and λ = 1:

dp

dt
=

Vmax p
n

Kn
m + pn

− p .

What are the possible steady states of this system with feedback?

Let us analyze the solutions of the differential equation, first with n = 1.
We plot the first term (formation rate) together with the second one (degradation):

Observe that, for small p, the formation rate is larger than the degradation rate,
while, for large p, the degradation rate exceeds the formation rate.
Thus, the concentration p(t) converges to a unique intermediate value.

35If we wanted to give a careful mathematical argument, we’d need to do a time-scale separation argument in detail.
We will proceed very informally.

36Actually, we can always rescale p and t and rename parameters so that we have this simpler situation, anyway.
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Bistability arises from sigmoidal formation rates

In the cooperative case (i.e., n > 1), however, the situation is far more interesting!

• for small p the degradation rate is larger than the formation rate, so the concentration p(t) converges
to a low value,

• but for large p the formation rate is larger than the degradation rate, and so the concentration p(t)
converges to a high value instead.

In summary, two stable states are created, one “low” and one “high”, by this interaction of formation
and degradation, if one of the two terms is sigmoidal.
(There is also an intermediate, unstable state.)

Instead of graphing the formation rate and degradation rate separately, one may (and we will, from
now on) graph the right hand side

Vmax p
n

Kn
m + pn

− p

as a function of p. From this, the phase line can be read-out, as done in your ODE course.

For example, here is the graph of
Vmax p

n

Kn
m + pn

− p

with Vmax = 3, Km = 1, and n = 2.

The phase line is as follows:

where A = 0, B = 3/2− 1/2 ∗ 5(1/2) ≈ 0.38, and C = 3/2 + 1/2 ∗ 5(1/2) ≈ 2.62.

We see that A and C are stable (i.e., sinks) and the intermediate point B is a unstable (i.e., a source)

2.7.3 Cell Differentiation and Bifurcations

In unicellular organisms, cell division results in cells that are identical to each other and to the original
(“mother”) cell. In multicellular organisms, in contrast, cells differentiate.
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Since all cells in the same organism are genetically identical, the differences among cells must result
from variations of gene expression.

A central question in developmental biology is: how are these variations established and maintained?

A possible mechanism by which spatial patterns of cell differentiation could be specified during em-
bryonic development and regeneration is based on positional information.37 Cells acquire a positional
value with respect to boundaries, and then use this “coordinate system” information during gene ex-
pression, to determine their fate and phenotype.
(Daughter cells inherit as “initial conditions” the gene expression pattern of the mother cells, so that
a developmental history is maintained.)

In other words, the basic premise is that position in the embryo determines cell fate.
But how could this position be estimated by each individual cell?

One explanation is that there are chemicals, called morphogens, which are nonuniformly distributed.
Typically, morphogens are RNA or proteins.
They instruct cells to express certain genes, depending on position-dependent concentrations (and
slopes of concentrations, i.e. gradients).
When different cells express different genes, the cells develop into distinct parts of the organism.

An important concept is that of polarity: opposite ends of a whole organism or of a given tissue
(or sometimes, of a single cell) are different, and this difference is due to morphogen concentration
differences.

Polarity is initially determined in the embryo.
It may be established initially by the site of sperm penetration, as well as environmental factors such
as gravity or pH.

The existence of morphogens and their role in development were for a long time just an elegant math-
ematical theory, but recent work in developmental biology has succeeded in demonstrating that em-
bryos do in fact use morphogen gradients. This has been shown for many different species, although
most of the work is done in fruit flies.38

Using mathematical models of morphogens and positional information, it is in principle possible to
predict how mutations affect phenotype. Indeed, the equations might predict, say, that antennae in
fruit flies will grow in the wrong part of the body, as a consequence of a mutation. One can then
perform the actual mutation and validate the prediction by letting the mutant fly develop.

How can small differences in morphogen lead to abrupt changes in cell fate?

For simplicity, let us think of a “wormy” one-dimensional organism, but the same ideas apply to a full
3-d model.

37The idea of positional information is an old one in biology, but it was Louis Wolpert in 1971 who formalized it, see:
Lewis, J., J.M. Slack, and L. Wolpert, “Thresholds in development,” J. Theor. Biol. 1977, 65: 579-590.
A good, non-mathematical, review article is “One hundred years of positional information” by Louis Wolpert, appeared
in Trends in Genetics, 1996, 12:359-64.

38A nice expository article (focusing on frogs) is: Jeremy Green, “Morphogen gradients, positional information, and
Xenopus: Interplay of theory and experiment,” Developmental Dynamics, 2002, 225: 392-408.
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?
-

cell # 1 cell # 2 cell # k cell # N

signal highest here

signal lower

We suppose that each cell may express a protein P whose level (concentration, if you wish) “p”
determines a certain phenotypical (i.e., observable) characteristic.

As a purely hypothetical and artificial example, it may be the case that P can attain two very distinct
levels of expression: “very low” (or zero) or “very high,” and that a cell will look like a “nose” cell if
p is high, and like a “mouth” cell if p is low.39

Moreover, we suppose that a certain morphogen S (we use S for “signal”) affects the expression
mechanism for the gene for P , so that the concentration s of S in the vicinity of a particular cell
influences what will happen to that particular cell.

The concentration of the signaling molecule S is supposed to be highest at the left end, and lowest at
the right end, of the organism, and it varies continuously. (This may be due to the mother depositing
S at one end of the egg, and S diffusing to the other end, for example.)

The main issue to understand is: since nearby cells detect only slightly different concentrations of S,
how can “sudden” changes of level of P occur?

s = 1 s = 0.9 s = 0.8 s = 0.7 s = 0.6 s = 0.5 s = 0.4 s = 0.3 s = 0.2

nose cell nose cell nose cell nose cell nose cell mouth cell mouth cell mouth cell mouth cell
p ≈ 1 p ≈ 1 p ≈ 1 p ≈ 1p ≈ 1 p ≈ 0 p ≈ 0 p ≈ 0 p ≈ 0

In other words, why don’t we find, in-between cells that are part of the “nose” (high p) and cells that
are part of the “mouth” (low p), cells that are, say, “3/4 nose, 1/4 mouth”?

We want to understand how this “thresholding effect” could arise.

The fact that the DNA in all cells of an organism is, in principle, identical, is translated mathematically
into the statement that all cells are described by the same system of equations, but we include an input
parameter in these equations to represent the concentration s of the morphogen near any given cell.40

In other words, we’ll think of the evolution on time of chemicals (such as the concentration of the
protein P ) as given by a differential equation:

dp

dt
= f(p, s)

(of course, realistic models contain many proteins or other substances, interacting with each other
through mechanisms such as control of gene expression and signaling; we use an unrealistic single
equation just to illustrate the basic principle).

We assume that from each given initial condition p(0), the solution p(t) will settle to some steady
state p(∞); the value p(∞) describes what the level of P will be after a transient period.
We think of p(∞) as determining whether we have a “nose-cell” or a “mouth-cell.”

39Of course, a real nose has different types of cells in it, but for this silly example, we’ll just suppose that they all look
the same, but they look very different from mouth-like cells, which we also assume all look the same.

40We assume, for simplicity, that s constant for each cell, or maybe the cell samples the average value of s around the
cell.
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Of course, p(∞) depends on the initial state p(0) as well as on the value of the parameter s that the
particular cell measures.
We will assume that, at the start of the process, all cells are in the same initial state p(0).
So, we need that p(∞) be drastically different only due to a change in the parameter s.41

To design a realistic “f ,” we start with the positive feedback system that we had earlier used to
illustrate bi-stability, and we add a term “+ks” as the simplest possible mechanism by which the
concentration of signaling molecule may influence the system.42:

dp

dt
= f(p, s) =

Vmax p
n

Kn
m + pn

− λp + ks .

Let us take, to be concrete, k=5, Vmax=15, λ=7, Km=1, Hill coefficient n=2, and α=1.

There follow the plots of f(p, s) versus p, for three values of s:

s < s∗ , s = s∗ , s > s∗ , where s∗ ≈ .268 .

The respective phase lines are now shown below the graphs:

We see that for s < s∗, there are two sinks (stable steady states), marked A and C respectively, as
well as a source (unstable steady state), marked B.

We think of A as the steady state protein concentration p(∞) representing mouth-like cells, and C as
that for nose-like cells.

Of course, the exact position of A depends on the precise value of s. Increasing s by a small amount
means that the plot moves up a little, which means that A moves slightly to the right. Similarly, B
moves to the left and C to the right.

However, we may still think of a “low” and a “high” stable steady state (and an “intermediate” unsta-
ble state) in a qualitative sense.

Note that B, being an unstable state, will never be found in practice: the smallest perturbation makes
the solution flow away from it.

For s > s∗, there is only one steady state, which is stable. We denote this state as C, because it
corresponds to a high concentration level of P .

41This is the phenomenon of “bifurcations,” which you should have encountered in the previous differential equations
course.

42This term could represent the role of s as a transcription factor for p. The model that we are considering is the one
proposed in the original paper by Lewis et al.
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Once again, the precise value ofC depends on the precise value of s, but it is still true thatC represents
a “high” concentration.

Incidentally, a value of s exactly equal to s∗ will never be sensed by a cell: there is zero probability to
have this precise value.

Now, assume that all cells in the organism start with no protein, that is, p(0) = 0.

The left-most cells, having s > s∗, will settle into the “high state” C, i.e., they will become nose-like.

The right-most cells, having s < s∗, will settle into the “low state” A, i.e., they will become mouth-
like.

So we see how a sharp transition between cell types is achieved, merely due to a change from s > s∗

to s < s∗ as we consider cells from the left to the right end of the organism.

s > s∗ s > s∗ s > s∗ s > s∗ s > s∗ s < s∗ s < s∗ s < s∗ s < s∗

nose cell nose cell nose cell nose cell nose cell mouth cell mouth cell mouth cell mouth cell
p ≈ C p ≈ C p ≈ C p ≈ Cp ≈ C p ≈ A p ≈ A p ≈ A p ≈ A

Moreover, this model has a most amazing feature, which corresponds to the fact that, once a cell’s
fate is determined, it will not revert43 to the original state.

Indeed, suppose that, after a cell has settled to its steady state (high or low), we now suddenly “wash-
out” the morphogen, i.e., we set s to a very low value.

The behavior of every cell will now be determined by the phase line for low s:

This means that any cell starting with “low” protein P will stay low, and any cell starting with “high”
protein P will stay high.

A permanent memory of the morphogen effect is thus imprinted in the system, even after the signal is
“turned-off”!

A little exercise to test understanding of these ideas.

A multicellular 1-d organism as before is considered. Each cell expresses a certain gene X according
to the same differential equation

dx

dt
= f(x) + a .

The cells at the left end receive a low signal a, while those at the right end see a high signal a (and the
signal changes continuously in between).

?
-

cell # 1 cell # 2 cell # k cell # N

low a

higher a

43As with stem cells differentiating into different tissue types.
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The following plots show the graph of f(x) + a, for small, intermediate, and large a respectively.

We indicate a roughly “low” level of x by the letter “A,” an “intermediate” level by “B,” and a ”high”
level by “C.”

Question: Suppose that the level of expression starts at x(0) = 0 for every cell.

(1) What pattern do we see after things settle to steady state?

(2) Next suppose that, after the system has so settled, we now suddenly change the level of the signal
a so that now every cell sees the same value of a. This value of a that every cell is exposed to,
corresponds to this plot of f(x) + a:

What pattern will the organism settle upon?

Answer:

Let us use this picture:

left cell left cell left cell center cell center cell center cell right cell right cell right cell

• Those cells located toward the left will see these “instructions of what speed to move at:”

Therefore, starting from x = 0, they settle at a “low” gene expression level, roughly indicated by A.

• Cells around the center will see these “instructions:”

(There is an un-labeled unstable state in-between B and C.) Thus, starting from x = 0, they settle at
an “intermediate” level B.

• Finally, those cells toward the left will see these “instructions:”
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Therefore, starting from x = 0, they will settle at a “high” level C.

In summary, the pattern that we observe is:

AAABBBCCC .

(There may be many A’s, etc., depending on how many cells there are, and what exactly is the graph
of f . We displayed 3 of each just to give the general idea!)

Next, we suddenly “change the rules of the game” and ask them all to follow these instructions:

(There is an un-labeled unstable state in-between A and B.) Now, cells that started (from the previous
stage of our experiment) near enoughA will approachA, cells that were nearB approachB, and cells
that were near C have “their floor removed from under them” so to speak, and they are being now told
to move left, i.e. all the way down to B.

In summary, we have that starting at x = 0 at time zero, the pattern observed after the first part of the
experiment is:

AAABBBCCC ,

and after the second part of the experiment we obtain this final configuration:

AAABBBBBB .

(Exactly how many A’s and B’s depends on the precise form of the function f , etc. We are just
representing the general pattern.)

2.7.4 Sigmoidal responses without cooperativity: Goldbeter-Koshland

Highly sigmoidal responses require a large Hill coefficient nH . In 1981, Goldbeter and Koshland
made a simple but strikingly interesting and influential observation: one can obtain such responses
even without cooperativity. The starting point is a reaction such as the “futile cycle” (2.10):

E + P
k1−→
←−
k−1

C
k2−→ E +Q, F +Q

k3−→
←−
k−3

D
k4−→ F + P .

To simplify, we take a quasi-steady state approximation, so that (using lower case letters for con-
centrations), dq/dt = Vmaxep

K+p
− Ṽmaxfq

L+q
and dp/dt = −dq/dt. Thus p + q is constant, and by picking

appropriate units we let q = 1− p (so that p, q are now the fractions of unmodified substrate, respec-
tively). Writing “x” instead of “p”, we have that steady states should be solutions of

r
x

K + x
=

1− x
L+ 1− x

, (2.18)

where r := (Vmax/Ṽmax)(e/f) is proportional to the ratio of the concentrations of the two enzymes.
Sketching the two curves to find the intersection points, we see that for small K, L (“zero order”
regime, in the sense that the production rate is approximately constant, except for p, q very small),
there is a very sharp dependence of the steady state x on the value of r, changing from x ≈ 1 to x ≈ 0
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at r = 1. In contrast, for K and L large (“first order” or almost linear, regime) the dependence is far
smoother.

Left:

dotted lines: graphs of 1−x
L+1−x

solid lines: graphs of r x
K+x

for r < 1 (left) and r > 1 (right)

top sketches: K,L� 1, bottom: large K,L

Right: dependence x = G(r)

In summary, for small K,L, we have a very sigmoidal response, with no need for cooperativity.

Solving x = G(r), G is the “GoldbeterKoshland function”.

2.7.5 Bistability with two species

There is a molecular-level analog of the “species competition” models in ecology, as follows.

Suppose that we have two genes that code for the proteins X and Y . In order to get terms that
represent an analog of “logistic growth,” we need to have expressions of the form “x(A − x)” in
the growth rates. Let us assume that there is positive feedback of each of X and Y on themselves
(self-induction), but that the dimers XX , XY , Y Y act as repressors. Using lower case letters for
concentrations, we are led to equations as follows:

dx

dt
= µ1x− α1x

2 − γ12xy

dy

dt
= µ2y − α2y

2 − γ21xy .

Several different behaviors result, depending on the values of the parameters, just as with population
models. Let us take the case: α2/γ12 < µ1/µ2 < γ21/α1. There are four steady states, but the
behavior of the trajectories depends strongly on the initial concentrations: we always converge to
either x(∞) = 0 or y(∞) = 0, except when we start exactly on the stable manifold of the saddle
point (“principle of competitive exclusion”).
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2.8 Periodic Behavior

Periodic behaviors (i.e, oscillations) are very important in biology, appearing in diverse areas such as
neural signaling, circadian rythms, and heart beats.

You have seen examples of periodic behavior in the differential equations course, most probably
the harmonic oscillator (mass spring system with no damping)

dx

dt
= y

dy

dt
= −x

whose trajectories are circles, or, more generally, linear systems with eigenvalues that are purely
imaginary, leading to ellipsoidal trajectories:

A serious limitation of such linear oscillators is that they are not robust:

Suppose that there is a small perturbation in the equations:

dx

dt
= y

dy

dt
= −x+ εy

where ε 6= 0 is small. The trajectories are not periodic anymore!

Now dy/dt doesn’t balance dx/dt just right, so the trajectory doesn’t “close” on itself:

Depending on the sign of ε, we get a stable or an unstable spiral.

When dealing with electrical or mechanical systems, it is often possible to construct things with
precise components and low error tolerance. In biology, in contrast, things are too “messy” and
oscillators, if they are to be reliable, must be more “robust” than simple harmonic oscillators.

Another disadvantage of simple linear oscillations is that if, for some reason, the state “jumps” to
another position44 then the system will simply start oscillating along a different orbit and never come
back to the original trajectory:

To put it in different terms, the particular oscillation depends on the initial conditions. Biological
objects, in contrast, tend to reset themselves (e.g., your internal clock adjusting after jetlag).

44the “jump” is not described by the differential equation; think of the effect of some external disturbance that gives a
“kick” to the system
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2.8.1 Periodic Orbits and Limit Cycles

A (stable) limit cycle is a periodic trajectory which attracts other solutions (at least those starting
nearby) to it.45

Thus, a member of a family of “parallel” periodic solutions (as for linear centers) is not called a limit
cycle, because other close-by trajectories remain at a fixed distance away, and do not converge to it.

Limit cyles are “robust” in ways that linear periodic solutions are not:

• If a (small) perturbation moves the state to a different initial state away from the cycle, the system
will return to the cycle by itself.

• If the dynamics changes a little, a limit cycle will still exist, close to the original one.

The first property is obvious from the definition of limit cycle. The second property is not very
difficult to prove either, using a “Lyapunov function” argument. (Idea sketched in class.)

2.8.2 An Example of Limit Cycle

In order to understand the definition, and to have an example that we can use for various purposes
later, we will consider the following system46:

dx1/dt = µx1 − ωx2 + θx1(x2
1 + x2

2)

dx2/dt = ωx1 + µx2 + θx2(x2
1 + x2

2) .

where we pick θ = −1 for definiteness, so that the system is:

dx1/dt = µx1 − ωx2 − x1(x2
1 + x2

2)

dx2/dt = ωx1 + µx2 − x2(x2
1 + x2

2) .

(Note that if picked θ = 0, we would have a linear harmonic oscillator, which has no limit cycles.)

There are two other ways to write this system which help us understand it better.

The first is to use polar coordinates.

We let x1 = ρ cosϕ and x2 = ρ sinϕ, and differentiate with respect to time. Equating terms, we
obtain separate equations for the magnitude ρ and the argument ϕ, as follows:

dρ/dt = ρ(µ− ρ2)

dϕ/dt = ω .

(The transformation into polar coordinates is only valid for x 6= 0, that is, if ρ > 0, but the transformed
equation is formally valid for all ρ, ϕ.)

45Stable limit cycles are to all periodic trajectories as stable steady states are to all steady states.
46of course, this is a purely mathematical example
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Another useful way to rewrite the system is in terms of complex numbers; a problem asks for that.

We now analyze the system using polar coordinates.

Since the differential equations for ρ and ϕ are decoupled, we may analyze each of them separately.

The ϕ-equation dϕ/dt = ω tells us that the solutions must be rotating at speed ω (counter-clockwise,
if ω > 0).

Let us look next at the scalar differential equation dρ/dt = ρ(µ− ρ2) for the magnitude r.

When µ ≤ 0, the origin is the only steady state, and every solution converges to zero. This means that
the full planar system is so that all trajectories spiral into the origin.

When µ > 0, the origin of the scalar differential equation dρ/dt = ρ(µ− ρ2) becomes unstable47, as
we can see from the phase line. In fact, the velocity is negative for ρ >

√
µ and positive for ρ <

√
µ,

so that there is a sink at ρ =
√
µ. This means that the full planar system is so that all trajectories

spiral into the circle of radius
√
µ, which is, therefore, a limit cycle.

(Expressed in terms of complex-numbers, z(t) =
√
µeiωt is the limit cycle.)

Note that the oscillation has magnitude
√
µ and frequency ω.

Unfortunately, it is quite difficult to actually prove that a limit cycle exists, for more general systems.

But for systems of two equations, there is a very powerful criterion.

2.8.3 Poincaré-Bendixson Theorem

Suppose a bounded region D in the plane is so that no trajectories can exit D,

(in other words, we have a “forward-invariant” or “trapping” region)

and either that there are no steady states inside, or there is a single steady state that is repelling.48

Then, there is a periodic orbit inside D.

47the passage from µ < 0 to µ > 0 is a typical example of what is called a “supercritical Hopf bifurcation”
48Looking at the trace/determinant plane, we see that repelling points are those for which both the determinant and the

trace of the Jacobian are positive, since the other quadrants represent either stable points or saddles.
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This theorem is proved in advanced differential equations books; the basic idea is easy to understand:
if we start near the boundary, we must go towards the inside, and cannot cross back (because trajec-
tories cannot cross). Since it cannot approach a source, the trajectory must approach a periodic orbit.
(Idea sketched in class.)

We gave a simple version, sufficient for our purposes; one can state the theorem a little more generally,
saying that all trajectories will converge to either steady states, limit cycles, or “connections” among
steady states. One such version is as follows: if the omega-limit set ω(x)49 of a trajectory is compact,
connected, and contains only finitely many equilibria, then these are the only possibilities for ω(x):

• ω(x) is a steady state, or

• ω(x) is a periodic orbit, or

• ω(x) is a homoclinic or heteroclinic connection.

It is also possible to prove that if there is a unique periodic orbit, then it must be a limit cycle.

In general, finding an appropriate region D is usually quite hard; often one uses plots of solutions
and/or nullclines in order to guess a region.

Invariance of a region D can be checked by using the following test: the outward-pointing normal
vectors, at any point of the boundary of D, must make an angle of at least 90 degrees with the vector
field at that point. Algebraically, this means that the dot product must be ≤ 0 between a normal ~n and
the vector field: (

dx

dt
,
dy

dt

)
· ~n ≤ 0

at any boundary point.50

Let us work out the example:

dx/dt1 = µx1 − ωx2 − x1(x2
1 + x2

2)

dx/dt2 = ωx1 + µx2 − x2(x2
1 + x2

2)

with µ > 0, using P-B. (Of course, we already know that the circle with radius
√
µ is a limit cycle,

since we showed this by using polar coordinates.)

49This is the set of limit points of the solution starting from an initial condition x
50If the dot product is strictly negative, this is fairly obvious, since the vector field must then “point to the inside” of

D. When the vectors are exactly perpendicular, the situation is a little more subtle, especially if there are corners in the
boundary of D (what is a “normal” at a corner?), but the equivalence is still true. The mathematical field of “nonsmooth
analysis” studies such problems of invariance, especially for regions with possible corners.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 104

We must find a suitable invariant region, one that contains the periodic orbit that we want to show
exists. Cheating (because if we already know it is there, we don’t need to find it!), we take as our
region D the disk with radius

√
2µ. (Any large enough disk would have done the trick.)

To show that D is a trapping region, we must look at its boundary, which is the circle of radius
√

2µ,
and show that the normal vectors, at any point of the boundary, form an angle of at least 90 degrees
with the vector field at that point. This is exactly the same as showing that the dot product between
the normal and the vector field is negative (or zero, if tangent).

At any point on the circle x2
1 + x2

2 = 2µ, a normal vector is (x1, x2) (since the arrow from the origin
to the point is perpendicular to circle), and the dot product is:

[µx1−ωx2−x1(x2
1+x2

2)]x1+[ωx1+µx2−x2(x2
1+x2

2)]x2 = (µ−(x2
1+x2

2))(x2
1+x2

2) = −2µ2 < 0 .

Thus, the vector field points inside and the disk of radius 2
√
µ is a trapping region.

The only steady state is (0, 0), which we can see by noticing that if µx1 − ωx2 − x1(x2
1 + x2

2) = 0
and ωx1 + µx2− x2(x2

1 + x2
2) = 0 then multiplying by x1 the first equation, and the second by x2, we

obtain that (µ+ x2
1 + x2

2)(x2
1 + x2

2) = 0, so x1 = x2 = 0.

Linearizing at the origin, we have an unstable spiral. (Homework: check!) Thus, the only steady state
is repelling, which is the other property that we needed. So, we can apply the P-B Theorem.

We conclude that there is a periodic orbit inside this disk.51

2.8.4 The Van der Pol Oscillator

A typical way in which periodic orbits arise in models in biology and many other fields can be illus-
trated with the well-known Van der Pol oscillator.52 After some changes of variables, which we do
not discuss here, the van der Pol oscillator becomes this system:

dx

dt
= y + x− x3

3
dy

dt
= −x

The only steady state is at (0, 0), which repels, since the Jacobian has positive determinant and trace:(
1− x2 1
−1 0

)∣∣∣∣
(0,0)

=

(
1 1
−1 0

)
.

51In fact, using annular regions
√
µ − ε < x21 + x22 <

√
µ + ε, one can prove by a similar argument that the periodic

orbit is unique, and, therefore, is a limit cycle.
52Balthazar van der Pol was a Dutch electrical engineer, whose oscillator models of vacuum tubes are a routine example

in the theory of limit cycles; his work was motivated in part by models of the human heart and an interest in arrhythmias.
The original paper was: B. van der Pol and J. van der Mark, The heartbeat considered as a relaxation oscillation, and an
electrical model of the heart, Phil. Mag. Suppl. #6 (1928), pp. 763–775.
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We will show that there are periodic orbits (one can also show there is a limit cycle, but we will not
do so), by applying Poincaré-Bendixson.

To apply P-B, we consider the following special region:

We will prove that, on the boundary, the vector field point inside, as shown by the arrows.
The boundary is made up of 6 segments, but, by symmetry,
(since the region is symmetric and the equation is odd), it is enough to consider 3 segments:

x = 3, −3 ≤ y ≤ 6 y = 6, 0 ≤ x ≤ 3 y = x+ 6, −3 ≤ x ≤ 0 .

x = 3, −3 ≤ y ≤ 6:
we may pick ~ν = (1, 0), so

(
dx
dt
, dy
dt

)
· ~n = dx

dt
and, substituting x = 3 into y + x− x3

3
, we obtain:

dx

dt
= y − 6 ≤ 0 .

Therefore, we know that the vector field points to the left, on this boundary segment.

We still need to make sure that things do not “escape” through a corner, though. In other words, we
need to check that, on the corners, there cannot be any arrows as the red ones.

Actually, one can prove that, for convex regions built up piecewise as in all our examples, it is enough
to verify the normal vector condition at non-corner points. (So, you can skip verifications of corners in
all homework problems.) However, for expository reasons, we show now how to verify the conditions
at corners without appealing to that (unproved here) fact.

At the top corner, x = 3, y = 6, we have dy/dt = −3 < 0, so that the corner arrow must point down,
and hence “SW”, so we are OK. At the bottom corner, also dy/dt = −3 < 0, and dx/dt = −9, so the
vector field at that point also points inside.

y = 6, 0 ≤ x ≤ 3:
we may pick ~ν = (0, 1), so (

dx

dt
,
dy

dt

)
· ~n =

dy

dt
= −x ≤ 0 ,

and corners are also OK (for example, at (0, 6): dx/dt = 6 > 0).

y = x+ 6, −3 ≤ x ≤ 0:
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We pick the outward normal ~ν = (−1, 1) and take dot product:(
y + x− x3/3

−x

)
·
(
−1
1

)
= −2x− y + x3/3 .

Evaluated at y = x+ 6, this is:
x3

3
− 3x− 6, −3 ≤ x ≤ 0 .

The function f(x) = x3

3
− 3x − 6 has value −6 at both endpoints x = −3 and x = 0 of the interval

−3 ≤ x ≤ 0, and has a local maximum at x = −
√

3. At this local maximum, it has the value
−
√

3 + 3
√

3− 6 = 2
√

3− 6 < 0. Thus, the dot product is negative. (One can also check corners.)

2.8.5 Bendixson’s Criterion

There is a useful criterion to help conclude there cannot be any periodic orbit in a given a simply-
connected (no holes) region D:

If the divergence of the vector field is everywhere positive53 or is everywhere negative inside D,
then there cannot be a periodic orbit inside D.

Sketch of proof (by contradiction):

Suppose that there is some such periodic orbit, which describes a simple closed curve C. We replace
the original D by the inside component of C; this set D is again simply-connected.

Recall that the divergence of F (x, y) =

(
f(x, y)
g(x, y)

)
is defined as:

∂f

∂x
+
∂g

∂y
.

The Gauss Divergence Theorem (or “Green’s Theorem”) says that:∫ ∫
D

divF (x, y) dxdy =

∫
C

~n · F

(the right-hand expression is the line integral of the dot product of a unit outward normal with F ).54

Now, saying that C is an orbit means that F is tangent to C, so the dot product is zero, and therefore∫ ∫
D

divF (x, y) dxdy = 0 .

But, if divF (x, y) is everywhere positive, then the integral is positive, and we get a contradiction.
Similarly if it is everywhere negative.

Example: dx/dt = x, dy/dt = y. Here the divergence is = 2 everywhere, so there cannot exist any
periodic orbits (inside any region).

53To be precise, everywhere nonnegative but not everywhere zero
54The one-dimensional analog of this is the Fundamental Theorem of Calculus: the integral of F ′ (which is the diver-

gence, when there is only one variable) over an interval [a, b] is equal to the integral over the boundary {a, b} of [a, b], that
is, F (b)− F (a).
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It is very important to realize what the theorem does not say:

Suppose that we take the example dx/dt = x, dy/dt = −y. Since the divergence is identically zero,
the Bendixson criterion tells us nothing. In fact, this is a linear saddle, so we know (for other reasons)
that there are no periodic obits.

On the other hand, for the example dx/dt = y, dy/dt = −x, which also has divergence identically
zero, periodic orbits exist!
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2.9 Bifurcations

Let us now look a bit more closely at the general idea of bifurcations.55

2.9.1 How can stability be lost?

The only way in which a change of behavior can occur is if the Jacobian is degenerate at the given
steady state. Indeed, consider a system with parameter µ:

dx/dt = f(x, µ) .

If fx(x∗, µ∗) has no eigenvalues on the imaginary axis, then it is, in particular, nonsingular.

In that case, by the Implicit Function Theorem56, there will be a unique steady state x = x(µ) near
x∗. Moreover, since the eigenvalues depend continuously on the parameters it follows that the local
behavior at such x = x(µ) is the same as that at x∗, if µ is close to µ∗.

Thus, asking that the Jacobian fx(x∗, µ∗) be degenerate is a necessary condition that one should check
when looking for bifurcation points.

At points with degenerate Jacobian, the Hessian (matrix of second derivatives) is generically nonsin-
gular (in the sense that more constraints on parameters defining the system, or on the form of f itself,
are needed in order to have a singular Hessian). Thus one talks of “generic” bifurcations.

These are the generic “codimension 1” (i.e., those obtained by varying one parameter) bifurcations
for equilibria:

• one real eigenvalue crosses at zero (saddle-node, turning point, or fold)

two equilibria formed (or dissappear), saddle and node

• pair of complex eigenvalues crosses imaginary axis:

periodic orbits arise from Poincaré-Andronov-Hopf bifurcations

55Suggested references: Steven Strogatz, Nonlinear Dynamics and Chaos. Perseus Publishing, 2000. ISBN 0-7382-
0453-6 and the excellent article: John D. Crawford, Introduction to bifurcation theory, Rev. Mod. Phys. 63, pp. 991-1037,
1991

56The IFT can be proved as follows. We need to find a function ϕ(µ) such that f(ϕ(µ), µ) = 0 for all µ in a neighbor-
hood of µ∗. Taking total derivatives this says that dϕ(µ)/dµ = fx(ϕ(µ), µ)−1fµ(ϕ(µ), µ). As fx(x∗, µ∗) is nonsingular,
the right-hand side is well-defined on a neighborhood of (x∗, µ∗), and the existence throrem for ODE’s provides a (unique)
ϕ. For a reference to continuous dependence of eigenvalues on parameters see for example E. Sontag, Mathematical Con-
trol Theory, Springer-Verlag, 1998, Appendix A.
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2.9.2 One real eigenvalue moves

Saddle-node bifurcation

For simplicity, let’s assume that we have a one-dimensional system dx/dt = f(x, µ).57 After a
coordinate translation if necessary, we assume that the point of interest is µ∗ = 0, x∗ = 0. We now
perform a Taylor expansion, using that, at a steady state, we have f(0, 0) = 0, and that a bifurcation
can only happen if fx(0, 0) = 0:

dx/dt = f(x, µ) = µfµ(0, 0) +
1

2
fxx(0, 0)x2 +

1

2
fµµ(0, 0)µ2 + fxµ(0, 0)xµ + o(x, µ) .

The terms that contain at least one power of µ can be collected:

fµ(0, 0)µ +
1

2
fxµ(0, 0)xµ + fµµ(0, 0)µ2 + . . . = [fµ(0, 0) +

1

2
fxµ(0, 0)x+ fµµ(0, 0)µ . . .]µ

≈ fµ(0, 0)µ

where the approximation makes sense provided that fµ(0, 0) 6= 0 (since (1/2)fxµ(0, 0)x+fµµ(0, 0)µ�
fµ(0, 0) for small x, and similarly for higher-order terms). In the same way, we may collect all terms
with at least a factor x2, provided that fxx(0, 0) 6= 0. The conditions “fxx(0, 0) 6= 0 and fµ(0, 0) 6= 0”
are “generic” in the sense that, in the absence of more information (beyond the requirement that we
have an equilibrium at which a bifurcation happens), they are reasonable for “random” choices of
f . There results an approximation of the form dx/dt ≈ aµ + bξ2. Rescaling µ (multiplying it by
a positive or negative number), we may assume that a = 1. Moreover, rescaling time, we may also
assume that b = ±1, leading thus to the normal form:

dx/dt = µ± x2

We argued that this equation is approximately valid, under genericity conditions, but in fact it is
possible to obtain it exactly, under appropriate changes of variables (Poincaré-Birkhoff theory of
normal forms).

In phase-space, there will be a transition from no steady states to two steady states, as µ increases or
(depending on the sign of b) decreases. Hence the alternative name “blue sky bifurcation”.

To understand the analog of this in more dimensions, suppose that we add a second equation dy/dt =
±y. The pictures as we move through a bifurcation point are now as follows, assuming the above
normal form:

57The theory of Center manifolds allows one to always reduce to this case.
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The name “saddle-node” is clear from this picture.

Transcritical bifurcation

The saddle node bifurcation is generic, like we said, assuming no requirements beyond having an
equilibrium at which a bifurcation happens (and the eigenvalue on the imaginary axis being real),
Often, one has additional information. For example, in a one-dimensional population model dx/dt =
k(B − x)x with known carrying capacity of the environment B but unknown reproduction constant
k, we know that x = B is an equilibrium, no matter what the value of k is. In general, if we impose
the requirement that x∗ = 0 is an equilibrium for every value of µ, f(0, µ) = 0 for all µ, this implies
that ∂kf

∂µk
(0, 0) = 0 for all k, and thus the linear term in µ no longer dominates in the above Taylor

expansion. Now we need to use the mixed quadratic term to collect all higher-order monomials. and
the normal form is

dx/dt = µx− x2

(precisely as with the logistic equation).

Pitchfork bifurcations

Another type of information usually available is given by symmetries imposed by physical consider-
ations, For example, suppose that we know that f(−x, µ) = −f(x, µ) (Z2 symmetry) for all µ and x.
In this case, the quadratic term vanishes, and one is led to the normal form dx/dt = µx± x3 (super-
and sub-critical cases):

dx/dt = (µ− x2)x dx/dt = (µ+ x2)x
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(The Hopf bifurcation, to be studied next, is closely related, though x < 0 does not play a rule in that
case, since “x” will correspond to the norm of a point in the plane.)

2.9.3 Hopf Bifurcations

Mathematically, periodic orbits often arise from the Hopf Bifurcation phenomenon.

The Hopf (or “Poincaré-Andronov-Hopf”) bifurcation occurs when a pair of complex eigenvalues
“crosses the imaginary axis” as a parameter is moved (and, in dimensions, bigger than two, the re-
maining eigenvalues have negative real part), provided that some additional technical conditions hold.
(These conditions tend to be satisfied in examples.)

It is very easy to understand the basic idea.

We consider a system:
dx

dt
= fµ(x)

in which a parameter “µ” appears.

We assume that the system has dimension two.

Suppose that there are a value µ0 of this parameter, and a steady state x0, with the following properties:

• For µ < µ0, the linearization at the steady state x0 is stable, and there is a pair of complex conjugate
eigenvalues with negative real part.

• As µ changes from negative to positive, the linearization goes through having a pair of purely
imaginary eigenvalues (at µ = µ0) to having a pair of complex conjugate eigenvalues with positive
real part.

Thus, near x0, the motion changes from a stable spiral to an unstable spiral as µ crosses µ0.

If the steady state happens to be a sink even when µ = µ0, it must mean that there are nonlinear terms
“pushing back” towards x0 (see the example below).

These terms will still be there for µ > µ0, µ ≈ µ0.

Thus, the spiraling-out trajectories cannot go very far, and a limit cycle is approached.

(Another way to think of this is that, in typical biological problems, trajectories cannot escape to
infinity, because of conservation of mass, etc.)

In arbitrary dimensions, the situation is similar. One assumes that all other n − 2 eigenvalues have
negative real part, for all µ near µ0.

The n − 2 everywhere-negative eigenvalues have the effect of pushing the dynamics towards a two-
dimensional surface that looks, near x0, like the space spanned by the two complex conjugate eigen-
vectors corresponding to the purely imaginary eigenvalues at µ = µ0.

On this surface, the two-dimensional argument that we just gave can be applied.

Let us give more details.

Consider the example that we met earlier:

dx1/dt = µx1 − ωx2 + θx1(x2
1 + x2

2)

dx2/dt = ωx1 + µx2 + θx2(x2
1 + x2

2)
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With θ = −1, this is the “supercritical Hopf bifurcation” case in which we go, as already shown, from
a globally asymptotically stable equilibrium to a limit cycle as µ crosses from negative to positive (µ0

is zero).

In contrast, suppose now that θ = 1. The magnitude satisfies the equation dρ/dt = ρ(µ+ ρ2).

Hence, one goes again from stable to unstable as µ goes through zero, but now an unstable cycle
encircles the origin for µ < 0 (so, the origin is not globally attractive).

For µ ≥ 0, there is now no cycle that prevents solutions that start near zero from escaping very far.
(Once again, in typical biochemical problems, solutions cannot go to infinity. So, for example, a limit
cycle of large magnitude might perhaps appear for µ > 0.)

These pictures shows what happens for each fixed value of µ for the supercritical (limit cycle occurs
after going from stable to unstable) and subcritical (limit cycle occurs before µ0) cases, respectively:

Now suppose given a general system (I will not ask questions in tests about this material; it is merely
FYI)58:

dx/dt = f(x, µ)

in dimension 2, where µ is a scalar parameter and f is assumed smooth. Suppose that for all µ
near zero there is a steady-state ξ(µ), with eigenvalues λ(µ) = r(µ) ± iω(µ), with r(0) = 0 and
ω(0) = ω0 > 0, and that r′(0) 6= 0 (“eigenvalues cross the imaginary axis with nonzero velocity”)
and that the quantity α defined below is nonzero. Then, up to a local topological equivalence and
time-reparametrization, one can reduce the system to the form given in the previous example, and
there is a Hopf bifurcation, supercritical or subcritical depending on θ = the sign of α.59 There is
no need to perform the transformation, if all we want is to decide if there is a Hopf bifurcation. The
general “recipe” is as follows.

Let A be the Jacobian of f evaluated at ξ0 = ξ(0), µ = 0. and find two complex vectors p, q such that

Aq = iω0q , ATp = −iω0p , p · q = 1 .

Compute the dot product H(z, z̄) = p · F (ξ0 + zq + z̄q̄, µ(0)) and consider the formal Taylor series:

H(z, z̄) = iω0z +
∑
j+k≥2

1

j!k!
gjkz

j z̄k .

58See e.g. Yu.A. Kuznetsov. Elements of Applied Bifurcation Theory. 2nd ed., Springer-Verlag, New York, 1998
59One may interpret the condition on α in terms of a Lyapunov function that guarantees stability at µ = 0, for the

supercritical case; see e.g.: Mees , A.I. Dynamics of Feedback Systems, John Wiley & Sons, New York, 1981.
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Then α =
1

2ω2
0

Re (ig20g11 + ω0g21).

One may use the following Maple commands, which are copied from “NLDV computer session XI:
Using Maple to analyse Andronov-Hopf bifurcation in planar ODEs,” by Yu.A. Kuznetsov, Math-
ematical Institute, Utrecht University, November 16, 1999. They are illustrated by the following
chemical model (Brusselator):

dx1/dt = A− (B + 1)x1 + x2
1x2, dx2/dt = Bx1 − x2

1x2

where one fixes A > 0 and takes B as a bifurcation parameter. The conclusion is that at B = 1 + A2

the system exhibits a supercritical Hopf bifurcation.

restart:
with(linalg):
readlib(mtaylor):
readlib(coeftayl):
F[1]:=A-(B+1)*X[1]+X[1]ˆ2*X[2];
F[2]:=B*X[1]-X[1]ˆ2*X[2];
J:=jacobian([F[1],F[2]],[X[1],X[2]]);
K:=transpose(J);
sol:=solve({F[1]=0,F[2]=0},{X[1],X[2]});
assign(sol);
T:=trace(J);
diff(T,B);
sol:=solve({T=0},{B});
assign(sol);
assume(A>0);
omega:=sqrt(det(J));
ev:=eigenvects(J,’radical’);
q:=ev[1][3][1];
et:=eigenvects(K,’radical’);
P:=et[2][3][1];
s1:=simplify(evalc(conjugate(P[1])*q[1]+conjugate(P[2])*q[2]));
c:=simplify(evalc(1/conjugate(s1)));
p[1]:=simplify(evalc(c*P[1]));
p[2]:=simplify(evalc(c*P[2]));
simplify(evalc(conjugate(p[1])*q[1]+conjugate(p[2])*q[2]));
F[1]:=A-(B+1)*x[1]+x[1]ˆ2*x[2];
F[2]:=B*x[1]-x[1]ˆ2*x[2];
# use z1 for the conjugate of z:
x[1]:=evalc(X[1]+z*q[1]+z1*conjugate(q[1]));
x[2]:=evalc(X[2]+z*q[2]+z1*conjugate(q[2]));
H:=simplify(evalc(conjugate(p[1])*F[1]+conjugate(p[2])*F[2]));
# get Taylor expansion:
g[2,0]:=simplify(2*evalc(coeftayl(H,[z,z1]=[0,0],[2,0])));
g[1,1]:=simplify(evalc(coeftayl(H,[z,z1]=[0,0],[1,1])));
g[2,1]:=simplify(2*evalc(coeftayl(H,[z,z1]=[0,0],[2,1])));



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 114

alpha:=factor(1/(2*omegaˆ2)*Re(I*g[2,0]*g[1,1]+omega*g[2,1]));
evalc(alpha);
# above needed to see that this is a negative number (so supercritical)

2.9.4 Combinations of bifurcations

A supercritical Hopf bifurcation is “soft” in that small-amplitude periodic orbits are created. Super-
critical bifurcations may give rise to “hard” (big-jump) behavior when embedded in additional fold
bifurcations:

Notice that a “sudden big oscillation” appears.

An example is given by a model of a CSTR60 as follows:

dy1/dt = −y1 + Da(1− y1) exp(y2)

dy2/dt = −y2 +B · Da(1− y1) exp(y2)− βy2

Here,

• y1, y2 describe the material and energy balances;

• β is the heat transfer coefficient (β = 3);

• Da is the Damköhler number (bifurcation parameter: λ :=Da);

• B is the rise in adiabatic temperature (B = 16.2).

The bifurcation diagram is as follows (showing the value of y1 versus Da:

60taken from http://www.bifurcation.de/exd2/HTML/exd2.ok.html: A. Uppal, W.H. Ray, A.B. Poore. On the dynamic
behavior of continuous stirred tank reactors. Chem. Eng. Sci. 29 (1974) 967-985.
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Note that there is first a sub-, and then a super-critical bifurcation. (There is a fold as well, not seen in
picture - the first branch continues “backward”). The right one is a supercritical Hopf as the parameter
diminishes.

A parameter sweep can be used to appreciate the phenomenon: we “sweep” the parameter λ, increas-
ing it very slowly, and simulate the system (for example, by adding an equation dλ/dt = ε << 1)
With ε = 0.001, y1(0) = 0.1644, y2(0) = 0.6658:

Note the “hard” onset of oscillations (and “soft” end).

Hopf intuition: more dimensions

The Hopf story generalizes to n > 2 dimensions. Suppose there are n − 2 eigenvalues with neg-
ative real part, for µ near µ0. These n − 2 negative eigendirections push the dynamics towards a
two-dimensional surface that looks, near x0, like the space spanned by the two complex conjugate
eigenvectors corresponding to the purely imaginary eigenvalues at µ = µ0.

On this surface, the two-dimensional argument that we gave can be applied.
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Numerical packages

Numerical packages for bifurcation analysis use continuation methods from a given steady state (and
parameter value), testing conditions (singularity of Jacobian, eigenvalues) along the way. As an ex-
ample, this is typical output using the applet from:

http://techmath.uibk.ac.at/numbau/alex/dynamics/bifurcation/index.html

Labeled are points where bifurcations occur.

2.9.5 Cubic Nullclines and Relaxation Oscillations

Let us consider this system, which is exactly as in our version of the van der Pol oscillator, except
that, before, we had ε = 1:

dx

dt
= y + x− x3

3
dy

dt
= −εx

We are interested specifically in what happens when ε is positive but small (“0 < ε� 1”).

Notice that then y changes slowly.
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So, we may think of y as a “constant” in so far as its effect on x (the “faster” variable) is concerned.

How does dx
dt

= fa(x) = a+ x− x3

3
behave?

fa(x) = a+ x− x3

3
for a = −1, 0, 2

3
, 1

rr
�-

�- �-

�- -

- -�

-�

�

a = 0

a = −1

a = 2/3−

a = 2/3+

a = 1

Now let us consider what the solution of the system of differential equations looks like, if starting at
a point with x(0)� 0 and y(0) ≈ −1.

Since y(t) ≈ −1 for a long time, x “sees” the equation dx/dt = f−1(x), and therefore x(t) wants to
approach a negative “steady state” xa (approximately at −2)

(If y would be constant, indeed x(t)→ xa.)

However, “a” is not constant, but it is slowly increasing (y′ = −εx > 0).

Thus, the “equilibrium” that x is getting attracted to is slowly moving closer and closer to −1,

until, at exactly a = 2/3, the “low” equilibrium dissappears, and there is only the “large” one (around
x = 2); thus x will quickly converge to that larger value.

Now, however, x(t) is positive, so y′ = −εx < 0, that is, “a” starts decreasing.

Repeating this process, one obtains a periodic motion in which slow increases and decreases are
interspersed with quick motions.

This is what is often called a relaxation (or “hysteresis-driven”) oscillation.

Here are computer plot of x(t) for one such solution, together the same solution in phase-plane:
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2.9.6 A Qualitative Analysis using Cubic Nullclines

Let us now analyze a somewhat more general situation.

We will assume given a system of this general form:

dx

dt
= f(x)− y

dy

dt
= ε (g(x)− y)

where ε > 0. (Soon, we will assume that ε� 1, but not yet.)

The x and y nullclines are, respectively: y = f(x) and y = g(x).

It is easy, for these very special equations, to determine the direction of arrows: dy/dt is positive if
y < g(x), i.e. under the graph of g, and so forth.

This allows us to draw “SE”, etc, arrows as usual:

Now let us use the information that ε is small: this means that

dy/dt is always very small compared to dx/dt, i.e., the arrows are (almost) horizontal,

except very close to the graph of y=f(x), where both are small (exactly vertical, when y=f(x)):

Now, suppose that the nullclines look exactly as in these pictures, so that f ′ < 0 and g′ > 0 at the
steady state.

The Jacobian of
(

f(x)− y
ε(g(x)− y)

)
is

(
f ′(x0) −1
εg′(x0) −ε

)
and therefore (remember that f ′(x0) < 0) the trace is negative, and the determinant is positive (be-
cause g′(x0) > 0), and the steady state is a sink (stable).

Thus, we expect trajectories to look like this:
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Observe that a “large enough” perturbation from the steady state leads to a large excursion (the tra-
jectory is carried very quicky to the other side) before the trajectory can return.

In contrast, a small perturbation does not result in such excursions, since the steady state is stable.
Zooming-in:

This type of behavior is called excitability: low enough disturbances have no effect, but when over a
threshold, a large reaction occurs.

In contrast, suppose that the nullcline y = g(x) intersects the nullcline y = f(x) on the increasing
part of the latter (f ′ > 0).

Then, the steady state is unstable, for small ε, since the trace is f ′(x0)− ε ≈ f ′(x0) > 0. In fact, it is
a repelling state, because the determinant of the Jacobian equals ε(g′(x0)− f ′(x0)) > 0 (notice in the
figure that g′ > f ′ at the intersection of the plots).

In any case, it is clear by “following directions” that we obtain a relaxation oscillation, instead of an
excitable system, in this case:

2.9.7 Neurons

Neurons are nerve cells; there are about 100 billion (1011) in the human brain.

Neurons may be short (1mm) or very long (1m from the spinal cord to foot muscles).

Each neuron is a complex information processing device, whose inputs are neurotransmitters (electri-
cally charged chemicals) which accumulate at the dendrites.
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Neurons receive signals from other neurons (from as many as 150,000, in the cerebral cortex, the
center of cognition) connected to it at synapses.

When the net voltage received by a neuron is higher than a certain threshold (about 1/10 of a volt), the
neuron “fires” an action potential, which is an electrical signal that travels down the axon, sort of an
“output wire” of the neuron. Signals can travel at up to 100m/s; the higher speeds are achieved when
the axon is covered in a fatty insulation (myelin).

At the ends of axons, neurotransmitters are released into the dendrites of other neurons.

Information processing and computation arise from these networks of neurons.
The strength of synaptic connections is one way to “program” networks; memory (in part) consists of
finely tuning these strengths.

The mechanism for action potential generation is well understood. A mathematical model given in:
Hodgkin, A.L. and Huxley, A.F., “A Quantitative Description of Membrane Current and its Appli-
cation to Conduction and Excitation in Nerve”, Journal of Physiology 117 (1952): 500-544 won the
authors a Nobel Prize (in 1963), and is still one of the most successful examples of mathematical
modeling in biology. Let us sketch it next.

2.9.8 Action Potential Generation

The basic premise is that currents are due to Na and K ion pathways. Normally, there is more K+

inside than outside the cell, and the opposite holds for Na+. Diffusion through channels works against
this imbalance, which is maintained by active pumps (which account for about 2/3 of the cell’s energy
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consumption!). These pumps act against a steep gradient, exchanging 3 Na+ ions out for each 2 K+

that are allowed in. An overall potential difference of about 70mV is maintained (negative inside the
cell) when the cell is “at rest”.

A neuron can be stimulated by external signals (touch, taste, etc., sensors), or by an appropriate
weighted sum of inhibitory and excitatory inputs from other neurons through dendrites (or, in the
Hodgkin-Huxley and usual lab experiments, artificially with electrodes).

The key components are voltage-gated ion channels61:

A large enough potential change triggers a nerve impulse (action potential or “spike”), starting from
the axon hillock (start of axon) as follows:

(1) voltage-gated Na+ channels open (think of a “gate” opening); these let sodium ions in, so the
inside of the cell becomes more positive, and, through a feedback effect, even more gates open;

(2) when the voltage difference is ≈ +50mV, voltage-gated K+ channels open and quickly let potas-
sium out;

(3) the Na+ channels close;

(4) the K+ channels close, so we are back to resting potential.

The Na+ channels cannot open again for some minimum time, giving the cell a refractory period.

Some pictures follow, illustrating the same important process in slightly different ways.

61Illustration from http://fig.cox.miami.edu/ cmallery/150/memb/ion channel1 sml.jpg
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(http://jimswan.com/237/channels/channel graphics.htm)

(http://www.cellscience.com/reviews3/spikes.jpg)

This activity, locally in the axon, affects neighboring areas, which then go through the same process,
a chain-reaction along the axon. Because of the refractory period, the signal “cannot go back”, and a
direction of travel for the signal is well-defined.

(Copyright 1997, Carlos Finlay and Michael R. Markham).

These diagrams are from http://www.biologymad.com/NervousSystem/nerveimpulses.htm:

It is important to realize that the action potential is only generated if the stimulus is large enough. It is
an “all or (almost) nothing” response. An advantage is that the signal travels along the axon without
decay - it is regenerated along the way. The “binary” (digital) character of the signal makes it very
robust to noise.
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There is another aspect that is remarkable, too: a continuous stimulus of high intensity will result in a
higher frequency of spiking. Amplitude modulation (as in AM radio) gets transformed into frequency
modulation (as in FM radio, which is far more robust to noise).

2.9.9 Model

The basic HH model is for a small segment of the axon. Their model was done originally for the giant
axon of the squid (large enough to stick electrodes into, with the technology available at the time), but
similar models have been validated for other neurons.

(Typical simulations put together perhaps thousands of such basic compartments, or alternatively set
up a partial differential equation, with a spatial variable to represent the length of the axon.)

The model has four variables: the potential difference v(t) between the inside and outside of the
neuron, and the activity of each of the three types of gates (two types of gates for sodium and one
for potassium). These activities may be thought of as relative fractions (“concentrations”) of open
channels, or probabilities of channels being open. There is also a term I for the external current being
applied.

Cdv/dt = −gK(t)(v−vK)− gNa(t)(v−vNa)− ḡL(v−vL) + I

τm(v)dm/dt = m∞(v)−m
τn(v)dn/dt = n∞(v)− n
τh(v)dh/dt = h∞(v)− h

gK(t) = ḡK n(t)4

gNa(t) = ḡNam(t)3 h(t)

The equation for v comes from a capacitor model of membranes as charge storage elements. The
first three terms in the right correspond to the currents flowing through the Na and K gates (plus an
additional “L” that accounts for all other gates and channels, not voltage-dependent).

The currents are proportional to the difference between the actual voltage and the “Nernst potentials”
for each of the species (the potential that would result in balance between electrical and chemical
imbalances), multiplied by “conductances” g that represent how open the channels are.

The conductances, in turn, are proportional to certain powers of the open probabilities of the different
gates. (The powers were fit to data, but can be justified in terms of cooperativity effects.)

The open probabilities, in turn, as well as the time-constants (τ ’s) depend on the current net voltage
difference v(t). H&H found the following formulas by fitting to data. Let us write:

1

τm(v)
(m∞(v)−m) = αm(v)(1−m)− βm(v)m

(so that dm/dt = αm(v)(1 − m) − βm(v)m), and similarly for n, h. In terms of the α’s and β’s,
H&H’s formulas are as follows:

αm(v) = 0.1
25− v

exp
(

25−v
10

)
− 1

, βm(v) = 4 exp

(
−v
18

)
, αh(v) = 0.07 exp

(
−v
20

)
,

βh(v) =
1

exp
(

30−v
10

)
+ 1

, αn(v) = 0.01
10− v

exp
(

10−v
10

)
− 1

, βn(v) = 0.125 exp

(
−v
80

)
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where the constants are ḡK = 36, ḡNa = 120, ḡL = 0.3 vNa = 115 vK = −12, and vL = 10.6.

The way in which H&H did this fit is, to a large extent, the best part of the story. Basically, they
performed a “voltage clamp” experiment, by inserting an electrode into the axon, thus permitting a
plot of current against voltage, and deducing conductances for each channel. (They needed to isolate
the effects of the different channels; the experiments are quite involved, and we don’t have time to go
over them in this course.)

For an idea of how good the fits are, look at these plots of experimental gK(V )(t) and gNa(V )(t), for
different clamped V ’s (circles) compared to the model predictions (solid curves).

Simulations of the system show frequency encoding of amplitude.
We show here the responses to constant currents of 0.05 (3 spikes in the shown time-interval), 0.1 (4),
0.15 (5) mA:

Here are the plots of n,m, h in response to a stimulus at t = 5 of duration 1sec, with current=0.1:

(color code: yellow=n, red=m, green=h)

Observe how m moves faster in response to stimulus.

It is an important feature of the model that τm � τn and� τh. This allows a time-scale separation
analysis (due to FitzHugh): for short enough intervals, one may assume that n(t) ≡ n0 and h ≡ h0,
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so we obtain just two equations:

Cdv/dt = −ḡKn4
0(v−vK)− ḡNam3h0(v−vNa)− ḡL(v−vL)

τm(v)dm/dt = m∞(v)−m.

The phase-plane shows bistability (dash-dot curve is separatrix, dashed curve is nullcline dv/dt = 0,
dotted curve is nullcline dm/dt = 0; two solutions are shown with a solid curve)62:

There are two stable steady states: vr (“resting”) and ve (“excited”), as well as a saddle vs. Depend-
ing on where the initial voltage (set by a transient current I) is relative to a separatrix, as t → ∞
trajectories either converge to the “excited” state, or stay near the resting one.

(Of course, h, n are not really constant, so the analysis must be complemented with consideration of
small changes in h, n. We do not provide details here.)

An alternative view, on a longer time scale, is also possible. FitzHugh observed (and you will, too,
in an assigned project; see also the graph shown earlier) that : h(t) + n(t) ≈ 0.8, constant during an
action potential. (Notice the approximate symmetry of h, n in plots.) This allows one to eliminate
h from the equations. Also, assuming that τm � 1 (because we are looking at a longer time scale),
we may replace m(t) by its quasi-steady state value m∞(v). We end up with a new two-dimensional
system:

Cdv/dt = −ḡKn4(v − vK)− ḡNam∞(v)3(0.8− n)(v − vNa)− ḡL(v − vL)

τn(v)dn/dt = n∞(v)− n

which has these nullclines (dots for dn/dt=0, dashes for dv/dt=0) and phase plane behavior:

62next two plots borrowed from Keener & Sneyd textbook
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We have fast behaviors on the horizontal direction (n=constant), leading to v approaching nullclines
fast, with a slow drift on n that then produces, as we saw earlier when studying a somewhat simpler
model of excitable behavior, a “spike” of activity.

Note that if the nullclines are perturbed so that they now intersect in the middle part of the “cubic-
looking” curve (for v, this would be achieved by considering the external current I as a constant),
then a relaxation oscillator will result. Moreover, if the perturbation is larger, so that the intersection
is away from the “elbows”, the velocity of the trajectories should be higher (because trajectories do
not slow-down near the steady state). This explains “frequency modulation” as well.

Much of the qualitative theory of relaxation oscillations and excitable systems originated in the anal-
ysis of this example and its mathematical simplifications.

The following website:
http://www.scholarpedia.org/article/FitzHugh-Nagumo model

has excellent animated-gifs showing the processes.
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2.10 Problems for ODE chapter

Problems ODE1: Population growth

1. Show that the solution of the logistic equation, given by N(t) = N0B
N0+(B−N0)e−rt

, has the follow-
ing properties:

(a) N → B as t→∞.

For the next parts, you may use the fact that, if N is a solution of dN
dt

(t) = f(N(t)), then
d2N
dt2

(t) = f ′(N(t))f(N(t)) (as remarked in the next problem).

(b) The graph of N(t) is concave up when N < B
2

.

(c) The graph of N(t) is concave down for B
2
< N < B.

(d) The graph of N(t) is concave up when N > B.

2. Sometimes, with large populations competing for limited resources, this competition might
result in struggles that prevent reproduction, so that dN

dt
(t) is actually smaller if N(t) is larger.

(Another example is tumor cells that have less access to blood vessels when the volume of the
tumor is large.) This means that d2N

dt2
< 0 if N is large, and is sometimes called “decelerating

growth for large populations” (“decreasing growth” would be a more accurate term!), though
other authors may use that term with a slightly different meaning.63

Observe that, if N is a solution of dN
dt

(t) = f(N(t)), then d2N
dt2

(t) = f ′(N(t))f(N(t)).

Thus, in order to test decelerating growth, we need to test f ′(N)f(N) < 0 when N is large.

Let us may write single population models as dN
dt

= K(N)N , where we think of K(N) as a
“per capita” growth rate. In the simplest exponential growth model, K(N) is constant, and in
the logistic model, K(N) is a linear function. But many other choices are possible as well. For
single-species populations, consider the following per-capita growth rates K(N), and answer
for which of them we have decelerating growth:

(a) K(N) = β
1+N

, β > 0.

(b) K(N) = β −N, β > 0.

(c) K(N) = N − eαN , α > 0.

(d) K(N) = logN .

(e) Which of the above growth rates would result in a stable population size?

(f) Think of examples in biology where these different growth rates may arise.

3. The “Allee effect” in biology (named after American zoologist and ecologist Warder Clyde
Allee) is that in which there is a positive correlation between population density and the per
capita population growth rate K(N) in very small populations. In Allee-effect models, the
function K(N) has a strict maximum at some intermediate value α of density, on the interval
[0, B]:

dK/dN > 0 for 0 < N < α , dK/dN < 0 for α < N < B

63For example, search in Google books inside the book “Cancer of the breast” by William L. Donegan and John Stricklin
Spratt, or the paper “Decelerating growth and human breast cancer” by John A. Spratt, D. von Fournier, John S. Spratt,
and Ernst E. Weber, Cancer, Volume 71, pages 2013-2019, March 1993.
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(and K(B) = 0). Such a model applies when there is a carrying capacity, limiting growth
at large densities, as in the logistic model, but also growth is impeded at low densities (for
example, because of the difficulty in finding mates at low densities). The sign of K(0) may be
positive or negative.

(a) Sketch a plot of a hypothetical function K(N) that satisfies these properties, assuming that
K(0) < 0. (That is, all we are asking is that K(0) < 0, K(B) = 0, and there is a maximum at
some intermediate point between 0 and B.)

(b) Give an explicit example of a parabola K(N) as in (a).

(c) Sketch a plot of K(N)N for your function K in the previous part.

(d) What are the stable points of dN/dt = K(N)N , for such a function K(N)?

(e) Repeat a-d with a function that satisfies K(0) > 0.

Remarks on this example: If we ask that K(0) < 0, then we have something called a “strong”
Allee effect: in this case, the growth rate per capita is actually negative for small populations.
If instead K(B) ≥ 0, then one talks about the “weak” Allee effect. The corresponding plots for
dN/dt, which is the product K(N)N and not just K(N), are as follows:

The plot shown below64 provides experimental evidence of a strong Allee effect, showing the
relationship between per capita growth rate and population density for crown-of-thorns starfish
(Acanthaster planci):

4. The continuous-time Beverton-Holt population growth model in fisheries is:

dN

dt
=

rN

α +N

(Beverton and Holt, 1957; Keshet’s book).

(a) Find k1 and k2 so that, with N∗ = k1N and t∗ = k2t, we obtain the following “dimension-
less” form of the Beverton-Holt model:

dN∗

dt∗
=

N∗

1 +N∗
.

64This is quoted from Drake, JM. and Kramer, AM. (2011) Allee Effects. Nature Education Knowledge 3(10):2
(http://www.nature.com/scitable/knowledge/library/allee-effects-19699394), where it is attributed to: Dulvy NK, Freck-
leton RP, and Polunin NVC (2004) Coral reef cascades and the indirect effects of predator removal by exploitation. Ecol
Lett 7:410416.
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(If you like, change the statement to “find t̂ and N̂ such that, with N̂N∗ = N and t̂t∗ = t, ...” –
it is good to get used to other notations, though.)

(b) Analyze the behavior of the solutions to this equation.

5. Another population growth model used in fisheries is the continuous Ricker model:

dN

dt
= rNe−βN

(Ricker, 1954; Keshet’s book). (a) Find k1 and k2 so that, with N∗ = k1N and t∗ = k2t, we
obtain the following “dimensionless” form of the Ricker model:

dN∗

dt∗
= N∗e−N

∗
.

(b) Analyze the behavior of the solutions to this equation.
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Problems ODE2: Interacting population problems

When species interact, the population dynamics of each species is affected. (See Section 2.1.11 on
“Signs of interactions among variables”.) There are three main types of interactions:

• If the growth rate of one of the populations is decreased, and the other increased, the populations
are in a predator-prey relationship.

• If the growth rate of each population is decreased, then they are in a competition relationship.

• If each population’s growth rate is enhanced, then they are in a mutualism relationship.

1. (Predator-Prey Models) The classical version of the Lotka-Volterra predator-prey system is as
follows:

dN

dt
= N(a− bP )

dP

dt
= P (cN − d) .

Here, N(t) is the prey population and P (t) is the predator population at time t, and a, b, c and
d are positive constants.

(a) Briefly explain the ecological assumptions in the model, i.e. interpret each term in the
equations.

(b) Find a rescaling of variables that makes the model have just one parameter:

dN

dt
= N(1− P )

dP

dt
= αP (N − 1)

(c) Determine the steady states and their stability.

(d)(i) Show that the solution of the differential equation with d = a and initial conditions
N(0) = 2 and P (0) = 1

2
satisfies:

N(t) + P (t)− log (N(t)P (t)) =
5

2
(∗)

for all t ≥ 0. (Hint: show that the derivative of N(t) + P (t)− log (N(t)P (t)) is zero.)

(ii) Plot the solutions of N(t) + P (t)− log (N(t)P (t)) = 5
2
. Are the solutions periodic?

(iii) Give a general formula like (∗) for arbitrary a, b, c, d, and any initial conditions.

2. (Predator-prey model with limited growth.) Here is a modified version of the classical version
of the predator-prey model, in which there is logistic growth for the prey, with carrying capacity
K, as follows:

dN

dt
= α

(
1− N

K

)
N − γPN = αN − βN2 − γPN

dP

dt
= −δP + εPN .
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We have that β = α/K and α now represents the inherent per capita net growth rate for the
prey in the absence of predators. As in the previous predator-prey model, predators eat only
prey, and, if there were no prey, they would die at a constant per capita rate.

We assume that α/β > δ/ε.

(a) Draw the nullclines of the system, assuming that α = 2 and β = δ = ε = γ = 1. Show the
directions of movement “South or North” and “East or West” on the N and P nullclines respec-
tively. Then conclude, and show also in the diagram, the directions of movement (“Northeast,”
etc.) on each region (connected component) of the first quadrant delimited by the nullclines.

(b) Show that the steady states for the model are (0, 0),
(
α
β
, 0
)

, and(
δ

ε
,
α

γ
− βδ

γε

)
.

(c) Form the Jacobian matrix at
(
δ
ε
, α
γ
− βδ

γε

)
. Show that

(
δ
ε
, α
γ
− βδ

γε

)
is a stable steady state.

(d) For the special case α = 2 and β = δ = ε = γ = 1, determine the stability and sketch the
phase plane near the equilibrum (2, 0). (If real eigenvalues, find eigenvalues and eigenvectors
for the linearization at that point. If complex, determine if clockwise or counterclockwise
spiral.)

(e)For the special case α = 2 and β = δ = ε = γ = 1, determine the stability and sketch the
phase plane near the equilibrum (1, 1). (If real eigenvalues, find eigenvalues and eigenvectors
for the linearization at that point. If complex, determine if clockwise or counterclockwise
spiral.)

3. (Another revised predator-prey model.) This example illustrates how the type of equilibrium
may change because of changes in the values of the model parameters.

As in the previous model, we have predators P and prey N . The prey growth follows the
logistic equation as in the predator-prey model with limited growth, but we change the growth
assumption regarding predators : instead of being proportional toNP , it is proportional to NP

1+N
,

a Michaelis-Menten rate:
dN

dt
= αN − βN2 − γ PN

1 +N

We also change the assumptions on the predator growth rate:

dP

dt
= δP

(
1− εP

N

)
reflecting a carrying capacity proportional to the prey population. Consider this system, with
the parameters α = 2

3
, β = 1

6
, γ = 1, and ε = 1 and answer the following questions.

(a) Draw the nullclines of the system. Show the directions of movement “South or North” and
“East or West” on the N and P nullclines respectively. Then conclude, and show also in the
diagram, the directions of movement (“Northeast,” etc.) on each region (connected component)
of the first quadrant delimited by the nullclines.

(b) Show that the point (1, 1) is a steady state. Under what condition is it a stable, and under
what condition is it an unstable, steady state?
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4. (Competition Models) We now consider the basic two-species Lotka-Volterra competition
model with each species N1 and N2 having logistic growth in the absence of the other:

dN1

dt
= r1N1

[
1− N1

k1

− b12
N2

k1

]
dN2

dt
= r2N2

[
1− N2

k2

− b21
N1

k2

]
where r1, r2, k1, k2, b12 and b21 are all positive constants, the r’s are the linear birth rates at
low densities, and the k’s are the carrying capacities. The constants b12 and b21 measure the
competitive effect of N2 on N1 and N1 on N2 respectively.

(a) Find a rescaling of variables that makes the model have just three parameters:

dN1

dt
= N1(1−N1 − a12N2)

dN2

dt
= αN2(1−N2 − a21N1)

For the remainder of this problem we assume that the system is already in this reduced form.

(b) Suppose in this part that a12a21 = 1.

(i) Show that there are three steady states: (0, 0), (1, 0), and (0, 1). and that (0, 0) is unstable.

(ii) Show that (1, 0) is stable if a21 > 1 and unstable if a21 < 1.

(iii) Under what conditions can you guarantee that (0, 1) is stable or unstable?

(c) Suppose in this part that a12 = a21 = 1
2
.

(i) Show that there are four steady states, and that one of these has both N1 > 0 and N2 > 0
and is stable (a coexistence state).

(ii) Draw the nullclines of the system, assuming a12 = a21 = 1
2
. Show the directions of

movement “South or North” and “East or West” on the N1 and N2 nullclines respectively. Then
conclude, and show also in the diagram, the directions of movement (“Northeast,” etc.) on each
region (connected component) of the first quadrant delimited by the nullclines.

(d) Suppose in this part that a12 = a21 = 2.

(i) Show that there are four steady states, and one of them has both N1 > 0 and N2 > 0 and is
a saddle.

(ii) Draw the nullclines of the system, assuming a12 = a21 = 2. Show the directions of move-
ment “South or North” and “East or West” on the N1 and N2 nullclines respectively. Then
conclude, and show also in the diagram, the directions of movement (“Northeast,” etc.) on each
region (connected component) of the first quadrant delimited by the nullclines.

5. (Mutualism or Symbiosis Models) There are many examples that show the interaction of two
or more species has advantages for all. Mutualism often plays the crucial role in promoting
and even maintaining such species: plant and seed dispersal is one example. The simplest
mutualism model analogous to the classical Lotka-Volterra predator-prey one is as follows:

dN1

dt
= r1N1 + a1N1N2

dN2

dt
= r2N2 + a2N2N1
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where r1, r2, a1 and a2 are all positive constants.

Determine the steady states and their stabilities.

6. (a) Determine the kind of interactive behavior between two species with populations N1 and N2

that is implied by the following model:

dN1

dt
= r1N1

(
1− N1

k1 + b12N2

)
dN2

dt
= r2N2

(
1− N2

k2 + b21N1

)
where r1, r2, k1, k2, b12 and b21 are all positive constants.

(b) Find a rescaling of variables that makes the model have just three parameters:

dN1

dt
= N1

(
1− α N1

1 +N2

)
dN2

dt
= γN2

(
1− β N2

1 +N1

)
For the remainder of this problem we assume that the system is already in this reduced form.

(c) Determine the steady states of the system and their stabilities.

(d) Draw the nullclines of the system, assuming the special values r1 = r2 = k1 = k2 = 1 and
b1 = b2 = 1/2. Show the directions of movement “South or North” and “East or West” on the
N1 and N2 nullclines respectively. Then conclude, and show also in the diagram, the directions
of movement (“Northeast,” etc.) on each region (connected component) of the first quadrant
delimited by the nullclines.

7. (a) Determine the kind of interactive behavior between two species with populations N1 and N2

that is implied by the following model:

dN1

dt
= rN1

(
1− N1

k

)
− aN1N2 (1− exp(−bN1))

dN2

dt
= −dN2 +N2e (1− exp(−bN1))

where r, a, b, d, e and k are positive constants.

(b) Find a rescaling of variables that makes the model have just three parameters:

dN1

dt
= N1(1−N1)−N1N2

(
1− e−βN1

)
dN2

dt
= −γN2 + αN2

(
1− e−βN1

)
For the remainder of this problem we assume that the system is already in this reduced form.

(c) Determine the steady states of the system and their stabilities.

(d) Draw the nullclines of the system. Show the directions of movement “South or North” and
“East or West” on the N1 and N2 nullclines respectively. Then conclude, and show also in the
diagram, the directions of movement (“Northeast,” etc.) on each region (connected component)
of the first quadrant delimited by the nullclines.
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8. (a) Determine the kind of interactive behavior between two species with populations N1 and N2

that is implied by the following model:

dN1

dt
= N1(a− d(N1 +N2)− b)

dN2

dt
= N2(a− d(N1 +N2)− sb)

where a, b, d, and s are positive constants, with s < 1 (one can interpret s as a measure of the
difference in mortality between the two species).

(b) Find a rescaling of variables that makes the model have just two parameters:

dN1

dt
= N1[α− (N1 +N2)]

dN2

dt
= N2[β − (N1 +N2)]

(c) Show that the population N1 and N2 are related by:

N1(t) = cN2(t)e(s−1)t

for a constant c.

(d) Determine the steady states of the system and their stabilities.

(e) Draw the nullclines of the system, assuming the special values b = d = 1, a = 2, and
s = 1/2. Show the directions of movement “South or North” and “East or West” on the N1

and N2 nullclines respectively. Then conclude, and show also in the diagram, the directions
of movement (“Northeast,” etc.) on each region (connected component) of the first quadrant
delimited by the nullclines.
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Problems ODE3: Chemostat problems

1. For the chemostat model, analyze stability of X̄1 when the parameters are chosen such that the
equilibrium X̄2 does not exist.

2. Suppose that we have built a chemostat and we model it as usual, with a Michaelis-Menten
growth rate. Moreover, we have measured all constants and, in appropriate units, have:

V = 2 and kmax = α = F = kn = 1 .

What should the concentration of the nutrient in the supply tank be, so that the steady state
concentration of bacteria is exactly 20? (Don’t worry about units. Assume that all units are
compatible.)

Answering this question should only take a couple of lines. You may use any formula from the
notes that you want to.

3. Suppose that we use a Michaelis-Menten growth rate in the chemostat model, and that the
parameters are chosen so that a positive steady state exists.

(a) Show that

N = f(V, F, C0) =
C0(F − V Km) + FKn

α (F − V Km)

and

C =
FKn

F − V Km

at the positive steady state.

(b) Show that either of these: (a) increasing the volume of the culture chamber, (b) increasing
the concentration of nutrient in the supply tank, or (3) decreasing the flow rate, provides a
way to increase the steady-state value of the bacterial population. (Hint: compute partial
derivatives.)

4. Suppose that we use K(C) = kC (for some constant k) instead of a Michaelis-Menten growth
rate, in the chemostat model.

(a) Find a change of variables so that only one parameter remains.

(b) Find the steady state(s). Express it (them) in terms of the original parameters. Determine
conditions on parameters so that a positive steady state exists, and explain intuitively why
these conditions make sense.

(c) Compare the conditions you just obtained with the ones that we got in the MM case.

(d) Determine the stability of the positive steady state, if it exists.

5. This is purely a modeling problem (there is no one “correct” answer!). We ask about ways to
generalize the chemostat - just provide sets of equations, no need to solve anything.
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(a) How would you change the model to allow for two growth-limiting nutrients? Now
K(C1, C2), the rate of reproduction per unit time, depends on two concentrations.65 It
is a little harder to write how the nutrients are being consumed in this multiple nutrient
case. Think about this and be creative.66

(b) Suppose that at high densities the microorganism secretes a chemical that inhibits growth.
How would you model that?

(c) Model the case when two types of microorganisms compete for the same nutrient.

6. This is yet another variation on the chemostat. Suppose that there is a membrane that filters the
outflow, so that the microorganism never flows out (only the nutrient does). Assume, however,
that the microorganism dies at a certain rate µN .

(a) Write down a model, assuming K(C) is Michaelis-Menten.

(b) Find a change of variables that leads to a system with three parameters as follows:

dN

dt
= α1(

C

C + 1
)N − α3N

dC

dt
= −(

C

C + 1
)N − C + α2

(c) Show that there are two steady states, one with N = 0. Show that the second one has
positive coordinates provided that:

α1 > α3 & α2 −
α3

α1 − α3

> 0 ,

(d) Show that this second equilibrium is always stable (if it has positive coordinates).

7. Consider this system of equations (which corresponds to a chemostat with K(C) = C):

dN

dt
= CN −N

dC

dt
= −CN − C + 5 .

The sketch below has the nullclines (there are vertical arrows on the C axis too).

65One possibility is to use K(C1, C2) = max{K1(C1),K2(C2)}, in the case in which the bacteria decide to use the
nutrient that is in most abundance preferentially (this actually happens with certain sugar consumptions - a beautiful ex-
ample of bacterial computation; search “lac operon” on the web). Another would be to takeK as some linear combination
of C1 and C2, etc. What is the least that one should assume about K, though?

66It is amusing to see can be found by typing “multiple nutrients chemostat” into Google (you might recognize some of
the authors of the first paper that comes up :).
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(a) Label the C and N nullclines, and put directions on all arrows. Assign directions to
the flows (“NE”, “SE”, “NW”, “SW”) in each of the sections of the positive quadrant,
partitioned by the nullclines.

(b) Sketch on this diagram a rough plot of the trajectory which starts with a concentration
N = 4 of bacteria and C = 2 of nutrient, and write one or two English sentences explain-
ing what happens to nutrient and bacteria over time (something like: “initially, the nutrient
increases and the bacteria decrease, but after a while they both increase, eventually con-
verging to C = 2 and N = 5”).

(c) What is the linearization at the equilibrium N = 4, C = 1?

(d) Is the equilibrium (4, 1) stable or unstable? Classify the equilibrium (saddle, spiral, etc).
(You are not asked to compute eigenvalues and eigenvectors. It is OK to answer by refer-
ring to the trace/determinant plane picture in the notes.)

8. Here is a homework problem involving chemostats with two species and one nutrient. Consider
these ODE’s:

dB1/dt = B1f1(C)− α1B1

dB2/dt = B2f2(C)− α2B2

dC/dt = β − δC − 1

γ1

B1f1(C)− 1

γ2

B2f2(C)

for two species of bacteria whose concentrations are B1 and B2 and the concentration C of a
nutrient. All constants are positive. The functions fi(C) could be Monod (Michaelis-Menten)
or linear.

(a) Interpret the different terms.

(b) [more advanced problem] (i) Suppose C(0) = β
δ
. Show that then C(t) ≤ β

δ
for all t ≥ 0.

[Sketch of proof: if this is false, then there are an ε > 0 and a time t0 > 0 such that C(t0) =
β
δ

+ ε. Without loss of generality, we may assume that C(t) < β
δ

+ ε for all 0 ≤ t ≤ t0 (why?).
Thus dC/dt(t0) < 0 (why?), but this contradicts that C(t) < β

δ
+ ε for all 0 ≤ t ≤ t0 (why?).]

(ii) Suppose now that f1

(
β
δ

)
< α1. Take a solution with C(0) = β

δ
and B2(0) = 0. Prove that

B1(t)→ 0 as t→∞. (If this is too hard, just show that dB1/dt(t) < 0 for all t ≥ 0.)
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This says that the first type of bacteria will become extinct, even if there are no bacteria of
the second type. So, from now on we assume that f1

(
β
δ

)
> α1, and for the same reason,

f2

(
β
δ

)
> α2. Consider these two numbers λi, the “break-even concentrations”:

fi(λi) = αi .

Let us pick the smallest of the two; let us say that λ1 < λ2 (the other case is entirely analogous).
The following theorem is the “competitive exclusion principle” for chemostats:

Theorem: Unless B1(0) = 0, one has that B2(t) → 0 as t → ∞ and B1(t) converges to a
nonzero steady state, which it is easy to see must be γ1

α1
(β − δλ1).

This is neat. It says that the bacterium with the smallest requirements completely wins the
competition. No co-existence! (The equilibrium with B1 = 0 and B2 = γ2

α2
(β − δλ2) is

unstable.) There are different theorems that apply to different types of functions fi; in particular
one by Hsu (1978) for Michaelis-Menten and one by Wolkowicz and Lu (1992) for linear fi’s; a
nice summary is given in “Competition in the chemostat: Some remarks”, by P. De Leenheer, B.
Li, and H.L. Smith, Canadian Applied Mathematics Quarterly 11(2003): 229-248 (the theorem
is valid more generally for N > 2 species as well).

(c) Consider specifically this system:

dB1/dt = B1C −B1

dB2/dt = B2C − 2B2

dC/dt = 3− C − 1

2
B1C −

1

2
B2C .

(i) Find the equilibrium points of this system. Compute the break-even concentrations λ1 and
λ2.

(ii) In particular, there will be two equilibria of the forms: X1 = (b1, 0, c1) and X2 = (0, b2, c2).
Which of the two should be stable, according to the theory?

(iii) Compute the Jacobians at X1 and X2 and find the eigenvalues (use a computer if wanted).
Show that all eigenvalues at X1 are real and negative, but at X2 there is a real positive eigen-
value.

(d) Suppose that we pick fi(C) = C as in (c)(iii), but we now have arbitrary parameters αi, etc.
satisfying fi

(
β
δ

)
> αi.

(i) Compute the equilibria X1 = (b1, 0, c1) and X2 = (0, b2, c2).

(ii) Under what conditions on the parameters does the theory predict that X2 will be stable?

(iii) Assuming the conditions in (ii), show that the linearized matrix at X2 is stable and at X1 is
unstable.

9. Consider the steady states of the chemostat, as found in Section 2.2.1. In pharmaceutical and
other applications, one wishes to maximize the yield of bacteria at steady state, N̄1. How would
you pick values of V , F , C0 to make this yield large?

10. In Section 2.1.10, we reduced the number of parameters in the chemostat by using t̂ = V
F

,

Ĉ = kn, and N̂ =
knF

αV kmax
. Let us now make a different choice for Ĉ and t̂ (leaving N̂ the
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same), as follows:

t̂ =
1

kmax
, Ĉ =

FC0

kmaxV
.

(a) Find the transformed form of the system and group the parameters into two new constants.

(b) Write the stability conditions for the chemostat in terms of the new constants.

(c) Show that X̄1 is stable only when X̄2 is not.

11. For the standard chemostat with Michaelis-Menten kinetics, we found that one condition for
the second steady state to be positive was that: kmax > F

V
.

(a) Prove that, if instead kmax < F
V

, then dN/dt < 0, which means that bacteria will become
extinct (no matter how much nutrient there is!).

(b) Interpret the second condition, C0 >
kn

V
F
kmax−1

.
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Problems ODE4: Chemotherapy, metabolism, and drug infusion problems

1. Consider the chemotherapy model (section “Effect of Drug on Cells in an Organ”). Suppose
that K(C) is Michaelis-Menten.

(a) Show how to reduce the model to having just three constants.

(b) There are again two steady states, one with N = 0. Find conditions under which there
is a second one that has positive coordinates. Interpret biologically what your conditions
mean.

(c) In contrast to the chemostat (where the objective is to get the microorganisms to grow),
it would be desirable if the equilibrium with N = 0 is stable and the second one either
doesn’t exist (in the positive quadrant) or is unstable. Why would a stable second equilib-
rium be bad? (Just one sentence, please.)

(d) Find conditions guaranteeing that the equilibrium with N = 0 is stable and show that, un-
der these conditions, the second equilibrium, if it is in the first quadrant, must be unstable.

2. For the chemotherapy model discussed above, write a computer program in your favorite pack-
age (MATLAB, Mathematica, Maple, whatever) to simulate it (or use “Jode”), and plot solu-
tions from several different initial conditions (show N(t) and C(t) versus t on the same plot,
using different line styles such as lines and dots or dashes or different colors). Do so for sets
of parameters that illustrate a few of the possible cases (second equilibrium exists as a positive
solution or now; equilibrium with N = 0 is stable or not)

3. For the chemotherapy model discussed above, and assuming that parameters are so that the
equilibrium with N = 0 is stable and the one in the positive orthant is unstable, there are two
possibilities: (a) all solutions (except for a set of measure zero of initial conditions) converge to
the equilibrium with N = 0 is stable; (b) there is set of initial conditions with nonzero measure
for which solutions do not converge to the equilibrium with N = 0. Determine which is the
case, and prove your conclusions rigorously. (Some numerical experimentation will be useful,
of course.)

4. We base this problem on the following paper:

M.B. Rabinowitz, G.W. Wetherill, and J.D. Kopple, “Lead metabolism in the normal human:
stable isotope studies,” in Science, vol. 182, 1973, pp. 725 - 727.

as well as a writeup from the Duke Connected Curriculum Project (by L.C. Moore and D.A.
Smith) (we use the wording from this writeup):

Lead enters the human body from the environment by inhalation, by eating, and by drinking.
From the lungs and gut, lead is taken up by the blood and rapidly distributed to the liver and
kidneys. It is slowly absorbed by other soft tissues and very slowly by the bones. Lead is
excreted from the body primarily through the urinary system and through hair, nails, and sweat:
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We model the flow of lead into, through, and out of a body with separate compartments for
blood, bones, and other tissues, plus a compartment for the external environment. For i =
1, 2, 3, we let xi(t) be the amount of lead in compartment i at time t, and we assume that the rate
of transfer from compartment i to compartment j is proportional to xi(t) with proportionality
constant aji.

We assume that exposure to lead in the environment results in ingestion of lead at a constant
rate L.

The units for amounts of lead are micrograms (µg), and time t is measured in days.

Rabinowitz et. al. (paper cited above) measured over an extended period of time the lead levels
in bones, blood, and tissue of a healthy male volunteer living in Los Angeles. Their measure-
ments produced the following transfer coefficients for movement of lead between various parts
of the body and for excretion from the body. Note that, relatively speaking, lead is somewhat
slow to enter the bones and very slow to leave them. The estimated rates are (units are days−1):

a21 = 0.011, a12 = 0.012

(from blood to tissue and back),

a31 = 0.0039, a13 = 0.000035

(from blood to bone and back), and

a01 = 0.021, a02 = 0.016

(excretion from blood and tissue), and they estimated that the average rate of ingestion of lead
in Los Angeles over the period studied was L = 49.3µg per day.

(a) Find the steady state of the corresponding system. (You need to solve a set of three linear
equations.)

(b) Now repeat the problem assuming that the coefficient for blood to tissue transfer is ten
times bigger: a21 = 0.11.

(c) Find the steady state of the modified system, and conclude that in steady state the amount
of lead in the tissue is about three times higher than in the original model.

(d) Use a computer (MATLAB, Maple, Mathematica, JOde, whatever you prefer) to plot the
amount of lead in the tissue, starting from zero initial conditions, for the original (a21 =
0.011) model, for two years. Notice that even after two years, the amount is not quite near
steady state (it is about 620 µg). What is it after 100 years?
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Problems ODE5: Epidemiology problems

1. For the SIRS model, suppose that β = ν = γ = 1. For what values of N does one have stable
spirals and for what values does one get stable nodes, for X̄2?

2. Take the SIRS model, and suppose that the parameters are so that a positive steady state exists.
Now assume that a new medication is discovered, which multiplies by 20 the rate at which
people get cured (that is, become “removed” from the infectives). However, at the same time, a
mutation in the virus which causes this disease makes the disease 5 times as easily transmitted
as earlier. How does the steady state number of susceptibles change?

(The answer should be stated as something like “it is doubled” or “it is cut in half”.)

Answering this question should only take a couple of lines. You may use any formula from the
notes that you want to.

3. We consider an SIR model with vital dynamics. A per-capita mortality rate δ is assumed to be
the same for all types of individuals, so that there will be terms “−δS” and so forth for each
of the three classes. We also assume that births lead to new susceptibles at a rate δ which is
identical to the mortality rate, so we model the “birth” rate as a term “δ(S+I+R)” added to
dS/dt. (Of course, all these assumptions are a bit artificial. We make them in order to have
a simpler model.) The figure shown below illustrates the basic rates (using δN to indicate
δ(S+I+R)).

(a) Write a set of equations describing the model.

(b) Find the steady states of the system and their stabilities.

(c) Under what conditions does the epidemic occur, i.e., what conditions on the parameters
allow a steady state with positive coordinates?

4. We continue with the previous problem, but we now consider an SIRS model: there is a flow
from R back to S, as shown in the figure.

(a) Write a set of equations describing the model.

(b) Find the steady states of the system and their stabilities.

(c) Under what conditions does the epidemic occur, i.e., what conditions on the parameters
allow a steady state with positive coordinates?
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5. In the following model, we allow the emigration of susceptibles:

dS

dt
= −g(I)S − λS

dI

dt
= g(I)S − γI

dR

dt
= λS + γI

with g(x) = xe−x.

(a) Interpret the various terms in the equations.

(b) Show that the epidemic will always tend to extinction, in the sense that both infectives and
susceptibles converge to zero.

6. The following model describes a directly transmitted viral microparasite:

dS

dt
= bN − βSI − bS

dI

dt
= βSI − rI − bI

dR

dt
= rI − bR .

The variables and S, I and R represent the numbers of susceptible, infective and immune
individuals, and b, β, r and N are all positive constants. (We may think of b as a death rate,
caused by something other than the parasite, so that all rates are the same.)

Show that, the initial state (N, 0, 0) is a steady state.

Find the Jacobian matrix (a 3 × 3 matrix) for the linearization at (N, 0, 0) and compute its
eigenvalues.

Now find a number (which we think of as a “threshold population size”) Nc with the property
that, if N < Nc, then (N, 0, 0) is stable.

(The interpretation is that, for such N , the parasite cannot maintain itself in the population, and
both the infective and the immune class eventually die out.)

7. Let us consider a “criss-cross” venereal infection model, in which the removed class is per-
manently immune. We assume the following influences, employing the usual notations for the
susceptible, infective, and removed classes:

-

-

-

-
HH

HHY �
����

S

S ′

I

I ′

R

R′

(I ′ infects S, and I infects S ′).
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(a) Explain why this is a good model:

dS

dt
= −rSI ′

dS ′

dt
= −r′S ′I

dI

dt
= rSI ′ − aI

dI ′

dt
= r′S ′I − a′I ′

dR

dt
= aI

dR′

dt
= a′I ′

(the parameters are all positive).

Let the initial values for S, I , R, S ′, I ′ and R′ be S0, I0, 0 and S ′0, I ′0, 0 respectively.

(b) Show that the female and male populations stay constant, and therefore S(t) = S0 exp[−rR′/a′].
Conclude that limt→∞ S(t) > 0 and limt→∞ I(t) = 0. Deduce similar results for S ′ and I ′.

(c) Obtain an equation which determines S(∞) and S ′(∞).

(d) Show that a condition for an epidemic to occur is at least one of:

S0I
′
0

I0

> a/r,
S ′0I0

I ′0
> a′/r′.

Hint: Think of dI
dt

and dI′

dt
at t = 0.

(e) What single condition would ensure an epidemic?

8. As in the notes, we study a virus that can only be passed on by heterosexual sex. There are two
separate populations, male and female: we use S̄ to indicate the susceptible males and S for the
females, and similarly for I and R.

The equations analogous to the SIRS model are:

dS̄

dt
= −β̄S̄I + γ̄R̄

dĪ

dt
= β̄S̄I − ν̄Ī

dR̄

dt
= ν̄Ī − γ̄R̄

dS

dt
= −βSĪ + γR

dI

dt
= βSĪ − νI

dR

dt
= νI − γR .
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This model is a little difficult to study, but in many STD’s (especially asymptomatic), there is no
“removed” class, but instead the infecteds get back into the susceptible population. This gives:

dS̄

dt
= −β̄S̄I + ν̄Ī

dĪ

dt
= β̄S̄I − ν̄Ī

dS

dt
= −βSĪ + νI

dI

dt
= βSĪ − νI .

Writing N̄ = S̄(t) + Ī(t) and N = S(t) + I(t) for the total numbers of males and females, and
using these two conservation laws, we then concluded that one may just study the following set
of two ODE’s:

dĪ

dt
= β̄(N̄ − Ī)I − ν̄Ī

dI

dt
= β(N − I)Ī − νI .

Parts (a)-(c) refer to this reduced model.

(a) Prove that there are two equilibria, the first of which is I = Ī = 0 and a second one, which
exists provided that:

R0R̄0 =

(
Nβ

ν

)(
N̄ β̄

ν̄

)
> 1

and is given by I = NN̄−(νν̄)/(ββ̄)

ν/β+N̄
, Ī = NN̄−(νν̄)/(ββ̄)

ν̄/β̄+N
.

(b) Prove that the first equilibrium is unstable, and the second one stable.

(c) What vaccination strategies could be used to eradicate the disease?

(d) Now consider the full model (six dimensional, with removeds). How many linearly inde-
pendent conservation laws are there?

(e) Again for the full model. Reduce by conservation to a system of 5 or less equations
(how many, depends on how many conservation laws you found in (d)). Pick some set of
numerical parameters (any you want) such that R0R̄0 = 2. Determine, using computer
simulations, what the solutions look like. (You may be able to find the steady states
algebraically, too.)
For your answer, attach some plots of solutions I(t) and Ī(t) as a function of time.
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Problems ODE6: Chemical kinetics problems

1. Suppose that the enzyme E can react with the substrate A in such a way that up to two copies
of A may bind to E at the same time. We model this by the following chemical network:

A+ E
k1−→
←−
k−1

C1
k2−→ P + E

A+ C1

k3−→
←−
k−3

C2
k2−→ P + C1

where the k’s are the rate constants, P a product of the reaction, and C1 and C2 are enzyme-
substrate complexes.

(a) What are the species vector S and the reaction vector R(S)?

(b) Find the stoichiometry matrix Γ and calculate its rank.

(c) Compute the product ΓR(S), and write down the differential equation model based on mass
action kinetics.

(d) Find a conservation law, assuming that a(0) = a0, e(0) = e0, c1(0) = c2(0) = p(0) = 0.

(d’) Find a basis of the left nullspace of Γ and compare it with your answer of part (d).

(e) Use part (d) and write a system of equations for just a, c1 and c2.

(f) If ε = e0
a0
� 1, τ = k1e0t, u = a

a0
, νi = ci

e0
for i = 1, 2, show that the reaction mechanism

reduces to the following form in terms of the new variables (provide expressions for f and g):

du

dτ
= f(u, ν1, ν2)

ε
dνi
dτ

= gi(u, ν1, ν2), i = 1, 2.

2. Consider the following chemical reaction network, which involves 4 substances calledM,E,C, P :

3M + 2E
1−→
←−
1

C
1−→ 2E + P .

(a) Find the species vector S and the reaction vector R(S) (assuming mass action kinetics).

(b) Find the stoichiometry matrix Γ.

(c) Compute the product ΓR(S) and show the set of 4 differential equations for M,E,C, P .

(d) Find the rank of Γ.

(e) What is the dimension of the left nullspace of Γ?

(f) Find a basis of the left nullspace of Γ (conservation laws).

3. We discussed the chemical kinetics formulation of an example that may be represented as in
Figure 2.1(a).

Many cell signaling processes involve double instead of single transformations such as addition
of phosphate groups. A model for a double-phosphorylation as in Figure 2.1(b) corresponds to
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Figure 2.1: (a) One-step and (b) two-step transformations

reactions as follows (we use double arrows for simplicity, to indicate reversible reactions):

E + S0 ↔ ES0 → E + S1 ↔ ES1 → E + S2

F + S2 ↔ FS2 → F + S1 ↔ FS1 → F + S0
(2.19)

where “ES0” represents the complex consisting of E bound to S0 and so forth. For simplicity,
assume that all constants are equal to 1.

(a) Find the stoichiometry matrix and write a corresponding system of ODE’s.

(b) Show that there is a basis of conservation laws consisting of three vectors.

4. In the quasi-steady state derivations, suppose that, instead of e0 � s0, we know only the weaker
condition:

e0 � (s0 +Km) .

Show that the same formula for product formation is obtained. Specifically, now pick:

x =
s

s0 +Km

, y =
c

e0
, ε =

e0
s0 +Km

and show that the equations become:

dx

dt
= ε

[
k−1 y − k1(s0 +Km)x (1− y)

]
dy

dt
= k1

[
(s0 +Km)x −

(
Km + (s0 +Km)x

)
y

]
.

Now set ε = 0. In conclusion, one doesn’t need e0 � s0 for the QSS approximation to hold.
It is enough that Km be very large, that is to say, for the rate of formation of complex k1 to be
very small compared to k−1 + k2 (sum of dissociation rates).

5. As in the text, we consider a simplification of allosteric inhibition in which binding of substrate
can always occur, but product can only be formed (and released) if I is not bound. In addi-
tion, we will also assume that binding of S or I to E are independent of each other. (If we
don’t assume this, the equations are still the same, but we need to introduce some more kinetic
constants k’s.)

A reasonable chemical model is, then:

E + S
k1−→
←−
k−1

ES
k2−→ P + E



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 148

EI + S
k1−→
←−
k−1

EIS

E + I
k3−→
←−
k−3

EI

ES + I
k3−→
←−
k−3

EIS

where “EI” denotes the complex of enzyme and inhibitor, etc.

Prove that there results under quasi-steady state approximation a rate

dp

dt
=

Vmax

1 + i/Ki
· s

2 + as+ b

s2 + cx+ d

for some suitable numbers a = a(i), . . . and a suitably defined Ki.

6. A process in which a chemical is involved in its own production is called autocatalysis. A
simple example of autocatalysis is:

E +X
k−1−−⇀↽−−
k1

2X

in which a molecule of X combines with a molecule of E to produce two molecules of X .
To simplify, we will assume that E has a constant concentration, which we denote as e. This
might make sense if E is very large, so it is not consumed in any appreciable manner during the
reactions, or perhaps if it is beingh replentished externally during the process. In that case, we
really can look at the simpler model

X
k1e−−⇀↽−−
k−1

2X

Denote the concentration of X by x. Now answer the following questions:

(a) Write a scalar ODE for x(t) that describes the system (assuming mass action kinetics).
(Suggestion: first find Γ and R(S), which are a 1× 2 and 2× 1 matrix respectively.)

(b) Find the steady states and their stabilities.

(c) Show that x(t)→ k1e
k−1

as t→∞.

7. We consider a simple model of gene expression, in which there is also another species, a tran-
scription factor (which we will denote by R) that can bind to DNA at the promoter site of a
gene, and produce a complex (which we will denote by C). We assume that transcription is also
possible from this “occupied promoter” C:

D
α−→D +M , M

β−→0 , M
θ−→M + P , P

δ−→0 , D +R
k1−→
←−
k−1

C , C
ε−→C +M .

(a) Write the stoichiometry matrix, reaction vector, and differential equations.

(b) Answer: if ε < α, is R an enhancer (activator) or a repressor?

(c) Answer: if ε > α, is R an enhancer (activator) or a repressor?
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(d) Assume now that R is an enhancer. Suppose that you can do some genetic engineering
and change k−1. Answer: how would you change this parameter (should k−1 be incresed
or decreased?) so that the effect of R is magnified?

(e) Now consider the following special parameters: α = β = θ = δ = k−1 = 1 and k1 = 3.
Find the steady state that satisfies that D + C = 2 and R + C = 2. (It is easy to see that
there are infinitely many steady states, but a unique one once that we impose constraints on
D+C andR+C.) Your answers for the steady state values will involve some expressions
that have ε in them, such as “2ε+1

5
”.

8. Consider the following system:

A+X
k1−−⇀↽−−
k−1

2X

B +X
k2−→ C

where a molecule of X combines with a molecule of A to produce two molecules of X and a
molecule of X is combines with a molecule of B to produce molecule of C. As in a previous
problem, supposing A and B have constant concentrations a and b, we will look at the simpler
system:

X
k1a−−⇀↽−−
k−1

2X

X
k2b−→ C

We denote the concentration of X as x. Write explicitly the vector S, stoichiometry matrix Γ,
and R(S), as well as the ODEs for X and for C.

9. In the competitive inhibition model we ended up with these equations for dc1/dt and dc2/dt:

dc1

dt
= k1s(e0 − c1 − c2)− (k−1 + k2)c1

dc2

dt
= k3i(e0 − c1 − c2)− k−3c2 .

(a) The notes claim that formally setting dc1/dt = 0 and dc2/dt = 0 gives:

c1 =
Kie0s

Kmi+Kis+KmKi
, c2 =

Kme0i

Kmi+Kis+KmKi

where Km = k−1+k2
k1

and Ki = k−3

k3
. Prove these formulas for c1, c2 (that is, solve for c1, c2

the two equations obtained by setting the right-hand sides of dc1/dt and dc2/dt to zero).

(b) It is also stated that, with Vmax = k2e0, we obtain

dp

dt
=

Vmax s

s+Km(1 + i/Ki)
.

Prove this.

(c) Now take the values Vmax = 1, Ki = Km = 1, and i = 10. Plot dp/dt as a function of s for
s ∈ [0, 1000].
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(d) Repeat the above for larger inhibitor, i = 100. Notice that, as discussed in class, the graph
has changed little.

(e) Now take Vmax = 1, Km = 1, and i = 100, but make much smaller: Ki = 0.001. Plot and
observe that the graph stays at about 1/1000 of its previous value.
Think about what it means to say that Ki is small.

10. This problem refers to the simplest model of gene expression treated in the notes, for which the
network of reactions is:

D
α−→D +M , M

β−→0 , M
θ−→M + P , P

δ−→0 .

The set of ODE’s is:

dM

dt
= αD − βM

dP

dt
= θM − δP

together with dD/dt = 0. Since D(t) is constant, let us write D(t) = d0 for all t. Redefining α
as αd0, we will assume from now on that D = 1.

(a) Find the steady state of this system (there is only one).

(b) Show (by plugging-into the equations) that this is a solution, for any two constants c1 and
c2:

M(t) =

(
e−β t c2 −

α θ

β (β − δ)

)
δ − β
θ

P (t) = e−β t c2 −
α θ

β (β − δ)
+ e−δ tc1 +

α θ

δ (β − δ)

(c) Compute the limit of P (t) as t→∞ using the expression given above.
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Problems ODE7: Multiple steady states, sigmoidal responses, ultrasensitivity

1. Do this problem:

http://www.math.rutgers.edu/∼sontag/JODE/gardner cantor collins toggle.html

2. This problem deals with the material on cell differentiation. We consider a toy “1-d organism”,
with cells are arranged on a line Each cell expresses a certain gene X according to the same
differential equation

dx

dt
= f(x) + a

but the cells toward the left end receive a low signal a ≈ 0, while those toward the right end see
a high signal a (and the signal changes continuously in between). The level of expression starts
at x(0) = 0 for every cell.

This is what f + a looks like, for low, intermediate, and high values of a respectively:

We let the system settle to steady state.

After the system has so settled, we next suddenly change the level of the signal a, so that from
now on every cell sees the same value of a. The value of a that every cell is exposed to, in the
second part of the experiment, corresponds to an intermediate value that gives a graph like the
second (right) one above.

Like in the example worked out above, we ask what the patterns will be after the first and second
experiments.

Here are a few possibilities of what will be seen after the first and the second parts of the
experiment. Circle the correct one (no need to explain).

(a) 000000000000→ AAAABBBBCCCC→ AAAAAABBBBBB

(b) 000000000000→ AAAAAABBBBBB→ BBBBBBBBBBBB

(c) 000000000000→ AAAAAAAAAAAA→ BBBBBBBBBBBB

(d) 000000000000→ BBBBAAAACCCC→ AAAAAACCCCCC

(e) 000000000000→ AAAABBBBCCCC→ BBBBCCCCCCCC

(f) 000000000000→ AAAAAABBBBBB→ AAAAAABBBBBB

(g) 000000000000→ AAAABBBBCCCC→ CCCCCCAAAAAA

(h) 000000000000→ AAAABBBBCCCC→ AAAAAABBBBBB

(i) 000000000000→ AAAABBBBCCCC→ BBBBBBBBCCCC

(j) 000000000000→ AAAABBBBCCCC→ CCCCCCCCCCCC
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(k) 000000000000→ CCCCCCCCCCCC→ BBBBBBBBBBBB

These next few problems deal with steady-states as function of input: hyperbolic and sigmoidal
responses, adaptation:

3. Consider this reaction:

A
s−→
←−
1
B

which describes for example a phosphorylation of A into B with rate constant s, and a reverse
de-phosphorylation with rate constant 1.

One may think of s as the concentration of an enzyme that drives the reaction forward.

(a) Write equations for this reaction (assuming mass action kinetics; for example da/dt =
−sa+ b).

(b) Observe that a(t) + b(t) is constant. From now on, assume that a(0)=1 and b(0)=0. What
is the constant, then?

(c) (Still assuming a(0)=1 and b(0)=0.) Use the conservation law from (b) to eliminate a and
write just one equation for b.

(d) Find the steady state b(∞) of this equation for b and think of it as a function of s. Answer
this: is b(∞) a hyperbolic or sigmoidal function of s?

(e) Find the solution b(t) (this is just to practice ODE’s).

4. Consider this reaction:

A
s−→
←−
1
B

s−→
←−
1
C

which describes for example a phosphorylation of A into B, and then of B into C, with rate
constant s, and reverse de-phosphorylations with rate constant 1.

(a) Write equations for this reaction (assuming mass action kinetics).

(b) Find a conservation law, assuming that a(0)=1 and b(0)=c(0)=0, and, using this law,
eliminate b and write a system of equations for just a and c.

(c) Find the steady state (a(∞), c(∞)) of this equation for a, c and think of c(∞) as a function
of s. Answer this: is c(∞) a hyperbolic or sigmoidal function of s?

5. Consider this reaction:

where the dashed lines mean that s and q do not get consumed in the corresponding reactions
(they both behave as enzymes). There are also constants ki for each of the rates (not shown).

Make sure that you understand then why these are the reasonable mass-action equations to
describe the system:

dp

dt
= k1s− k2pq

dq

dt
= k3s− k4q
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(or one could have used, instead, a more complicated Michaelis-Menten model).

(a) Find the steady state, written as a function of s.

(b) Note that p(∞) (though not q(∞)) is independent of s.
This is an example of adaptation, meaning that the system transiently responds to a “sig-
nal” s (assumed a constant), but, after a while, it returns to some “default” value which is
independent of the stimulus s (and hence the system is ready to react to other signals).

(c) Graph (using for instance JOde) the plot of p(t) versus t, assuming that k1=k2=2 and
k3=k4=1, and p(0)=q(0)=0, for each of the following three values of s: s = 0.5, 3, 20.
You should see that p(t) → 1 as t → ∞ (which should be consistent to your answer to
part (b)) but that the system initially reacts quite differently (in terms of “overshoot”) for
different values of s.

6. This problem refers to the Goldbeter-Koshland model. Let G(r) be the solution x of equation

(2.18): r
x

K + x
=

1− x
L+ 1− x

as a function of r (recall that r is the ratio between enzymes and

x is the fraction of unmodified substrate, or equivalently, 1− x is the modified fraction).

(a) Let us assume that K = L = ε and that r 6= 1. Show that this choice of G:

G(r) =
(1− r − ε− εr) +

√
(1− r − ε− εr)2 + 4(1− r)ε
2(1− r)

results in a function G which has the property that G(r) > 0 for all r. You will need to
separately analyze the case when the denominator is positive or negative, depending on
whether r < 1 or r > 1. The rest of the problem uses this formula for G. (One can also
prove that G(r) < 1 when picking the positive root, and that the negative root would not
have the properties that both G(r) > 0 and G(r) < 1 for all r.)

(b) Show that lim
ε→0

G(r) =
1

2
+

1

2

|1− r|
1− r

.

(c) Conclude from the above that limε→0G(r) = 1 if r < 1 and limε→0G(r) = 0 if r > 1.

(d) Use the above to sketch (not using a computer!) the graph of G(r) for r > 0, assuming
that ε is very small.

(e) We said that for K,L not too small, we should have a hyperbolic-looking as opposed
to a sigmoidal-looking plot. Use a computer or graphing calculator to plot G(r) when
K = L = 1. Include a printout of your plot with your answers.
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Problems ODE8: Oscillations and excitable systems

1. For the van der Pol oscillator, show that:

(a) There are no periodic orbits contained entirely inside the half-plane {(x, y), x > 1}.
(b) There are no periodic orbits contained entirely inside the half-plane {(x, y), x < −1}.

(Use Bendixon’s criterion to rule out such orbits.)

2. Consider a system with equations as follows, where we assume that 0 < ε� 1:

dx/dt = f(x)− y
dy/dt = ε(g(x)− y) .

Consider these four possibilities for the nullclines y = f(x) and y = g(x):

(i) What can you say about stability of the steady states in each case?

(ii) Sketch directions of movement in each figure, making sure to show where the vector field
is “almost horizontal”. Include arrows on all nullclines, too.

(iii) For each of these, sketch trajectories when starting from the points labeled by the dark
circle.

(iv) Sketch x(t) and y(t) as a function of t, for each of the examples, when starting from the
points labeled by the dark circle.

3. Consider the system

dx1/dt = µx1 − ωx2 − x1(x2
1 + x2

2)

dx2/dt = ωx1 + µx2 − x2(x2
1 + x2

2)
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which we analyzed in polar coordinates. Now represent the pair (x1, x2) by the complex number
z = x1 + ix2. Show that the equation becomes, for z = z(t):

dz/dt = (µ+ ωi)z − |z|2 z .

(Hint: use that dz/dt = dx1/dt+ idx2/dt.)

4. Check for which of the following vector fields

F (x, y) =

(
f(x, y)
g(x, y)

)
is the unit square [0, 1] × [0, 1] a trapping region (so that one may attempt to apply Poincaré-
Bendixson).

(a) f(x, y) = y − x, g(x, y) = x− y
(b) f(x, y) = y(x− 1), g(x, y) = −x
(c) f(x, y) = x(y − 1), g(x, y) = −y
(d) f(x, y) = cos π(x+ y/8), g(x, y) = x2 − y2

(e) f(x, y) = xy(x− 1), g(x, y) = −xy − y
(f) f(x, y) = xy(x− 1), g(x, y) = −xy − 1

You must check, for each case, in which directions the vector fields point at each of the four
sides of the unit square.

5. We consider this system of differential equations:

dx

dt
= f(x, y)

dy

dt
= g(x, y)

and want to know if the region formed by intersecting the unit disk x2 + y2 ≤ 1 with the upper
half-plane is a trapping region.

Answer yes or no for each (justify your answer by computing the dot products with an appro-
priate normal vector) for each of these cases:

(a) f(x, y) = −x, g(x, y) = −y2

(b) f(x, y) = y, g(x, y) = −x
(c) f(x, y) = −xy2 − x, g(x, y) = x2y

6. We had shown that the van der Pol oscillator has a periodic orbit somewhere inside the hexag-
onal region bounded by the segments x = 3, −3 ≤ y ≤ 6, etc. We now want to improve
our estimate and claim that there is a periodic orbit that is not “too close” to the origin. Show
that there is a periodic orbit in the region which lies between the circle of radius

√
3 and the

hexagonal region that we considered earlier. (You need to consider which way the vector field
points when one is on the circle.)
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7. In each of the figures below, we show nullclines as well as a steady state (indicated with a large
solid dot) which is assumed to be repelling. You should draw, in each figure, a trapping region
that contains this point. (Which allows us to conclude that there is a periodic orbit.)

8. Glycolysis is a metabolic pathway that converts glucose into pyruvate, in the process making
ATP as well as NADH. One of the intermediate reactions involves ADP and F6P (Fructose-6-
phosphate), of which a simple model is given by:

dx/dt = −x+ ay + x2y

dy/dt = b− ay − x2y

where x, y denote are concentrations of ADP and F6P, and a, b are two positive constants.

(a) Plotted below are the nullclines as well as a possible trapping region. Show that the arrows
on the boundary of the trapping region are really as shown, i.e. that they point to the inside.
(The only nontrivial part is dealing with the diagonal, upper-right, boundary. It has slope
−1. You will use that x ≥ b on this line.)

(b) Prove that this is a steady state.

(x, y) =

(
b,

b

a+ b2

)
.

(c) Show that there is a periodic orbit provided that b4 + (2a− 1)b2 + (a+ a2) < 0.

(d) Give an example of parameters a, b that satisfy this inequality.

9. We consider these equations:

dx/dt = y − f(x)

dy/dt = g(x)− y
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where these are the plots of the two functions y = f(x) and y = g(x):

(a) Place arrows on nullclines, indicating directions, and put arrows in each connected com-
ponent (regions delimited by nullclines), pointing NE, NW, etc.

(b) Let D be the region inside the dotted box. Show that D is a trapping region. (Place arrows
showing which way the vector field points, on the boundary of D, that’s all. Don’t write
too much.)

(c) What are the signs of the trace and the determinant of the Jacobian at the equilibrium
shown in the picture?

(d) Can one apply the Poincaré-Bendixson Theorem to conclude that there must be a periodic
orbit inside the dotted box?

(e) Can one apply the Bendixson criterion to conclude that there cannot be any periodic orbit
inside the dotted box?

10. Prove that this system, where the constant a is nonzero:

dx1/dt = x2

dx2/dt = g(x1) + ax2

has no periodic orbit in R2.

11. Prove that this system, where the constants a, b, c satisfy that c > a:

dx1/dt = ax1 − x1x2

dx2/dt = bx2
1 − cx2

has no periodic orbit inside the domain {x ∈ R2 |x2 ≥ 0}.

12. Let B(x1) = be−2βx1 . Show that the system

dx1/dt = B(x1)x2

dx2/dt = B(x1) (−ax1 − bx2 + αx2
1 + βx2

2)

has no periodic orbits in R2.
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13. For the Van der Pol oscillator, when proving that the hexagonal region is a trapping region, we
argued that we need not consider the following segments:

x = −3, −6 ≤ y ≤ 3 y = −6, −3 ≤ x ≤ 0 y = x− 6, 0 ≤ x ≤ 3

because of a symmetry argument. In this problem, you are asked to prove the property for these
three segments, not using symmetries, but computing the dot product of an outward-facing
normal and the vector field, and showing it is ≤ 0. (As explained in the text, don’t worry about
corners.)



Chapter 3

Deterministic PDE Models

3.1 Introduction to PDE models

Until now, we only considered functions of time (concentrations, populations, etc).
From now on, we consider functions that also depend on space.

A typical biological example of space-dependence would be the concentration of a morphogen as a
function of space as well as time.

For example, this is a color-coded picture of a Drosophila embryo that has been stained for the protein
products of genes giant (blue), eve (red), and Kruppel (other colors indicate areas where two or all
genes are expressed):

One may also study space-dependence of a particular protein in a single cell. For example, this
picture1 shows the gradients of G-proteins in response to chemoattractant binding to receptors in the
surface of Dictyostelium discoideum amoebas:

3.1.1 Densities

We write space variables as x=(x1, x2, x3) (or just (x, y) in dimension 2, or (x, y, z) in dimension 3).
1from Jin, Tian, Zhang, Ning, Long, Yu, Parent, Carole A., Devreotes, Peter N., “Localization of the G Protein

Complex in Living Cells During Chemotaxis,” Science 287(2000): 1034-1036.

159



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 160

We will work with densities “c(x, t)”, which are understood intuitively in the following sense.

Suppose that we denote by C(R, t) the amount of a type of particle (or number of individuals, mass
of proteins of a certain type, etc.) in a region R of space, at time t.

Then, the density around point x, at time t, c(x, t), is:

c(x, t) =
C(∆R, t)

vol(∆R)

for “small” cubes ∆R around x, i.e. a “local average”.

This means that C(R, T ) =
∫ ∫ ∫

R
c(x, t) dx for all regions R.

(A single or a double integral, if x is one- or two-dimensional, of course.)2

For now, we consider only scalar quantities c(x, t); later we consider also vectors.

3.1.2 Reaction Term: Creation or Degradation Rate

We will assume that, at each point in space, there might take place a “reaction” that results in particles
(individuals, proteins, bacteria, whatever) being created (or destroyed, depending on the sign).

This production (or decay) occurs at a certain rate “σ(x, t)” which, in general, depends on the location
x and time t. (If there is no reaction, then σ(x, t) = 0.)

For scalar c, σ will typically be a formation or degradation rate.
More generally, if one considers vectors c(x, t), with the coordinates of c representing for example
the densities of different chemicals, then σ(x, t) would represent the reactions among chemicals that
happen to be in the same place at the same time.

The rate σ is a rate per unit volume per unit of time. That is, if Σ(R, [a, b]) is number of particles
created (eliminated, if < 0) in a region R during time interval [a, b], then the average rate of growth
is:

σ(x, t) =
Σ(∆R, [t, t+ ∆t])

vol(∆R)×∆t
,

for “small” cubes ∆R around x and “small” time increments ∆t. This means that

Σ(R, [a, b]) =

∫ b

a

∫ ∫ ∫
R

σ(x, t) dx dt

for all regions R and time intervals [a, b].

3.1.3 Conservation or Balance Principle

This is quite obvious:
increase (possibly negative) of quantity in a region = net creation + net influx.

Let us formalize this observation into an equation, studying first the one-dimensional case.

2In a more theoretical treatment of the subject, one would start with C, defined as a “measure” on subsets of R3, and
the density c would be defined as a “derivative” of this measure C.
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Suppose that R is a one-dimensional region along the x coordinate, defined by x1 ≤ x ≤ x2, and
c(x, t) and σ(x, t) denote densities and reaction rates as a function of the scalar coordinate x.

Actually, it will be more convenient (and, in fact, is more realistic) to think ofR as a three-dimensional
volume, with a uniform cross-section in the y, z axes. Accordingly, we also think of the density
c(x, y, z, t) = c(x, t) and reaction rate σ(x, y, z, t) = σ(x, t) as functions of a three-dimensional
position (x, y, z), both uniform on each cross-section. We assume that nothing can “escape” through
the y, z directions.

�

�

�
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�

�

�-

Z
ZZ~

positive x
cross sectional area = A

R

x1 x2

We need another important concept, the flux. It is defined as follows.
The flux at (x, t), written “J(x, t)”, is the number of particles that cross a unit area
perpendicular to x, in the positive direction, per unit of time. !

 #

"
-

-

-

-

x
Therefore, the net flow through a cross-sectional area during a time interval [a, b] is:∫ b

a

J(x, t)Adt .

We also need the following formulas, which follow from
∫
y

∫
z

= A:

C(R, t) =

∫ ∫ ∫
R

c(~x, t) d~x =

∫ x2

x1

c(x, t)Adx ,

Σ(R, [a, b]) =

∫ b

a

∫ ∫ ∫
R

σ(~x, t) d~xdt =

∫ b

a

∫ x2

x1

σ(x, t)Adxdt .

We consider a segment x ≤ ξ ≤ x+ ∆x and a time interval [t, t+ ∆t].
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We have these equalities:

• net flow through cross-area at x: Jin =

∫ t+∆t

t

J(x, τ)Adτ

• net flow through cross-area at x+ ∆x: Jout =

∫ t+∆t

t

J(x+ ∆x, τ)Adτ

• net creation (elimination): Σ =

∫ t+∆t

t

∫ x+∆x

x

σ(ξ, τ)Adξdτ

• starting amount in segment: Ct =

∫ x+∆x

x

c(ξ, t)Adξ

• ending amount in segment: Ct+∆t =

∫ x+∆x

x

c(ξ, t+ ∆t)Adξ.

Finally, the change in total amount must balance-out:

Ct+∆t − Ct = ∆C = Jin − Jout + Σ .

We have, putting it all together:∫ x+∆x

x

(c(ξ, t+ ∆t)− c(ξ, t))Adξ =

∫ t+∆t

t

(J(x, τ)− J(x+ ∆x, τ))Adτ +

∫ t+∆t

t

∫ x+∆x

x

σ(ξ, τ)Adξdτ .

So, dividing by “A∆t”, letting ∆t→ 0, and applying the Fundamental Theorem of Calculus:∫ x+∆x

x

∂c

∂t
(ξ, t) dξ = J(x, t)− J(x+ ∆x, t) +

∫ x+∆x

x

σ(ξ, t)dξ .

Finally, dividing by ∆x, taking ∆x→ 0, and once again using the FTC, we conclude:

∂c

∂t
= − ∂J

∂x
+ σ

This is the basic equation that we will use from now on.

We only treated the one-dimensional (i.e., uniform cross-section) case. However, the general case,
when R is an arbitrary region in 3-space (or in 2-space) is totally analogous. One must define the flux
J(x, t) as a vector which indicates the maximal-flow direction at (x, t); its magnitude indicates the
number of particles crossing, per unit time, a unit area perpendicular to J .

One derives, using Gauss’ theorem, the following equation:

∂c

∂t
= − div J + σ

where the divergence of J = (J1, J2, J3) at x = (x1, x2, x3) is

div J = “∇ · J” =
∂J1

∂x1

+
∂J2

∂x2

+
∂J3

∂x3

.

In the scalar case, div J is just ∂J
∂x

, of course.

Until now, everything was quite abstract. Now we specialize to very different types of fluxes.
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3.1.4 Local fluxes: transport, chemotaxis

We first consider fluxes that arise from local effects, possibly infuenced by physical or chemical
gradients.

3.1.5 Transport Equation

We start with the simplest type of equation, the transport (also known as the “convection” or the
“advection” equation3).

We consider here flux is due to transport: a transporting tape as in an airport luggage pick-up, wind
carrying particles, water carrying a dissolved substance, etc.

The main observation is that, in this case:

flux = concentration × velocity

(depending on local conditions: x and t).

The following pictures may help in understanding why this is true.

-

smaller flux

flow direction; say constant speed

larger flux

Let us zoom-in, approximating by a locally-constant density:

u
u uuu
u
u u
u
u
uu u u u

�����) ?

PPPPPq �
�
��

-

unit volumes, c = 5
unit area

flow at v = 3 units/sec

3In meteorology, convection and advection refer respectively to vertical and horizontal motion; the Latin origin is
“advectio” = act of bringing.
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Imagine a counter that “clicks” when each particle passes by the right endpoint. The total flux in one
second is 15 particles. In other words, it equals cv. This will probably convince you of the following
formula:

J(x, t) = c(x, t) v(x, t)

Since ∂c
∂t

= −div J + σ, we obtain the transport equation:

∂c

∂t
= − ∂(cv)

∂x
+ σ or, equivalently:

∂c

∂t
+

∂(cv)

∂x
= σ

or more generally, in any dimension:

∂c

∂t
= − div (cv) + σ or, equivalently:

∂c

∂t
+ div (cv) = σ

This equation describes collective behavior, that of individual particles just “going with the flow”.

Later, we will consider additional (and more interesting!) particle behavior, such as random move-
ment, or movement in the direction of food. Typically, many such effects will be superimposed into
the formula for J .

A special case is that of constant velocity v(x, t) ≡ v. For constant velocities, the above simplifies to:

∂c
∂t

= − v ∂c
∂x

+ σ or, equivalently:
∂c

∂t
+ v

∂c

∂x
= σ

in dimension one, or more generally, in any dimension:

∂c
∂t

= = −v div c + σ or, equivalently:
∂c

∂t
+ div c = σ

Remark. If σ = 0, the equation becomes that of pure flow:

∂c

∂t
+ div (cf) = 0

where are now writing “f” instead of “v” for the velocity, for reasons to be explained next. As before,
let c(x, t) denote the density of particles at location x and time t. The formula can be interpreted as
follows. Particles move individually according to a differential equation dx

dt
= f(x, t). That is, when

a particle is in location x at time t, its velocity should be f(x, t). The equation then shows how the
differential equation dx

dt
= f(x, t) for individual particles translates into a partial differential equation

for densities. Seen in this way, the transport equation is sometimes called the Liouville equation. A
special case is that in which div (f) = 0, which is what happens in Hamiltonian mechanics. In that
case, just as with constant velocity, we get the simplified equation ∂c

∂t
+
∑

i
∂c
∂xi
fi, where fi is the

ith coordinate of f . A probabilistic interpretation is also possible. Suppose that we think of single
particles, whose initial conditions are distributed according to the density c(x, 0), and ask what is the
probability density at time t. This density will be given by the solution of ∂c

∂t
+ div (cf) = 0, because

we may think of an ensemble of particles, all evolving simultaneously. (It is implicit in this argument
that particles are small enough that they never collide.)
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3.1.6 Solution for Constant Velocity and Exponential Growth or Decay

Let us take the even more special case in which the reaction is linear: σ = λc. This corresponds to a
decay or growth that is proportional to the population (at a given time and place). The equation is:

∂c

∂t
+ v

∂c

∂x
= λc

(λ > 0 growth, λ < 0 decay).

Theorem: Every solution (in dimension 1) of the above equation is of the form:

c(x, t) = eλtf(x− vt)

for some (unspecified) differentiable single-variable function f .
Conversely, eλtf(x− vt) is a solution, for any λ and f .

Notice that, in particular, when t = 0, we have that c(x, 0) = f(x). Therefore, the function f plays
the role of an “initial condition” in time (but which depends, generally, on space).

The last part of the theorem is very easy to prove, as we only need to verify the PDE:[
λeλtf(x− vt)− veλtf ′(x− vt)

]
+ veλtf ′(x− vt) = λ eλtf(x− vt) .

Proving that the only solutions are these is a little more work:

we must prove that every solution of ∂c
∂t

+ v ∂c
∂x

= λc, where v and λ are given real constants), must
have the form c(x, t) = eλtf(x− vt), for some appropriate “f”.

We start with the very special case v = 0. In this case, for each fixed x, we have an ODE: ∂c
∂t

= λc.

Clearly, for each x, this ODE has the unique solution c(x, t) = eλtc(x, 0), so we can take f(x) as the
function c(x, 0).

The key step is to reduce the general case to this case, by “traveling” along the solution.
Formally, given a solution c(x, t), we introduce a new variable z = x− vt, so that x = z + vt, and
we define the auxiliary function α(z, t) := c(z + vt, t).

We note that ∂α
∂z

(z, t) = ∂c
∂x

(z + vt, t), but, more interestingly:

∂α

∂t
(z, t) = v

∂c

∂x
(z + vt, t) +

∂c

∂t
(z + vt, t) .

We now use the PDE v ∂c
∂x

= λc− ∂c
∂t

to get:

∂α

∂t
(z, t) =

[
λc− ∂c

∂t

]
+
∂c

∂t
= λ c(z + vt, t) = λα(z, t) .

We have thus reduced to the case v = 0 for α! So, α(z, t) = eλtα(z, 0). Therefore, substituting back:

c(x, t) = α(x− vt, t) = eλtα(x− vt, 0) .

We conclude that
c(x, t) = eλtf(x− vt)

as claimed (writing f(z) := α(z, 0)).
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Thus, all solutions are traveling waves, with decay or growth depending on the sign of λ.

These are typical figures, assuming that v = 3 and that λ = 0 and λ < 0 respectively (snapshots taken
at t = 0, 1, 2):

To determine uniquely c(x, t) = eλtf(x− vt), need to know what the “initial condition f” is.

This could be done in various ways, for instance by specifying an initial distribution c(x, 0), or by
giving the values c(x0, t) at some point x0.

Example: a nuclear plant is leaking radioactivity, and we measure a certain type of radioactive particle
by a detector placed at x = 0. Let us assume that the signal detected is described by the following
function:

h(t) =

{
0 t < 0

1
1+t

t ≥ 0
,

the wind blows eastward with constant velocity v = 2 m/s and particles decay with rate 3 s−1 (λ =
−3). What is the solution c(x, t)?

We know that the solution is c(x, t) = e−3tf(x− 2t), but what is “f”?

We need to find f . Let us write the dummy-variable argument of f as “z” so as not to get confused
with x and t. So we look for a formula for f(z). After we found f(z), we’ll substitute z = x− 2t.

Since at position x = 0 we have that c(0, t) = h(t), we know that h(t) = c(0, t) = e−3tf(−2t), which
is to say, f(−2t) = e3th(t).

We wanted f(z), so we substitute z = −2t, and then obtain (since t = −z/2):

f(z) = e3(−z/2)h(−z/2) .

To be more explicit, let us substitute the definition of h. Note that t ≥ 0 is the same as z ≤ 0.
Therefore, we have:

f(z) =


e−3z/2

1− z/2
z ≤ 0

0 z > 0

Finally, we conclude that the solution is:

c(x, t) =


e−3x/2

1 + t− x/2
t ≥ x/2

0 t < x/2

where we used the following facts: z = x−2t ≤ 0 is equivalent to t ≥ x/2, e−3te−(3/2)(x−2t) = e−3x/2,
and 1− (x− 2t)/2 = 1 + t− x/2.
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We can now answer more questions. For instance: what is the concentration at position x = 10 and
time t = 6? The answer is

c(10, 6) =
e−15

2
.

3.1.7 Attraction, Chemotaxis

Chemotaxis is the term used to describe movement in response to chemoattractants or repellants, such
as nutrients and poisons, respectively.

Perhaps the best-studied example of chemotaxis involves E. coli bacteria. In this course we will not
study the behavior of individual bacteria, but will concentrate instead on the evolution equation for
population density. However, it is worth digressing on the topic of individual bacteria, since it is so
fascinating.

A Digression

E. coli bacteria are single-celled organisms, about 2 µm long, which possess up to six flagella for
movement.

Chemotaxis in E. coli has been studied extensively. These bacteria can move in basically two modes:
a “tumble” mode in which flagella turn clockwise and reorientation occurs, or a “run” mode in which
flagella turn counterclockwise, forming a bundle which helps propel them forward.

Basically, when the cell senses a change in nutrient in a certain direction, it “runs” in that direction.
When the sensed change is very low, a “tumble” mode is entered, with random reorientations, until
a new direction is decided upon. One may view the bacterium as performing a stochastic gradient
search in a nutrient-potential landscape. These are pictures of “runs” and “tumbles” performed by E.
coli:
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The runs are biased, drifting about 30 deg/s due to viscous drag and asymmetry. There is very little
inertia (very low Reynolds number). The mean run interval is about 1 second and the mean tumble
interval is about 1/10 sec.

The motors actuating the flagella are made up of several proteins. In the terms used by Harvard’s
Howard Berg4, they constitute “a nanotechnologist’s dream,” consisting as they do of “engines, pro-
pellers, . . . , particle counters, rate meters, [and] gear boxes.” These are an actual electron micrograph
and a schematic diagram of the flagellar motor:

The signaling pathways involved in E. coli chemotaxis are fairly well understood. Aspartate or other
nutrients bind to receptors, reducing the rate at which a protein called CheA (“Che” for “chemotaxis”)
phosphorylates another protein called CheY transforming it into CheY-P. A third protein, called CheZ,
continuously reverses this phosphorylation; thus, when ligand is present, there is less CheY-P and
more CheY. Normally, CheY-P binds to the base of the motor, helping clockwise movement and hence
tumbling, so the lower concentration of CheY-P has the effect of less tumbling and more running
(presumably, in the direction of the nutrient).

A separate feedback loop, which includes two other proteins, CheR and CheB, causes adaptation to
constant nutrient concentrations, resulting in a resumption of tumbling and consequent re-orientation.
In effect, the bacterium is able to take derivatives, as it were, and decide which way to go.

There are many papers (ask instructor for references if interested) describing biochemical models of
how these proteins interact and mathematically analyzing the dynamics of the system.

4H. Berg, Motile behavior of bacteria, Physics Today, January 2000
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Modeling how Densities Change due to Chemotaxis

Let us suppose given a function V = V (x) which denotes the concentration of a food source or
chemical (or friends, or foes), at location5 x.

We think of V as a “potential” function, very much as with an electromagnetic or force field in physics.

The basic principle that we wish to model is: the population is attracted toward places where V is
larger.

We often assume that either V (x) ≥ 0 for all x or V (x) ≤ 0 for all x.

We use the positive case to model attraction towards nutrient.

If V has negative values, then movement towards larger values of V means movement away from
places where V is large in absolute value, that is to say, repulsion from such values, which might
represent the locations of high concentrations of poisons or predator populations.

To be more precise: we will assume that individuals (in the population of which c(x, t) measures the
density) move at any given time in the direction in which V (x) increases the fastest when taking a
small step, and with a velocity that is proportional6 to the perceived rate of change in magnitude of V .

We recall from multivariate calculus that V (x+∆x)−V (x) maximized in the direction of its gradient.

The proof is as follows. We need to find a direction, i.e., unit vector “u”, so that V (x + hu) − V (x)
is maximized, for any small stepsize h.

We take a linearization (Taylor expansion) for h > 0 small:

V (x+ hu)− V (x) = [∇V (x) · u]h + o(h) .

This implies the following formula for the average change in V when taking a small step:

1

h
∆V = ∇V (x) · u+O(h) ≈ ∇V (x) · u

and therefore the maximum value is obtained precisely when the vector u is picked in the same
direction as∇V . Thus, the direction of movement is given by the gradient of V .

The magnitude of the vector 1
h
∆V is the approximately ∇V (x). Thus, our assumptions give us that

chemotaxis results in a velocity “α∇V (x)” proportional to∇V (x).

Since, in general, flux = density×velocity, we conclude:

J(x, t) = α c(x, t)∇V (x)

for some α, so that the obtained equation (ignoring reaction or transport effects) is:

∂c

∂t
= − div (α c∇V ) or, equivalently:

∂c

∂t
+ div (α c∇V ) = 0

and in particular, in the special case of dimension one:

∂c

∂t
= − ∂ (α c V ′)

∂x
or, equivalently:

∂c

∂t
+

∂ (α c V ′)

∂x
= 0

5One could also consider time-varying functions V (x, t). Time-varying V could help model a situation in which the
“food” (e.g. a prey population) keeps moving.

6This is not always reasonable! Some other choices are: there is a maximum speed at which one can move, or
movement is only possible at a fixed speed. See a homework problem.
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and therefore, using the product rule for x-derivatives:

∂c

∂t
= −α ∂c

∂x
V ′ − αcV ′′ .

Of course, one can superimpose not only reactions but also different effects, such as transport, to this
basic equation; the fluxes due to each effect add up to a total flux.

Example

Air flows (on a plane) Northward at 3 m/s, carrying bacteria. There is a food source as well, placed at
x = 1, y = 0, which attracts according to the following potential:

V (x, y) =
1

(x− 1)2 + y2 + 1

(take α = 1 and appropriate units).7 The partial derivatives of V are:

∂V

∂x
= − 2x− 2

((x− 1)2 + y2 + 1)2
and

∂V

∂y
= −2

y

((x− 1)2 + y2 + 1)2
.

The differential equation is, then:

∂c

∂t
= −div (c∇V )− div (

(
0
3

)
c) = −

∂(c∂V
∂x

)

∂x
−
∂(c∂V

∂y
)

∂y
− 3

∂c

∂y

or, expanding:

∂c

∂t
=

∂c

∂x

(2x− 2)

N2
− 2 c

(2x− 2)2

N3
+ 4

c

N2
+ 2

∂c

∂y

y

N2
− 8 c

y2

N3
− 3

∂c

∂y

where we wrote N = (x− 1)2 + y2 + 1.

Some Intuition

Let us develop some intuition regarding the chemotaxis equation, at least in dimension one.

Suppose that we study what happens at a critical point of V . That is, we take a point for which
V ′(x0) = 0. Suppose, further, that the concavity of V at that point is down: V ′′(x0) < 0. Then,
∂c
∂t

(x0, t) > 0, because:

∂c

∂t
(x0, t) = −α ∂c

∂x
(x0, t)V

′(x0) − αcV ′′(x0) = 0− αcV ′′(x0) > 0 .

In other words, the concentration at such a point increases in time. Why is this so, intuitively?

Answer: the conditions V ′(x0) = 0, V ′′(x0) < 0 characterize a local maximum of V . Therefore,
nearby particles (bacteria, whatever it is that we are studying) will move toward this point x0, and the
concentration there will increase in time.

7We assume that the food is not being carried by the wind, but stays fixed. (How would you model a situation where
the food is also being carried by the wind?) Also, this model assumes that the amount of food is large enough that we
need not worry about its decrease due to consumption by the bacteria. (How would you model food consumption?)
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Conversely, if V ′′(x0) > 0, then the formula shows that ∂c
∂t

(x0, t) < 0, that is to say, the density
decreases. To understand this intuitively, we can think as follows.

The point x0 is a local minimum of V . Particles that start exactly at this point would not move, but any
nearby particles will move “uphill” towards food. Thus, as nearby particles move away, the density at
x0, which is an average over small segments around x0, indeed goes down.

Next, let us analyze what happens when V ′(x0) > 0 and V ′′(x0) > 0, under the additional assumption
that ∂c

∂x
(x0, t) ≈ 0, that is, we assume that the density c(x, t) is approximately constant around x0.

Then
∂c

∂t
(x0, t) = −α ∂c

∂x
(x0, t)V

′(x0) − αcV ′′(x0) ≈ −αcV ′′(x0) < 0 .

How can we interpret this inequality?

This picture of what the graph of V around x0 looks like should help:

The derivative (gradient) of V is less to the left of x0 than to the right of x0, because V ′′ > 0 means
that V ′ is increasing. So, the flux is less to the left of x0 than to its right. This means that particles to
the left of x0 are arriving to the region around x0 much slower than particles are leaving this region in
the rightward direction. So the density at x0 diminishes.

A homework problem asks you to analyze, in an analogous manner, these two cases:

(a) V ′(x0) > 0, V ′′(x0) < 0
(b) V ′(x0) < 0, V ′′(x0) > 0.
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3.2 Non-local fluxes: diffusion

Diffusion is one of the fundamental processes by which “particles” (atoms, molecules, even bigger
objects) move.

Fick’s Law, proposed in 1855, and based upon experimental observations, postulated that diffusion is
due to movement from higher to lower concentration regions. Mathematically:

J(x, t) ∝ −∇c(x, t)

(we use “∝” for “proportional”).

This formula applies to movement of particles in a solution, where the proportionality constant will
depend on the sizes of the molecules involved (solvent and solute) as well as temperature. It also
applies in many other situations, such as for instance diffusion across membranes, in which case the
constant depends on permeability and thickness as well.

The main physical explanation of diffusion is probabilistic, based on the thermal motion of individ-
ual particles due to the environment (e.g., molecules of solvent) constantly “kicking” the particles.
“Brownian motion”, named after the botanist Robert Brown, refers to such random thermal motion.

One often finds the claim that Brown in his 1828 paper observed that pollen grains suspended
in water move in a rapid but very irregular fashion.

However, in Nature’s 10 March 2005 issue (see also errata in the 24 March issue), David
Wilkinson states: “. . . several authors repeat the mistaken idea that the botanist Robert Brown
observed the motion that now carries his name while watching the irregular motion of pollen
grains in water. The microscopic particles involved in the characteristic jiggling dance Brown
described were much smaller particles. I have regularly studied pollen grains in water suspension
under a microscope without ever observing Brownian motion.

From the title of Brown’s 1828 paper “A Brief Account of Microscopical Observations ... on
the Particles contained in the Pollen of Plants...”, it is clear that he knew he was looking at smaller
particles (which he estimated at about 1/500 of an inch in diameter) than the pollen grains.

Having observed ’vivid motion’ in these particles, he next wondered if they were alive, as they
had come from a living plant. So he looked at particles from pollen collected from old herbarium
sheets (and so presumably dead) but also found the motion. He then looked at powdered fossil
plant material and finally inanimate material, which all showed similar motion.

Brown’s observations convinced him that life was not necessary for the movement of these
microscopic particles.”

The relation to Fick’s Law was explained mathematically in Einstein’s Ph.D. thesis (1905).8

When diffusion acts, and if there are no additional constraints, the eventual result is a homogeneous
concentration over space. However, usually there are additional boundary conditions, creation and
absorption rates, etc., which are superimposed on pure diffusion. This results in a “trade-off” between
the “smoothing out” effects of diffusion and other influences, and the results can be very interesting.

We should also remark that diffusion is often used to model macroscopic situations analogous to
movement of particles from high to low density regions. For example, a human population may shift
towards areas with less density of population, because there is more free land to cultivate.

8A course project asks you to run a java applet simulation of Einstein’s description of Brownian motion.
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We have that J(x, t) = −D∇c(x, t), for some constant D called the diffusion coefficient. Since, in
general, ∂c

∂t
= −div J , we conclude that:

∂c

∂t
= D∇2c

where∇2 is the “Laplacian” (often “∆”) operator:

∂c

∂t
= D

(
∂2c

∂x2
1

+
∂2c

∂x2
2

+
∂2c

∂x2
3

)
.

The notation ∇2 originates as follows: the divergence can be thought of as “dot product by ∇”. So
“∇ · (∇c)” is written as ∇2c. This is the same as the “heat equation” in physics (which studies
diffusion of heat).

Note that the equation is just:
∂c

∂t
= D

∂2c

∂x2

in dimension one.

Let us consider the following very sketchy probabilistic intuition to justify why it is reasonable that the
flux should be proportional to the gradient of the concentration, if particles move at random. Consider
the following picture:

-

-

�

�

p1
2

p1
2

p2
2 p2

2

p1
particles

p2
particles

x x+ ∆x

We assume that, in some small interval of time ∆t, particles jump right or left with equal probabilities,
so half of the p1 particles in the first box move right, and the other half move left. Similarly for the p2

particles in the second box. (We assume that the jumps are big enough that particles exit the box in
which they started.)

The net number of particles (counting rightward as positive) through the segment shown in the middle
is proportional to p1

2
− p2

2
, which is proportional roughly to c(x, t)−c(x+∆x, t). This last difference,

in turn, is proportional to − ∂c
∂x

.

This argument is not really correct, because we have said nothing about the velocity of the particles
and how they relate to the scales of space and time. But it does intuitively help on seeing why the flux
is proportional to the negative of the gradient of c.

A game can help understand. Suppose that students in a classroom all initially sit in the front rows, but
then start to randomly (and repeatedly) change chairs, flipping coins to decide if to move backward (or
forward if they had already moved back). Since no one is sitting in the back, initially there is a net flux
towards the back. Even after a while, there will be still less students flipping coins in the back than in
the front, so there are more possibilities of students moving backward than forward. Eventually, once
that the students are well-distributed, about the same number will move forward as move backward:
this is the equalizing effect of diffusion.
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3.2.1 Time of Diffusion (in dimension 1)

It is often said that “diffusion results in movement proportional to
√
t”. The following theorem gives

one way to make that statement precise. A different interpretation is in the next section, and later, we
will discuss a probabilistic interpretation and relations to random walks as well.

Theorem. Suppose that c satisfies diffusion equation

∂c

∂t
= D

∂2c

∂x2
.

Assume also that the following hold:

C =

∫ +∞

−∞
c(x, t) dx

is independent of t (constant population), and c is “small at infinity”:

for all t ≥ 0, lim
x→±∞

x2 ∂c

∂x
(x, t) = 0 and lim

x→±∞
xc(x, t) = 0 .

Define, for each t, the following integral which measures how the density “spreads out”:

σ2(t) =
1

C

∫ +∞

−∞
x2c(x, t) dx

(the second moment, which we assume is finite). Then:

σ2(t) = 2D t + σ2(0)

for all t. In particular, if the initial (at time t = 0) population is concentrated near x = 0 (a “δ
function”), then σ2(t) ≈ 2D t.

Proof:
We use the diffusion PDE, and integrate by parts twice:

C

D

dσ2

dt
=

1

D

∂

∂t

∫ +∞

−∞
x2c dx =

1

D

∫ +∞

−∞
x2∂c

∂t
dx =

∫ +∞

−∞
x2 ∂

2c

∂x2
dx

=

[
x2 ∂c

∂x

]+∞

−∞
−
∫ +∞

−∞
2x
∂c

∂x
dx

= − [2xc]+∞−∞ +

∫ +∞

−∞
2c dx = 2

∫ +∞

−∞
c(x, t) dx = 2C

Canceling C, we obtain:
dσ2

dt
(t) = 2D

and hence, integrating over t, we have, as wanted:

σ2(t) = 2Dt+ σ2(0) .

If, in particular, particles start concentrated in a small interval around x = 0, we have that c(x, 0) = 0
for all |x| > ε. Then, (with c = c(x, 0)):∫ +∞

−∞
x2c dx =

∫ +ε

−ε
x2c dx ≤ ε2

∫ +ε

−ε
c dx = ε2C

so σ2(0) = ε2 ≈ 0.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 175

3.2.2 Another Interpretation of Diffusion Times (in dimension one)

There are many ways to state precisely what is meant by saying that diffusion takes time r2 to move
distance r. As diffusion is basically a model of a population of individuals which move randomly,
one cannot talk about any particular particle, bacterium, etc. One must make a statement about the
whole population. One explanation is in terms of the second moment of the density c, as done earlier.
Another one is probabilistic, and one could also argue in terms of the Gaussian fundamental solution.
We sketch another one next.

Suppose that we consider the diffusion equation ∂c
∂t

= D ∂2c
∂x2

for x ∈ R, and an initial condition at
t = 0 which is a step function, a uniform population density of one in the interval (−∞, 0] and zero
for x > 0. It is quite intuitively clear that diffusion will result in population densities that look like
the two subsequent figures, eventually converging to a constant value of 0.5.

Consider, for any given coordinate point p > 0, a time T = T (p) for which it is true that (let us say)
c(p, T ) = 0.1. It is intuitively clear (we will not prove it) that the function T (p) is increasing on p:
for those points p that are farther to the right, it will take longer for the graph to rise enough. So, T (p)
is uniquely defined for any given p. We sketch now a proof of the fact that T (p) is proportional to p2.

Suppose that c(x, t) is a solution of the diffusion equation, and, for any given positive constant r,
introduce the new function f defined by:

f(x, t) = c(rx, r2t) .

Observe (chain rule) that ∂f
∂t

= r2 ∂c
∂t

and ∂2f
∂x2

= r2 ∂2c
∂x2

. Therefore,

∂f

∂t
−D∂

2f

∂x2
= r2

(
∂c

∂t
−D∂2c

∂x2

)
= 0 .

In other words, the function f also satisfies the same equation. Moreover, c and f have the same
initial condition: f(x, 0) = c(rx, 0) = 1 for x ≤ 0 and f(x, 0) = c(rx, 0) = 0 for x > 0. Therefore
f and c must be the same function.9 In summary, for every positive number r, the following scaling
law is true:

c(x, t) = c(rx, r2t) ∀x, t .
For any p > 0, if we plug-in r = p, x = 1, and t = T (p)/p2 in the above formula, we obtain that:

c(1, T (p)/p2) = c(p.1, p2.(T (p)/p2)) = c(p, T (p)) = 0.1 ,

and therefore T (1) = T (p)/p2, that is, T (p) = αp2 for some constant.

3.2.3 Separation of Variables

Let us try to find a solution of the diffusion equation, in dimension 1:

∂c

∂t
= D

∂2c

∂x2

9Of course, uniqueness of solutions requires a proof. The fact that f and c satisfy the same “boundary conditions at
infinity” is used in such a proof, which we omit here.
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of the special form c(x, t) = X(x)T (t).

Substituting into the PDE, we conclude that X,T must satisfy:

T ′(t)X(x) = DT (t)X ′′(x)

(using primes for derivatives with respect to t and x), and this must hold for all t and x, or equivalently:

D
X ′′(x)

X(x)
=

T ′(t)

T (t)
∀x, t .

Now define:

λ :=
T ′(0)

T (0)

so:

D
X ′′(x)

X(x)
=

T ′(0)

T (0)
= λ

for all x (since the above equality holds, in particular, at t = 0). Thus, we conclude, applying the
equality yet again:

D
X ′′(x)

X(x)
=

T ′(t)

T (t)
= λ ∀x, t

for this fixed (and so far unknown) real number λ.

In other words, each of X and T satisfy an ordinary (and linear) differential equation, but the two
equations share the same λ:

X ′′(x) = λX(x)

T ′(t) = λT (t) .

(We take D=1 for simplicity.) The second of these says that T ′ = λT , i.e.

T (t) = eλtT (0)

and the first equation has the general solution (if λ 6= 0) X(x) = aeµ1x + beµ2x, where the µi’s are
the two square roots of λ, and a, b are arbitrary constants. As you saw in your diff equs course, when
λ < 0, it is more user-friendly to write complex exponentials as trigonometric functions, which also
has the advantage that a, b can then be taken as real numbers (especially useful since a and b are
usually fit to initial conditions). In summary, for λ > 0 one has:

X(x) = aeµx + be−µx

(with µ =
√
λ), while for λ < 0 one has:

X(x) = a cos kx+ b sin kx

(with k =
√
−λ).
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3.2.4 Examples of Separation of Variables

Suppose that a set of particles undergo diffusion (e.g., bacteria doing a purely random motion) inside
a thin tube.

The tube is open at both ends, so part of the population is constantly being lost (the density of the
organisms outside the tube is small enough that we may take it to be zero).

We model the tube in dimension 1, along the x axis, with endpoints at x = 0 and x = π:

t t tt t tt tt tt
t tttt tt t

t
t

x = 0 x = π

c ≈ 0
c ≈ 0

We model the problem by a diffusion (for simplicity, we again take D=1) with boundary conditions:

∂c

∂t
=

∂2c

∂x2
, c(0, t) = c(π, t) = 0 .

Note that c identically zero is always a solution. Let’s look for a bounded and nonzero solution.

Solution: we look for a c(x, t) of the formX(x)T (t). As we saw, if there is such a solution, then there
is a number λ so thatX ′′(x) = λX(x) and T ′(t) = λT (t) for all x, t, so, in particular, T (t) = eλtT (0).
Since we were asked to obtain a bounded solution, the only possibility is λ ≤ 0 (otherwise, T (t)→∞
as t→∞).

It cannot be that λ = 0. Indeed, if that were to be the case, then X ′′(x) = 0 implies that X is a line:
X(x) = ax + b. But then, the boundary conditions X(0)T (t) = 0 and X(π)T (t) = 0 for all t imply
that ax + b = 0 at x = 0 and x = π, giving a = b = 0, so X ≡ 0, but we are looking for a nonzero
solution.

We write λ = −k2, for some k > 0 and consider the general form of the X solution:

X(x) = a sin kx+ b cos kx .

The boundary condition at x = 0 can be used to obtain more information:

X(0)T (t) = 0 for all t ⇒ X(0) = 0 ⇒ b = 0 .

Therefore,X(x) = a sin kx, and a 6= 0 (otherwise, c ≡ 0). Now using the second boundary condition:

X(π)T (t) = 0 for all t ⇒ X(π) = 0 ⇒ sin kπ = 0

Therefore, k must be an integer (nonzero, since otherwise c ≡ 0).

We conclude that any separated-form solution must have the form

c(x, t) = a e−k
2t sin kx

for some nonzero integer k. One can easily check that, indeed, any such function is a solution (home-
work problem).

Moreover, since the diffusion equation is linear, any linear combination of solutions of this form is
also a solution.
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For example,
5e−9t sin 3x− 33e−16t sin 4x

is a solution of our problem.

In population problems, we cannot allow c to be negative. Solutions such as the above one are neg-
ative when the trigonometric functions have negative values, so they are not physically meaningful.
However, we could modify the problem by assuming, for example, that the density outside the tube is
equal to some constantly maintained value, let is say, c = 100. Then, the PDE becomes

∂c

∂t
=

∂2c

∂x2
, c(0, t) = c(π, t) = 100 .

Since the PDE is linear, and since c(x, t) ≡ 100 is a solution, the function c̃(x, t) = c(x, t)− 100 is a
solution of the homogeneous problem in which c(0, t) = c(π, t) = 0. Thus, c̃(x, t) = a e−k

2t sin kx is
a solution of the homogeneous problem, which means that

c(x, t) = 100 + c̃(x, t) = 100 + a e−k
2t sin kx

is a solution of the problem with boundary conditions = 100, for each a and each nonzero integer
k. More generally, considering sums of the separated-form solutions, we have that if the sum of the
coefficients “a” is less than 100, then we are guaranteed that the solution stays always nonnegative.
For example,

100 + 5e−9t sin 3x− 33e−16t sin 4x

solves the equation with boundary conditions c(0, t) = c(π, t) = 100 and is always nonnegative.

Fitting Initial Conditions

Next let’s add the requirement10 that the initial condition must be:

c(x, 0) = 3 sin 5x− 2 sin 8x .

Now, we know that any linear combination of the form∑
k integer

ake
−k2t sin kx

solves the equation. Since the initial condition has the two frequencies 5, 8, we should obviously try
for a solution of the form:

c(x, t) = a5e
−25t sin 5x+ a8e

−64t sin 8x .

We find the coefficients by plugging-in t = 0:

c(x, 0) = a5 sin 5x+ a8 sin 8x = 3 sin 5x− 2 sin 8x .

So we take a5 = 3 and a8 = −2; and thus obtain finally:

c(x, t) = 3e−25t sin 5x− 2e−64t sin 8x .

10For simplicity, we will take boundary conditions to be zero, even if this leads to physically meaningless negative
solutions; as earlier, we can simply add a constant to make the problem more realistic.
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One can prove, although we will not do so in this course, that this is the unique solution with the given
boundary and initial conditions.

This works in exactly the same way whenever the initial condition is a finite sum
∑

k ak sin kx. Ig-
noring questions of convergence, the same idea even works for an infinite sum

∑∞
k=0 ak sin kx. But

what if initial condition is not a sum of sines? A beautiful area of mathematics, Fourier analysis, tells
us that it is possible to write any function defined on an interval as an infinite sum of this form. This
is analogous to the idea of writing any function of x (not just polynomials) as a sum of powers xi.
You saw such expansions (Taylor series) in a calculus course.

The theory of expansions into sines and cosines is more involved (convergence of the series must be
interpreted in a very careful way), and we will not say anything more about that topic in this course.

Here are some pictures of approximations, though, for an interval of the form [0, 2π]. In each picture,
we see a function together with various approximants consisting of sums of an increasing number of
sinusoidal functions (red is constant; orange is a0 + a1 sinx, etc).

Another Example
Suppose now that, in addition to diffusion, there is a reaction. A population of bacteria grows expo-
nentially inside the same thin tube that we considered earlier, still also moving at random.

We have this problem:
∂c

∂t
=

∂2c

∂x2
+ αc , c(0, t) = c(π, t) = 0 ,

and look for nonzero solutions of the separated form c(x, t) = X(x)T (t).

We follow the same idea as earlier:

X(x)T ′(t) = X ′′(x)T (t) + αX(x)T (t)

for all x, t, so there must exist some real number λ so that:

T ′(t)

T (t)
=

X ′′(x)

X(x)
+ α = λ .



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 180

This gives us the coupled equations:

T ′(t) = λT (t)

X ′′(x) = (λ− α)X(x)

with boundary conditions X(0) = X(π) = 0.

Suppose that λ − α ≥ 0. Then there is a real number µ such that µ2 = λ − α and X satisfies the
equation X ′′ = µ2X .

If µ = 0, then the equation says that X = a + bx for some a, b. But X(0) = X(π) = 0 would then
imply a = b = 0, so X ≡ 0 and the solution is identically zero.

So let us assume that µ 6= 0. Thus:
X = aeµx + be−µx

and, using the two boundary conditions, we have a+ b = aeµπ + be−µπ = 0, or in matrix form:(
1 1
eµπ e−µπ

)(
a
b

)
= 0 .

Since

det

(
1 1
eµπ e−µπ

)
= e−µπ − eµπ = e−µπ(1− e2µπ) 6= 0 ,

we obtain that a = b = 0, again contradictingX 6≡ 0. In summary, λ−α ≥ 0 leads to a contradiction,
so λ < α.

Let k be a real number such that k2 := α− λ. Then,

X ′′ + k2X = 0 ⇒ X(x) = a sin kx+ b cos kx

and X(0) = X(π) = 0 implies that b = 0 and that k must be a nonzero integer.

For any give rate α, every separable solution is of form

a e(α−k2)t sin kx

with a nonzero integer k and some constant a 6= 0, and, conversely, every such function (or a linear
combination thereof) is a solution (check!). If c represents a density of a population, a separable
solution only makes sense if k = 1, since otherwise there will be negative values; however, sums of
several such terms may well be positive. Note that if α > 1 then there exists at elast one solution in
which the population grows (α > k2, at least for k = 1).

3.2.5 No-flux Boundary Conditions

Suppose that the tube in the previous examples is closed at the end x = L (a similar argument applies
if it is closed at x = 0). We assume that, in that case, particles “bounce” at a “wall” placed at x = L.

One models this situation by a “no flux” or Neumann boundary condition J(L, t) ≡ 0, which, for the
pure diffusion equation, is the same as ∂c

∂x
(L, t) ≡ 0.

One way to think of this is as follows. Imagine a narrow strip (of width ε) about the wall. For very
small ε, most particles bounce back far into region, so the flux at x = L− ε is ≈ 0.
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Another way to think of this is using the reflecting boundary method. We replace the wall by a “virtual
wall” and look at equation in a larger region obtained by adding a mirror image of the original region.
Every time that there is a bounce, we think of the particle as continuing to the mirror image section.
Since everything is symmetric (we can start with a symmetric initial condition), clearly the net flow
across this wall balances out, so even if individual particles would exit, on the average the same
number leave as enter, and so the population density is exactly the same as if no particles would exit.
As we just said, the flux at the wall must be zero, again explaining the boundary condition.

-�
-�

3.2.6 Probabilistic Interpretation

We make now some very informal and intuitive remarks.

In a population of indistinguishable particles (bacteria, etc.) undergoing random motion, we may
track what happens to each individual particle (assumed small enough so that they don’t collide with
each other).

Since the particles are indistinguishable, one could imagine performing a huge number of one-particle
experiments, and estimating the distribution of positions x(t) by averaging over runs, instead of just
performing one big experiment with many particles at once and measuring population density.

The probability of a single particle ending up, at time t, in a given region R, is proportional to how
many particles there are in R, i.e. to Prob(particle in R) ∝ C(R, t) =

∫
R
c(x, t) dx.

If we normalize to C = 1, we have that Prob(particle in R) =
∫
R
c(x, t) dx (a triple integral, in 3

space).

Therefore, we may view c(x, t) is the probability density of the random variable giving the position
of an individual particle at time t (a random walk). In this interpretation, σ2(t) is then the variance
of the random variable, and its standard deviation σ(t) is proportional to

√
t (a rough estimate on

approximate distance traveled).

Specifically, for particles undergoing random motion with distribution c0 (a “standard random walk”),
the position has a Gaussian (normal) distribution.

For Gaussians, the mean distance from zero (up a to constant factor) coincides with the standard
deviation:

E(|X|) =
2

σ
√

2π

∫ ∞
0

xe−x
2/(2σ2) dx =

σ√
π

(substitute u = x/σ), and similarly in any dimension for E(
√
x2

1 + . . .+ x2
d).

So we have that the average displacement of a diffusing particle is proportional to
√
t.
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To put it in another way: traveling average distance L requires time L2.

Since “life is motion” (basically by definition), this has fundamental implications for living organisms.

Diffusion is simple and energetically relatively “cheap”: there is no need for building machinery for
locomotion, etc., and no loss due to conversion to mechanical energy when running cellular motors
and muscles.

At small scales, diffusion is very efficient (L2 is tiny for small L), and hence it is a fast method for
nutrients and signals to be carried along for short distances.

However, this is not the case for long distances (since L2 is huge if L is large). Let’s do some quick
calculations.

Suppose that a particle travels by diffusion covering 10−6m (= 1µm) in 10−3 seconds (a typical order
of magnitude in a cell), Then, how much time is required to travel 1 meter?

Answer: since x2 = 2Dt, we solve (10−6)2 = 2D10−3 to obtain D = 10−9/2. So, 1 = 10−9t means
that t = 109 seconds, i.e. about 27 years!

Obviously, this is not a feasible way to move things along a large organism, or even a big cell (e.g.,
long neuron). That’s one reason why there are circulatory systems, cell motors, microtubules, etc.

More on Random Walks

Let is develop a little more intuition on random walks. A discrete analog is as follows: suppose that a
particle can move left or right with a unit displacement and equal probability, each step independent
of the rest. What is the position after t steps? Let is check 4 steps, making a histogram:

ending possible sequences count
−4 −1−1−1−1 1 x
−2 −1−1−1+1,−1−1+1−1,... 4 xxxx

0 −1−1+1+1,−1+1+1−1,... 6 xxxxxx
2 1+1+1−1,1+1−1+1,... 4 xxxx
4 1+1+1+1 1 x

The Central Limit Theorem tells us that the distribution (as t→∞ tends to be normal, with variance:

σ2(t) = E(X1 + . . .+Xt)
2 =

∑∑
EXiXj =

∑
EX2

i = σ2t

(since the steps are independent, EXiXj = 0 for i 6= j). We see then that σ(t) is proportional to
√
t.

The theory of Brownian motion makes a similar analysis for continuous walks.

3.2.7 Another Diffusion Example: Population Growth

We consider now the equation
∂c

∂t
= D∇2c+ αc (3.1)

on the entire space (no boundary conditions).
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This equation models a population which is diffusing and also reproducing at some rate α. It is an
example of a reaction-diffusion equation, meaning that there is a reaction (in this case, dc/dt = αc)
taking place in addition to diffusion.

When there is no reaction (α = 0), one can prove that the following “point-source” Gaussian formula:

p0(x, t) =
C√

4πDt
exp

(
− x2

4Dt

)
(3.2)

is a solution in dimension 1, and a similar formula holds in higher dimensions (see problems). We
use an integrating factor trick in order to reduce (3.1) to a pure diffusion equation. The trick is
entirely analogous to what is done for solving the transport equation with a similar added reaction. We
introduce the new dependent variable p(x, t) := e−αtc(x, t). Then (homework problem), p satisfies
the pure diffusion equation:

∂p

∂t
= D∇2p .

Therefore, the solution for p is given by (3.2), and therefore

c(x, t) =
C√

4πDt
exp

(
αt− x2

4Dt

)
. (3.3)

It follows that the equipopulation contours c = constant have x ≈ βt for large t, where β is some
positive constant. (A homework problem asks you to study this.)

This is noteworthy because, in contrast to the population dispersing a distance proportional to
√
t

(as with pure diffusion), the distance is, instead, proportional to t (which is much larger than
√
t).

One intuitive explanation is that reproduction increases the gradient (the “populated” area has an even
larger population) and hence the flux.

Similar results hold for the multivariate version, not just in dimension one.

Skellam11 studied the spread of muskrats (Ondatra zibethica, a large aquatic rodent that originated in
North America) in central Europe. Although common in Europe nowadays, it appears that their spread
in Europe originated when a Bohemian farmer accidentally allowed several muskrats to escape, about
50 kilometers southwest of Prague. Diffusion with exponential growth followed.

The next two figures show the equipopulation contours and a plot of the square root of areas of spread
versus time. (The square root of the area would be proportional to the distance from the source, if the
equipopulation contours would have been perfect circles. Obviously, terrain conditions and locations
of cities make these contours not be perfect circles.) Notice the match to the prediction of a linear
dependence on time.

The third figure is an example12 for the spread of Japanese beetles Popillia japonica in the Eastern
United States, with invasion fronts shown.

11J.G. Skellam, Random dispersal in theoretical populations, Biometrika 38: 196-218, 1951.
12from M.A. Lewis and S. Pacala, Modeling and analysis of stochastic invasion processes, J. Mathematical Biology 41,

387-429, 2000
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Remark. Continuing on the topic of the Remark in page 164, suppose that each particle in a popula-
tion evolves according to a differential equation dx/dt = f(x, t) +w, where “w” represents a “noise”
effect which, in the absence of the f term, would make the particles undergo purely random motion,
and the population density satisfies the diffusion equation with diffusion coefficient D. When both
effects are superimposed, we obtain, for the density, an equation like ∂c/∂t = −div (cf) + D∇2c.
This is usually called a Fokker-Planck equation. (To be more precise, the Fokker-Planck equation de-
scribes a more general situation, in which the “noise” term affects the dynamics in a way that depends
on the current value of x. We’ll work out details in a future version of these notes.)

3.2.8 Systems of PDE’s

Of course, one often must study systems of partial differential equations, not just single PDE’s.

We just discuss one example, that of diffusion with growth and nutrient depletion, since the idea
should be easy to understand. This example nicely connects with the material that we started the
course with.

We assume that a population of bacteria, with density n(x, t), move at random (diffusion), and in ad-
dition also reproduce with a rate K(c(x, t)) that depends on the local concentration c(x, t) of nutrient.

The nutrient is depleted at a rate proportional to its use, and it itself diffuses. Finally, we assume that
there is a linear death rate kn for the bacteria.

A model is:

∂n

∂t
= Dn∇2n + (K(c)− k)n

∂c

∂t
= Dc∇2c − αK(c)n

where Dn and Dc are diffusion constants. The function K(c) could be, for example, a Michaelis-
Menten rate K(c) =

kmaxc
kn+c

You should ask yourself, as a homework problem, what the equations would be like if c were to
denote, instead, a toxic agent, as well as formulate other variations of the idea.

Another example, related to this one, is that of chemotaxis with diffusion. We look at this example
later, in the context of analyzing steady state solutions.
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3.3 Steady-State Behavior of PDE’s

In the study of ordinary differential equations (and systems) dX
dt

= F (X), a central role is played by
steady states, that is, those states X for which F (X) = 0.

The vector field is only “interesting” near such states. One studies their stability, often using lin-
earizations, in order to understand the behavior of the system under small perturbations from the
steady state, and also as a way to gain insight into the global behavior of the system.

For a partial differential equation of the form ∂c
∂t

= F (c, cx, cxx, . . .), where cx, etc., denote partial
derivatives with respect to space variables, or more generally for systems of such equations, one may
also look for steady states, and steady states also play an important role.

It is important to notice that, for PDE’s, in general finding steady states involves not just solving an
algebraic equation like F (X) = 0 in the ODE case, but a partial differential equation. This is because
setting F (c, cx, cxx, . . .) to zero is a PDE on the space variables. The solution will generally be a
function of x, not a constant. Still, the steady state equation is in general easier to solve; for one thing,
there are less partial derivatives (no ∂c

∂t
).

For example, take the diffusion equation, which we write now as:

∂c

∂t
= L(c)

and where “L” is the operator L(c) = ∇2c. A steady state is a function c(x) that satisfies L(c) = 0,
that is,

∇2c = 0

(subject to whatever boundary conditions were imposed). This is the Laplace equation.

We note (but we have no time to cover in the course) that one may study stability for PDE’s via
“spectrum” (i.e., eigenvalue) techniques for a linearized system, just as done for ODE’s.

To check if a steady state c0 of ∂c
∂t

= F (c) is stable, one linearizes at c = c0, leading to ∂c
∂t

= Ac,
and then studies the stability of the zero solution of ∂c

∂t
= Ac. To do that, in turn, one must find the

eigenvalues and eigenvectors (now eigen-functions) ofA (now an operator on functions, not a matrix),
that is, solve

Ac = λc

(and appropriate boundary conditions) for nonzero functions c(x) and real numbers λ. There are
many theorems in PDE theory that provide analogues to “stability of a linear PDE is equivalent to all
eigenvalues having negative real part”. To see why you may expect such theorems to be true, suppose
that we have found a solution of Ac = λc, for some c 6≡ 0. Then, the function

ĉ(x, t) = eλtc(x)

solves the equation: ∂ĉ
∂t

= Aĉ. So, if for example, λ > 0, then |ĉ(t, x)| → ∞ for those points x where
c(x) 6= 0, as t→∞, and the zero solution is unstable. On the other hand, if λ < 0, then ĉ(t, x)→ 0.

For the Laplace equation, it is possible to prove that there are a countably infinite number of eigen-
values. If we write L = −∇2c (the negative is more usual in mathematics, for reasons that we will
not explain here), then the eigenvalues of L form a sequence 0 < λ0 < λ1 < . . ., with λn → ∞
as n → ∞, when Dirichlet conditions (zero at boundary) are imposed, and 0 = λ0 < λ1 < . . .
when Neumann conditions (no-flux) are used. The eigenvectors that one obtains for domains that are
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intervals are the trigonometric functions that we found when solving by separation of variables (the
eigenvalue/eigenvector equation, for one space variable, is precisely X ′′(x) + λX = 0).

In what follows, we just study steady states, and do not mention stability. (However, the steady states
that we find turn out, most of them, to be stable.)

3.3.1 Steady State for Laplace Equation on Some Simple Domains

Many problems in biology (and other fields) involve the following situation. We have two regions, R
and S, so that R “wraps around” S. A substance, such as a nutrient, is at a constant concentration,
equal to c0, on the exterior of R. It is also constant, equal to some other value cS (typically, cS = 0)
in the region S. In between, the substance diffuses. See this figure:

exterior c ≡ c0

∂c
∂t

= ∇2c
c ≡ cS
S

R

Examples abound in biology. For example,Rmight be a cell membrane, the exterior the extra-cellular
environment, and S the cytoplasm.
In a different example, R might represent the cytoplasm and S the nucleus.
Yet another variation (which we mention later) is that in which the region R represents the immediate
environment of a single-cell organism, and the region S is the organism itself.

In such examples, the external concentration is taken to be constant because one assumes that nutrients
are so abundant that they are not affected by consumption. The concentration in S is also assumed
constant, either because S is very large (this is reasonable if S would the cytoplasm and R the cell
membrane) or because once nutrients enter S they get absorbed (combined with other substances)
immediately (and so the concentration in S is cS = 0).

Other examples typically modeled in this way include chemical transmitters at synapses, macrophages
fighting infection at air sacs in lungs, and many others.

In this Section, we only study steady states, that is, we look for solutions of ∇2c = 0 on R, with
boundary conditions cS and c0.

Dimension 1

We start with the one-dimensional case, where S is the interval [0, a], for some a ≥ 0, and R is the
interval [a, L], for some L > a.

We view the space variable x appearing in the concentration c(x, t) as one dimensional. However, one
could also interpret this problem as follows: S and R are cylinders, there is no flux in the directions
orthogonal to the x-axis, and we are only interested in solutions which are constant on cross-sections.
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6

?

c(0, t) ≡ cS

no flux

no flux

c(L, t) ≡ c0

x = a x = L

ct = D∇2c

The steady-state problem is that of finding a function c of one variable satisfying the following ODE
and boundary conditions:

D
d2c

dx2
= 0 , c(a) = cS , c(L) = c0 .

Since c′′ = 0, c(x) is linear, and fitting the boundary conditions gives the following unique solution:

c(x) = cS + (c0 − cS)
x− a
L− a

.

Notice that, therefore, the gradient of c is dc
dx

= c0−cS
L−a .

Since, in general, the flux due to diffusion is −D∇c, we conclude that the flux is, in steady-state, the
following constant:

J = − D

L− a
(c0 − cS) .

Suppose that c0 > cS . Then J < 0. In other words, an amount D
L−a(c0 − cS) of nutrient transverses

(from right to the left) the region R = [a, L] per unit of time and per unit of cross-sectional area.

This formula gives an “Ohm’s law for diffusion across a membrane” when we think of R as a cell
membrane. To see this, we write the above equality in the following way:

cS − c0 = J
L− a
D

which makes it entirely analogous to Ohm’s law in electricity, V = IR. We interpret the potential
difference V as the difference between inside and outside concentrations, the flux as current I , and the
resistance of the circuit as the length divided by the diffusion coefficient. (Faster diffusion or shorter
length results in less “resistance”.)

Radially Symmetric Solutions in Dimensions 2 and 3

In dimension 2, we assume now that S is a disk of radius a and R is a washer with outside radius L.
For simplicity, we take the concentration in S to be cS = 0.

kS
R&%
'$

Since the boundary conditions are radially symmetric, we look for a radially symmetric solution, that
is, a function c that depends only on the radius r.

Recalling the formula for the Laplacian as a function of polar coordinates, the diffusion PDE is:

∂c

∂t
=

D

r

∂

∂r

(
r
∂c

∂r

)
, c(a, t) = 0 , c(L, t) = c0 .
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Since we are looking only for a steady-state solution, we set the right-hand side to zero and look for
c = c(r) such that

(rc′)′ = 0 c(a) = 0 , c(L) = c0 ,

where prime indicates derivative with respect to r.

A homework problem asks to show that the radially symmetric solution for the washer is:

c(r) = c0
ln(r/a)

ln(L/a)
.

Similarly, in dimension 3, taking S as a ball of radius a and R as the spherical shell with inside radius
a and outside radius L, we have:

∂c

∂t
=

D

r2

∂

∂r

(
r2 ∂c

∂r

)
, c(t, a) = 0 , c(L, t) = c0

The solution for the spherical shell is (homework problem):

c(r) =
Lc0

L− a

(
1− a

r

)
.

Notice the different forms of the solutions in dimensions 1, 2, and 3.

In the dimension 3 case, the derivative of c in the radial direction is, therefore:

c′(r) =
Lc0a

(L− a)r2
.

We now specialize to the example in which the region R represents the environment surrounding a
single-cell organism, the region S is the organism itself, and c models nutrient concentration.

We assume that the concentration of nutrient is constant far away from the organism, let us say farther
than distance L, and L� a.

Then c′(r) = c0a
(1−a/L)r2

≈ c0a
r2

.

In general, the steady-state flux due to diffusion, in the radial direction, is −Dc′(r). In particular, on
the boundary of S, where r = a, we have:

J = −Dc0

a
.

Thus −J is the amount of nutrient that passes, in steady state, through each unit of area of the bound-
ary, per unit of time. (The negative sign because the flow is toward the inside, i.e. toward smaller r,
since J < 0.)

Since the boundary of S is a sphere of radius a, it has surface area 4πa2. Therefore, nutrients enter S
at a rate of

Dc0

a
× 4πa2 = 4πDc0a

per unit of time.
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On the other hand, the metabolic need is roughly proportional to the volume of the organism. Thus,
the amount of nutrients needed per unit of time is:

4

3
πa3M ,

where M is the metabolic rate per unit of volume per unit of time.

For the organism to survive, enough nutrients must pass through its boundary. If diffusion is the only
mechanism for nutrients to come in, then survivability imposes the following constraint:

4πDc0a ≥
4

3
πa3M ,

that is,

a ≤ acritical =

√
3Dc0

M
.

Phytoplankton13 are free-floating aquatic organisms, and use bicarbonate ions (which enter by diffu-
sion) as a source of carbon for photosynthesis, consuming one mole of bicarbonate per second per
cubic meter of cell. The concentration of bicarbonate in seawater is about 1.5 moles per cubic meter,
and D ≈ 1.5× 10−9m2s−1. This gives

acritical =
√

3× 1.5× 10−9 × 1.5m2 ≈ 82× 10−6m = 82µm (microns) .

This is, indeed, about the size of a typical “diatom” in the sea.

Larger organisms must use active transport mechanisms to ingest nutrients!

3.3.2 Steady States for a Diffusion/Chemotaxis Model

A very often used model that combines diffusion and chemotaxis is due to Keller and Segel. The
model simply adds the diffusion and chemotaxis fluxes. In dimension 1, we have, then:

∂c

∂t
= −div J = − ∂

∂x

(
α c V ′ −D∂c

∂x

)
.

We assume that the bacteria live on the one-dimensional interval [0, L] and that no bacteria can enter
or leave through the endpoints. That is, we have no flux on the boundary:14

J(0, t) = J(L, t) = 0 ∀ t .

Let us find the steady states.15

13We borrow this example from M. Denny and S. Gaines, Chance in Biology, Princeton University Press, 2000. The
authors point out there that the metabolic need is more accurately proportional, for multicellular organisms, to (mass)3/4,
but it is not so clear what the correct scaling law is for unicellular ones.

14Notice that this is not the same as asking that ∂c∂x (0, t) = ∂c
∂x (L, t) = 0. The density might be constant near a boundary,

but this does not mean that the population will not get redistributed, since there is also movement due to chemotaxis. Only
for a pure diffusion, when J = −D ∂c

∂x , is no-flux the same as ∂c
∂x = 0.

15Note that, for a model in which there is only chemotaxis, there cannot be any stedy states, unless V was constant -
why?
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Setting ∂c
∂t

= −∂J
∂x

= 0, and viewing now c as a function of x alone, and using primes for d
dx

, gives:

J = α c V ′ −Dc′ = J0 (some constant) .

Since J0 = 0 (because J vanishes at the endpoints), we have that (ln c)′ = c′/c = (αV/D)′, and
therefore

c = k exp(αV/D)

for some constant. Thus, the steady state concentration is proportional to the exponential of the
nutrient concentration, which is definitely not something that would be obvious.

For example, suppose that V is a concentration obtained from a steady-state gradient of a chemoat-
tractant on [0, L], where the concentration of V is zero at 0 and 1 at L. Then, V (x) = x/L (prove!).
It follows that, at steady state, c(x) = kex/L (assuming for simplicity D = 1 and α = 1).

3.3.3 Facilitated Diffusion

Let us now work out an example16 involving a system of PDE’s, diffusion, chemical reactions, and
quasi-steady state approximations.

Myoglobin17 is a protein that helps in the transport of oxygen in muscle fibers. The binding of oxygen
to myoglobin results in oxymyoglobin, and this binding results in enhanced diffusion.

The facilitation of diffusion is somewhat counterintuitive, because the Mb molecule is much larger
than oxygen (about 500 times larger), and so diffuses slower. A mathematical model helps in under-
standing what happens, and in quantifying the effect.

In the model, we take a muscle fibre to be one-dimensional, and no flux of Mb and MbO2 in or out.
(Only unbound oxygen can pass the boundaries.)

16Borrowing from J.P. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag New York, 1998.
17From Protein Data Bank, PDB, http://www.rcsb.org/pdb/molecules/mb3.html:

“myoglobin is where the science of protein structure really began. . . John Kendrew and his coworkers determined the
atomic structure of myoglobin, laying the foundation for an era of biological understanding”
“The iron atom at the center of the heme group holds the oxygen molecule tightly. Compare the two pictures. The first
shows only a set of thin tubes to represent the protein chain, and the oxygen is easily seen. But when all of the atoms in
the protein are shown in the second picture, the oxygen disappears, buried inside the protein.”
“So how does the oxygen get in and out, if it is totally surrounded by protein? In reality, myoglobin (and all other proteins)
are constantly in motion, performing small flexing and breathing motions. Temporary openings constantly appear and
disappear, allowing oxygen in and out. The structure in the PDB is merely one snapshot of the protein, caught when it is
in a tightly-closed form”
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s(0, t) ≡ s0 s(L, 0) ≡ sL � s0

x = 0 x = L

s = O2, e = Mb, c = MbO2

The chemical reaction is just that of binding and unbinding:

O2 +Mb
k+−→
←−
k−

MbO2

with equations:

∂s

∂t
= Ds

∂2s

∂x2
+ k−c− k+se

∂e

∂t
= De

∂2e

∂x2
+ k−c− k+se

∂c

∂t
= Dc

∂2c

∂x2
− k−c+ k+se ,

where we assume that De = Dc (since Mb and MbO2 have comparable sizes). The boundary condi-
tions are ∂e

∂x
= ∂c

∂x
≡ 0 at x = 0, L, and s(0) = s0, s(L) = sL.

We next do a steady-state analysis of this problem, setting:

Dssxx + k−c− k+se = 0

Deexx + k−c− k+se = 0

Dccxx − k−c+ k+se = 0

Since De = Dc, we have that (e+ c)xx ≡ 0.
So, e+ c is a linear function of x, whose derivative is zero at the boundaries (no flux).
Therefore, e+ c is constant, let us say equal to e0.

On the other hand, adding the first and third equations gives us that

(Dssx +Dccx)x = Dssxx +Dccxx = 0 .

This means that Dssx +Dccx is also constant:

Dssx +Dccx = −J .

Observe that J is the the total flux of oxygen (bound or not), since it is the sum of the fluxes −Dssx
of s = O2 and −Dccx of c = MbO2.

Let f(x) = Dss(x) +Dcc(x). Since f ′ = −J , it follows that f(0)− f(L) = JL, which means:

J =
Ds

L
(s0 − sL) +

Dc

L
(c0 − cL)

(where one knows the oxygen concentrations s0 and sL, but not necessarily c0 and cL).

We will next do a quasi-steady state approximation, under the hypothesis that Ds is very small com-
pared to the other numbers appearing in:

Dssxx + k−c− k+s(e0 − c) = 0
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and this allows us to write18

c = e0
s

K + s

where K = k−/k+. This allows us, in particular, to substitute c0 in terms of s0, and cL in terms of sL,
in the above formula for the flux, obtaining:

J =
Ds

L
(s0 − sL) +

Dc

L
e0

(
s0

K + s0

− sL
K + sL

)
.

This formula exhibits the flux as sum of the “Ohm’s law” term plus plus a term that depends on
diffusion constant Dc of myoglobin.
(Note that this second term, which quantifies the advantage of using myoglobin, is positive, since
s/(K + s) is increasing.)

With a little more work, which we omit here19, one can solve for c(x) and s(x), using the quasi-
steady state approximation. These are the graphs that one obtains, for the concentrations and fluxes
respectively, of bound and free oxygen (note that the total flux J is constant, as already shown):

An intuition for why myoglobin helps is as follows. By binding to myoglobin, there is less free
oxygen near the left endpoint. As the boundary conditions say that the concentration is s0 outside,
there is more flow into the cell (diffusion tends to equalize). Similarly, at the other end, the opposite
happens, and more flows out.

3.3.4 Density-Dependent Dispersal

Here is yet another example20 of modeling with a system of PDE’s and steady-state calculations.

Suppose that the flux is proportional to−c∇c, not to−∇c as with diffusion: a transport-like equation,
where the velocity is determined by the gradient. In the scalar case, this would mean that the flux is
proportional to −ccx, which is the derivative of −c2. Such a situation would occur if, for instance,
overcrowding encourages more movement.

18Changing variables σ = (k+/k−)s, u = c/e0, and y = x/L, one obtains εσyy = σ(1− u)− u, ε = Ds/(e0k+L
2).

A typical value of ε is estimated to be ε ≈ 10−7. This says that σ(1− u)− u ≈ 0, and from here one can solve for u as a
function of σ, or equivalently, c as a function of s.

19see the Keener-Sneyd book for details
20from Keshet’s book
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So we have
∂u

∂t
= −div (−αu∇u)

and, in particular, in dimension 1:
∂u

∂t
= α

∂

∂x

(
u
∂u

∂x

)
Let us look for steady states: u = u(x) solving (with u′ = ∂u

∂x
):

(uu′)′ = 0 .

This means that (u2)′′ = 0, i.e. u(x)2 = ax+ b, or u(x) =
√
ax+ b for some constants a, b. Suppose

that we also impose boundary conditions u(0) = 1 and u(1) = 2. Then, u(x) =
√

3x+ 1. The plot of
u(x) clearly shows that the total amount of individuals (the integral

∫ 1

0
u(x)dx) is larger than it would

be if pure diffusion would occur, in which case u(x) = x+ 1 (why?).

To make the problem a little more interesting, let us now assume that there are two interacting popu-
lations, with densities u and v respectively, and each moves with a velocity that is proportional to the
gradient of the total population u+ v.

We obtain these equations:

∂u

∂t
= −div (−αu∇(u+ v))

∂v

∂t
= −div (−βv∇(u+ v))

and, in particular, in dimension 1:

∂u

∂t
= α

∂

∂x

(
u
∂(u+ v)

∂x

)
∂v

∂t
= β

∂

∂x

(
v
∂(u+ v)

∂x

)
.

Let us look for steady states: u = u(x) and v = v(x) solving (with u′ = ∂u
∂x

, v′ = ∂v
∂x

):

(u(u+ v)′)′ = (v(u+ v)′)′ = 0 .

There must exist constants c1, c2 so that:

u(u+ v)′ = c1 , v(u+ v)′ = c2 .

We study three separate cases:
(1) c1 = c2 = 0
(2) c2 6= 0 and c1 = 0,
(3) c1c2 6= 0
(the case c1 6= 0 and c2 = 0 is similar to (2)).

Case (1):
here [(u + v)2]′ = 2(u + v)(u + v)′ = 2u(u + v)′ + 2v(u + v)′ = 0, so u + v is constant. That’s the
best that we can say.
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Case (2):

c2 6= 0 ⇒ v(x) 6= 0, (u+ v)′(x) 6= 0 ∀x .

Also,
c1 = 0 ⇒ u ≡ 0 ⇒ vv′ ≡ c2 ⇒ (v2)′ ≡ 2c2

implies v2 = 2c2x+K for some constant K, so (taking the positive square root, because v ≥ 0, being
a population):

v =
√

2c2x+K , u ≡ 0 .

Case (3):
Necessarily u(x) 6= 0 and v(x) 6= 0 for all x, so can divide and obtain:

(u+ v)′ =
c1

u
=
c2

v
.

Hence u = (c1/c2)v can be substituted into u′ + v′ = c2
v

to obtain (1 + c1/c2)v′ = c2/v, i.e. vv′ =
c2/(1 + c1/c2), or (v2)′ = 2c2/(1 + c1/c2), from which:

v2(x) =
2c2x

1 + c1/c2

+K

for some K, and so:

v(x) =

(
2c2x

1 + c2/c1

+K

)1/2

.

Since u = (c1/c2)v,

u(x) =

(
2c1x

1 + c1/c2

+Kc2
1/c

2
2

)1/2

.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 195

3.4 Traveling Wave Solutions of Reaction-Diffusion Systems

It is rather interesting that reaction-diffusion systems can exhibit traveling-wave behavior. Examples
arise from systems exhibiting bistability, such as the developmental biology examples considered
earlier, or, in a more complicated system form, for species competition.

The reason that this is surprising is that diffusion times tend to scale like the square root of distance,
not linearly. (But we have seen a similar phenomenon when discussing diffusion with exponential
growth.)

We illustrate with a simple example, the following equation:

∂V

∂t
=
∂2V

∂x2
+ f(V )

where f is a function that has zeroes at 0, α, 1, α < 1/2, and satisfies:

f ′(0) < 0, f ′(1) < 0, f ′(α) > 0

so that the differential equation dV/dt = f(V ) by itself, without diffusion, would be a bistable
system.21

We would like to know if there’s any solution that looks like a “traveling front” moving to the left (we
could also ask about right-moving solutions, of course).

In other words, we look for V (x, t) such that, for some “waveform” U that “travels” at some speed c,
V can be written as a translation of U by ct:

V (x, t) = U(x+ ct) .

In accordance with the above picture, we also want that these four conditions hold:

V (−∞, t) = 0 , V (+∞, t) = 1 , Vx(−∞, t) = 0 , Vx(+∞, t) = 0 .

21Another classical example is that in which f represents logistic growth. That is the Fisher equation, which is used in
genetics to model the spread in a population of a given allele.
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The key step is to realize that the PDE for V induces an ordinary differential equation for the waveform
U , and that these boundary conditions constrain what U and the speed c can be.

To get an equation for U , we plug-in V (x, t) = U(x+ ct) into Vt = Vxx + f(V ), obtaining:

cU ′ = U ′′ + f(U)

where “′” indicates derivative with respect to the argument of U , which we write as ξ. Furthermore,
V (−∞, t) = 0, V (+∞, t) = 1, Vx(−∞, t) = 0, Vx(+∞, t) = 0 translate into:

U(−∞) = 0 , U(+∞) = 1 , U ′(−∞) = 0 , U ′(+∞) = 0 .

Since U satisfies a second order differential equation, we may introduce W = U ′ and see U as the
first coordinate in a system of two first-order differential equations:

U ′ = W

W ′ = −f(U) + cW .

The steady states satisfy W = 0 and f(U) = 0, so they are (0, 0) and (1, 0). The Jacobian is

J =

(
0 1
−f ′ c

)
and has determinant f ′ < 0 at the steady states, so they are both saddles. The conditions on U translate
into the requirements that:

(U,W )→ (0, 0) as ξ → −∞ and (U,W )→ (1, 0) as ξ →∞

for the function U(ξ) and its derivative, seen as a solution of this system of two ODE’s. (Note that “ξ”
is now “time”.) In dynamical systems language, we need to show the existence of an “heteroclinic
connection” between these two saddles. One first proves that, for c ≈ 0 and c � 1, there result
trajectories that “undershoot” or “overshoot” the desired connection, so, by a continuity argument
(similar to the intermediate value theorem), there must be some value c for which the connection
exactly happens. Details are given in many mathematical biology books.

The theory can be developed quite generally, but here we’ll only study in detail this very special case:

f(V ) = −A2V (V − α)(V − 1)

which is easy to treat with explicit formulas.
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Since U will satisfy U ′ = 0 when U = 0, 1, we guess the functional relation:

U ′(ξ) = BU(ξ) (1− U(ξ))

(note that we are looking for a U satisfying 0 ≤ U ≤ 1, so 1−U ≥ 0). We write “ξ” for the argument
of U so as to not confuse it with x.

We substitute U ′ = BU(1− U) and (taking derivatives of this expression)

U ′′ = B2U(1− U)(1− 2U)

into the differential equation cU ′ = U ′′ +A2U(U − α)(U − 1), and cancel U(U − 1), obtaining (the
calculation is given as a homework problem):

B2(2U − 1) + cB − A2(U − α) = 0 .

Since U is not constant (because U(−∞) = 0 and U(+∞) = 1), this means that we can compare
coefficients of U in this expression, and conclude: that 2B2 − A2 = 0 and −B2 + cB + αA2 = 0.
Therefore:

B = A/
√

2 , c =
(1− 2α)A√

2
.

Substituting back into the differential equation for U , we have:

U ′ = BU(1− U) =
A√
2
U(1− U) ,

an ODE that now does not involve the unknown B. We solve this ODE by separation of variables and
partial fractions, using for example U(0) = 1/2 as an initial condition, getting:

U(ξ) =
1

2

[
1 + tanh

(
A

2
√

2
ξ

)]
(a homework problem asks to verify that this is a solution). Finally, since V (x, t) = U(x + ct), we
conclude that:

V (x, t) =
1

2

[
1 + tanh

(
A

2
√

2
(x+ ct)

)]
where c = (1−2α)A√

2
.

Observe that the speed c was uniquely determined; it will be larger if α ≈ 0, or if the reaction is
stronger (larger A). This is not surprising! (Why?)
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3.5 Problems for PDE chapter

Problems PDE1: Transport

1. Suppose that c(x, t) is the density of bacteria (in one space dimension) being carried east by a
wind blowing at 1 mph. The bacteria double every 1 hour. Suppose that we know that c(1, t) = t
for all t. Derive a formula for c(x, t) for all x, t, by using the general form “eλtf(x− vt)” and
determining the constant λ and the function f from the given information. You should end up
with this answer:

(1− x+ t) et ln 2 e−(ln 2)(1−x+t)

but do not just plug-in this expression to verify that it is a solution, since the whole point of the
problem is for you to be able to work out the problem without knowing the solution!

2. Suppose that a population, with density c(x, t) (in one dimension), is being transported with
velocity v = 5x. That is to say, the velocity is not constant, but it depends on the position x.
(This could happen, for example, if wind is dispersing the population, but the wind speed is not
everywhere the same.) There are no additional growth or decay, diffusion, chemotaxis, etc., just
pure transport. Circle which of the following PDE’s describes the evolution of c:

∂c

∂t
=−x ∂c

∂x

∂c

∂t
=−5c

∂c

∂t
=−5x

∂c

∂x

∂c

∂t
=−5c− x ∂c

∂x

∂c

∂t
=−5− ∂c

∂x
∂c

∂t
=−c− x ∂c

∂x

∂c

∂t
=−5c− 5x

∂c

∂x

∂c

∂t
=−5c− 5

∂c

∂x

∂c

∂t
=−5c− 5V ′

∂c

∂x
(none of these)

3. Suppose that a population, with density c(x, t) (in one dimension), is being transported with
velocity v = 1. There is no additional growth or decay, diffusion, chemotaxis, etc., just pure
transport. At time t = 1, the density is c(x, 1)=x2−2x+ 1. (Please note that we didn’t specify
initial conditions at “t=0”.)

(a) Give a formula for c(x, t).

(b) The density at position x=1 at time t=2 is (circle the right one):

0 -27 -17 1 -1 2 -2 3 -3 4 -4 27 (none of these)

4. Suppose that c(x, t) is the density of radioactive particles (in one space dimension) being carried
east by a wind blowing at 6 mph. The particles decay with a half-life of 4 hours. Suppose that
we know that c(1, t) = 1

1+t
for all t. Find c(x, t) for all x, t.

5. Suppose that a population, with density c(x, t) (in one dimension), is being transported with
velocity v = 5. There is no additional growth or decay, diffusion, chemotaxis, etc., just pure
transport. The initial density is c(x, 0)=x2/(1 + x2).

(a) Give a formula for c(x, t).

(b) The density at position x=12 at time t=2 is (circle the right one):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 (none of these)
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6. Suppose c(x, t) is the density of bacterial population being carried east by a wind blowing at 4
mph. The bacteria reproduce exponentially, with a doubling time of 5 hours.

(a) Find the density c(x, t) in each of these cases:
(1) c(x, 0) ≡ 1 (2) c(x, 0) = 2 + cosx (3) c(x, 0) = 1

1+x2
(4) c(x, 1) =

2 + cos x
(5) c(0, t) ≡ 1 (6) c(0, t) = sin t (7) c(1, t) = 1

1+et
.

(b) Sketch the density c(x, 10) at time t = 10.

7. Prove the following analog in dimension 3 of the theorem on solutions of the transport equation
(the constant velocity v is now a vector): c(x, y, z, t) = f(x− v1t, y− v2t, z − v3t)e

−λt. (Hint:
use α(x, y, z, t) = c(x+ v1t, y + v2t, z + v3t, t).)
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Problems PDE2: Chemotaxis

1. Give an example of an equation that would model this situation: the speed of movement is
an increasing function of the norm of the gradient, but is bounded by some maximal possible
speed.

2. We are given this chemotaxis equation (one space dimension) for the concentration of a mi-
croorganism (assuming no additional reactions, transport, etc):

∂c

∂t
=

∂c

∂x

(2x− 6)(
2 + (x− 3)2)2 − 2c

(
(2x− 6)2(

2 + (x− 3)2)3 −
1(

2 + (x− 3)2)2

)
.

(a) What is the potential function? (Give a formula for it; just recognize which term is V ′.)

(b) Where (at x =?) is the largest amount of food?

3. Analyze these two cases:

(a) V ′(x0) > 0, V ′′(x0) < 0
(b) V ′(x0) < 0, V ′′(x0) > 0

in a manner analogous to what was done in the text.

4. Suppose that a population, with density c(x, t) (in one dimension), is undergoing chemotaxis.
There are no additional growth or decay, transport, diffusion, etc., just pure chemotaxis.

The “potential” function is V (x)=(x− 1)2, and the proportionality constant “α” is α=1.

(a) The density satisfies this equation(circle one):

∂c

∂t
=−c− (x− 1)2 ∂c

∂x

∂c

∂t
=−2c− (x− 1)

∂c

∂x

∂c

∂t
=−2c− 2(x− 1)

∂c

∂x
∂c

∂t
=−c− 2(x− 1)

∂c

∂x

∂c

∂t
=−2c − 2x

∂c

∂x

∂c

∂t
=−c − x ∂c

∂x

∂c

∂t
=−c + x

∂c

∂x

∂c

∂t
= c − x ∂c

∂x
(none of these)

(b) Suppose that, at a given time t0, c(t0, x) = 3x + 2. Then, what is the rate of change ∂c
∂t

of
the population, at t= t0 and x=3? (Answer with a number, like “−10”.)

5. An organism’s chemotactic signaling pathway will not directly respond to the gradient of the
external chemoeffector concentration, but, rather, to the gradient of “sensed” concentration, as
represented by the degree of activity of appropriate receptors. In this problem, we study one
extremely simplified model of chemotaxis based on this idea. We assume that motion is in one
dimension.

Suppose that each receptor may be free or bound by ligand, and we denote the concentrations
of free and bound receptors by r0 and r respectively. We further assume that the ligand binding
process equilibrates much faster than both the reaction time of the chemotatic pathway and the
speed at which the organism is moving. Thus, we may view r0 = r0(x) and r = r(x) as
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functions of the current location (more specifically, of the ligand L’s concentration V (x) at the
location). We take reversible ligand binding

L+R0

α−→
←−
β

R ,

where α, β are two positive constants. Let r(x) + r0(x) = 1 be the (assumed constant) total
number of receptors, which we take to be 1 by picking an appropriate unit. By the rapid equi-
librium assumption, V (x)r0(x) = Kr(x), where K = β/α. Substituting r0(x) = 1 − r(x),
you should solve for r(x) as a function of V (x). Then derive, arguing as before, but using the
gradient of r instead of the gradient of V , a flux as follows:

J = α c
K

(K + V )2
V ′

from which we have the equation

∂

∂t
c +

∂

∂x

(
α c

K

(K + V )2
V ′
)

= 0

for chemotaxis.
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Problems PDE3: Diffusion

1. Show that any function of the form

c(x, t) = a e−k
2t sin kx

for some nonzero integer k is a solution of

∂c

∂t
=

∂2c

∂x2
, c(0, t) = c(π, t) = 0 .

2. Under what conditions is there an unbounded (separated form) solution of:

∂c

∂t
=
∂2c

∂x2
+ αc, c(0, t) = c(1, t) = 0 ?

Provide the general form of such solutions. What about boundary condition ∂c
∂x

(1, t) = 0?

3. Suppose that c(x, t) denotes the density of a population that is undergoing random motions,
with diffusion coefficient D = 1 (we ignore reproduction for now). The population lives in a
thin tube along the x axis, with endpoints at x = 0 and x = 1. The endpoint at x = 0 is open,
and the outside density of bacteria is c = 5. The endpoint at x = 1 is closed.

(a) Write down the appropriate diffusion equation, including boundary conditions.

(b) Find the general form of solutions of the form “constant plus separated”: c(x, t) = 5 +
X(x)T (t) in which X(x)T (t) is nonzero (i.e., c(x, t) is not constant) and bounded.

4. Suppose that c(x, t) denotes the density of a bacterial population undergoing random motions
(diffusion), in dimension 1. The population lives in a thin tube along the x axis, with endpoints
at x= 0 and x=π/2. The diffusion constant is D= 1. The tube is closed at x= 0 and open at
x=π/2, and the outside density of bacteria is c = 10.

(a) Write down the appropriate diffusion equation, including boundary conditions.

(b) Find the general form of solutions of the form “constant plus separated”: c(x, t) = 10 +
X(x)T (t) in which X(x)T (t) is nonzero (i.e., c(x, t) is not constant) and bounded.

(c) Now suppose that we are also told that c(0, 0) = 12 and that ∂c
∂t

(0, 0) = −50. Find
the undetermined constants in the above solution. (Your answer should be explicit, as in
“10 + 3 sin(−3x)e2x−7t”.)

5. Suppose that c(x, t) denotes the density of a bacterial population undergoing random motions
(diffusion), in dimension 1. We think of the population as living in a thin tube along the x axis,
with endpoints at x = 0 and x = L, and take the diffusion constant to beD = 1 (for simplicity).

For each of the following descriptions write down the appropriate diffusion equation, including
boundary conditions, and then find one solution of the separated form c(x, t) = X(x)T (t)
which is bounded and nonzero.

(a) x = 0, L = 1, both ends of the tube are open, with the outside density of bacteria being
negligible.

(b) x = 0, L = π/2, end at x = 0 open and end at x = L is closed.
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(c) x = 0, L = π, both ends are closed.

6. Suppose that c(x, t) denotes the density of a bacterial population undergoing random motions
(diffusion), in dimension 1. We suppose that the domain is infinite, −∞ < x < ∞, and that,
besides diffusion, there is an air flow (in the positive x direction) with constant velocity v. We
now let the diffusion coefficient be an arbitrary constant D.

(a) Explain why we model this by the following equation:

∂c

∂t
= D

∂2c

∂x2
− v ∂c

∂x
.

(This is called, by the way, an advection-diffusion equation, and may be interpreted prob-
abilistically as describing a random walk with drift.)

(b) You will now find the “fundamental solution” of this equation, as follows. Introduce the
new variable z = x− vt and the function

α(z, t) = c(z + vt, t) .

(You should recognize here the trick which was used in order to solve the transport equa-
tion, when there was no diffusion.) Show that α satisfies a diffusion equation, and show
therefore how to obtain a solution for c by substituting back into the fundamental solution
(Gaussian) for α.

7. In dimension 2, compute the Laplacian in polar coordinates. That is, write

f(r, ϕ, t) = c(r cosϕ, r sinϕ, t) ,

so that f is really the same as the function c, but thought of as a function of magnitude, argu-
ment, and time. Prove that:

(∇2c)(r cosϕ, r sinϕ, t) =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂ϕ2

(all terms on the RHS evaluated at r, ϕ, t). Writing f just as c (but remembering that c is now
viewed as a function of (r, ϕ, t)), this means that the diffusion equation in polar coordinates is:

∂c

∂t
=

∂2c

∂r2
+

1

r

∂c

∂r
+

1

r2

∂2c

∂ϕ2
.

Conclude that, for radially symmetric c, the diffusion equation in polar coordinates is:

∂c

∂t
=

D

r

∂

∂r

(
r
∂c

∂r

)
It is also possible to prove that for spherically symmetric c in three dimensions, the Laplacian
is 1

r2
∂
∂r

(
r2 ∂c

∂r

)
.

8. Show that, under analogous conditions to those in the theorem shown for dimension 1, in di-
mension d (e.g.: d = 2, 3) one has the formula:

σ2(t) = 2dDt+ σ2(0)
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(for d = 1, this is the same as previously). The proof will be completely analogous, except
that the first step in integration by parts (uv′ = (uv)′ − u′v, which is just the Leibniz rule for
derivatives) must be generalized to vectors (use that ∇· acts like a derivative) and the second
step (the Fundamental Theorem of Calculus) should be replaced by an application of Gauss’
divergence theorem.

9. We present now an important particular solution of the diffusion equation on (−∞,+∞).

(a) Prove that (for n = 1), the following function is a particular solution of the diffusion
equation:

c0(x, t) =
C√

4πDt
e−

x2

4Dt

(where C is any constant). Also, verify that, indeed for this example, σ2(t) = 2Dt.

(b) In dimension n = 3 (or even any other dimension), there is a similar formula. Using
a symbolic computation system (e.g., Maple or Mathematica), check that the following
function is a solution, for t > 0:

c0(x, t) =
C

(4πDt)3/2
e−

r2

4Dt

where r2 = x2
1 + x2

2 + x2
3.

Note that at t = 0, these particular solutions are not well-defined, as they tend to a “δ” function.
We interpret them as the “spread from a point source”. The next problem shows how to use
such a solution to generate solutions for arbitrary initial conditions.

10. For any arbitrary continuous function f , show that the function22

c(x, t) =

∫ +∞

−∞

C√
4πDt

e−
(x−ξ)2
4Dt f(ξ) dξ

solves the diffusion equation for t > 0, and has the initial condition c(x, 0) = f(x).

11. Prove that the radially symmetric solution for the diffusion equation

∂c

∂t
=

D

r

∂

∂r

(
r
∂c

∂r

)
, c(a, t) = 0 , c(L, t) = c0 .

on a washer (as discussed in the text) is:

c(r) = c0
ln(r/a)

ln(L/a)
.

12. Prove that the diffusion solution for the spherical shell is:

c(r) =
Lc0

L− a

(
1− a

r

)
.

13. This is a problem about diffusion with population growth.
22This is the convolution c0 ∗ f of f with the “Green’s function” c0 for the PDE
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(a) Show if c satisfies (3.1), then, letting p(x, t) := e−αtc(x, t), it follows that ∂p
∂t

= D∇2p.

(b) Show directly (plug-in) that (3.3) is a solution of (3.1).

(c) Show that the equipopulation contours c = constant have x ≈ βt for large t, where β is
some positive constant. That is to say, prove that, if c(x, t) = c0 (for any fixed c0 that you
pick) then

lim
t→∞

x

t
= β

for some β (which depends on the c0 that you chose). (Hint: solve C√
4πDt

eαt−
x2

4Dt = c0 for
x and show that x =

√
a1t2 + a2t+ a3t ln t for some constants ai.

14. Suppose that c(x, t) is the density of a bacterial population undergoing random motions (diffu-
sion), and living in a one-dimensional tube with endpoints at x= 0 and x= π/2. The bacteria
reproduce with rate λc = c/4. The tube is closed at x=0 and open at x=π/2, and the outside
density of bacteria is c = 10. Taking D=1 for simplicity:

(a) Write down the appropriate steady-state equation, including boundary conditions.

(b) Find a (non-negative) solution of this steady state equation, in the form c(x) = aX(x),
where X is a trigonometric function.
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Problems PDE4: Diffusion and travelling waves

1. In the traveling wave model, use separation of variables to obtain this is a solution:

U(ξ) =
1

2

[
1 + tanh

(
A

2
√

2
ξ

)]
2. Derive the formula:

B2(2U − 1) + cB − A2(U − α) = 0 .
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Problems PDE5: General PDE modeling

1. Consider the following equation for (one-dimensional) pure transport with constant velocity:

∂c

∂t
= − 2

∂c

∂x

and suppose that this represents a population of bacteria carried by wind.

Modify the model to include the fact that bacteria reproduce at a rate that is a function “k(p(x, t))”
where p(x, t) is the density of nutrient available near location x at time t. The nutrient gets de-
pleted at a rate proportional to the growth rate of bacteria. The nutrient is not being transported
by the wind.

Model this. You will have to write a set of two partial differential equations. The actual form of
the function k is not important; it could be, for instance, of a Michaelis-Menten type. Just leave
it as “k(p)” in your equations.

2. Suppose that a population of bacteria, with density c(x, t) (in one dimension), evolves according
to the following PDE:

∂c

∂t
= −∂(cV ′)

∂x

where V (x) = x2

1+x2
.

(a) Sketch a plot of V (x).

(b) Is this a transport, chemotaxis, or diffusion equation?

(c) Describe one short sentence what you think the bacteria are doing. (Examples: “the wind
is carrying them Westward”, “they move toward a food source at x = 2”, “they are getting
away from an antibiotic placed at x = 5”, “they are moving at random”, etc.)

You are not being asked to solve any equations. Just testing your understanding of the model.
Your answer to part (b) should be just one word, and your answer to part (c) should just be one
sentence.

3. (a) What might this equation (in one space dimension) represent?:

∂c

∂t
= D

∂2c

∂x2
+ λc (∗)

(Provide a short word description, something in the style of “The population density of
bacteria undergoing chemotaxis with potential V (x) = D and also being carried by wind
westward at λ miles per hour.”)

(b) Suppose that c solves (*), and introduce the new function b(x, t) = e−λtc(x, t). Show that
∂b
∂t

= D ∂2b
∂x2

.

(c) Use the previous part (and what we already learned) to help you find a nonzero solution
of (*).

4. Suppose that c(x, t) denotes the density of a bacterial population. For each of the following
descriptions, you must provide a differential equation that provides a model of the situation.
You are not asked to solve any equations. The only point of the exercise is to get you used
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to “translate” from word descriptions to equations. The values of constants that are used, for
velocities, diffusion coefficients, and so on, are arbitrary and have no physical meaning.

We assume dimension 1. We think of the bacteria as living inside a tube of infinite length
(perhaps a very long ventilation system). The density is assumed to be uniform in each cross-
section, so we model by c = c(x, t) with −∞ < x < +∞.

(a) Bacteria are transported by an air current blowing “east” (towards x > 0) at 5 m/s, they
grow exponentially with a doubling time of 1 hour.

(b) Bacteria are transported by an air current blowing “west” at 5 m/s, and they grow expo-
nentially with a doubling time of 1 hour.

(c) Bacteria are transported by an air current blowing east at 5 m/s, and they grow exponen-
tially with a doubling time of 1 hour for small populations, but nutrients are restricted, so
the density can never be more than 100m−1.

(d) Bacteria are transported by an air current blowing east at 5 m/s, and they grow expo-
nentially with a doubling time of 1 hour, and they also move randomly with a diffusion
coefficient of 10−3.

(e) Suppose now that there is a source of food at x = 0, and bacteria area attracted to this
source. Model the potential as V (x) = e−x

2 .

5. Suppose that c(x, t) denotes the density of a bacterial population. For each of the following
descriptions, you must provide a differential equation that provides a model of the situation.
You are not asked to solve any equations. The only point of the exercise is to get you used
to “translate” from word descriptions to equations. The values of constants that are used, for
velocities, diffusion coefficients, and so on, are arbitrary and have no physical meaning. Now
“x” is a vector (x1, x2, x3) in 3-space (bacteria are moving in space).

(a) Bacteria are transported by an air current blowing parallel to the vector v = (1,−1, 2) at
5 m/s, and they grow exponentially with a doubling time of 1 hour.

(b) Bacteria are transported by an air current blowing parallel to the vector v = (1,−1, 2) at 5
m/s, and they grow exponentially with a doubling time of 1 hour for small populations, but
nutrients are restricted, so the density can never be more than 100 (in appropriate units).

(c) Bacteria are transported by an air current blowing parallel to the vector v = (1,−1, 2) at
5 m/s, and they also move randomly with a diffusion coefficient of 10−3.



Chapter 4

Stochastic kinetics

4.1 Introduction

Chemical systems are inherently stochastic, as reactions depend on random (thermal) motion. Deter-
ministic models represent an aggregate behavior of the system. They are accurate in much of classical
chemistry, where the numbers of molecules are usually expressed in multiples of Avogadro’s number,
which is ≈ 6 × 1023.1 In such cases, basically by the law of large numbers, the mean behavior is a
good description of the system. The main advantage of deterministic models is that they are com-
paratively easier to study than probabilistic ones. However, they may be inadequate when the “copy
numbers” of species, i.e. the numbers of units (ions, atoms, molecules, individuals) are very small,
as is often the case in molecular biology when looking at single cells: copy numbers are small for
genes (usually one or a few copies), mRNA’s (in the tens), ribosomes and RNA polymerases (up to
hundreds) and certain proteins may be at low abundances as well. Analogous situations arise in other
areas, such as the modeling of epidemics (where the “species” are individuals in various classes), if
populations are small. This motivates the study of stochastic models.

We assume that temperature and volume Ω are constant, and the system is well-mixed.

We consider a chemical reaction network consisting of m reactions which involve the n species

Si, i ∈ {1, 2, . . . n} .

The reactionsRj , j ∈ {1, 2, . . . ,m} are specified by combinations of reactants and products:

Rj :
n∑
i=1

aijSi →
n∑
i=1

bijSi (4.1)

where the aij and bij are non-negative integers, the stoichiometry coefficients2, and the sums are
understood informally, indicating combinations of elements. The integer

∑n
i=1 aij is the order of the

reaction Rj . One allows the possibility or zero order, that is, for some reactions j, aij = 0 for all i.
This is the case when there is “birth” of species out of the blue, or more precisely, a species is created
by what biologists call a “constitutive” process, such as the production of an mRNA molecule by a

1There is this number of atoms in 12g of carbon-12. A “mole” is defined as the amount of substance of a system that
contains an Avogadro number of units.

2In Greek, stoikheion = element, so “measure of elements”

209
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gene that is always active. Zeroth order reactions may also be used to represent inflows to a system
from its environment. Similarly, also allowed is the possibility that, for some reactions j, bij = 0 for
all i. This is the case for reactions that involve degradation, dilution, decay, or outflows.

The data in (4.1) serves to specify the stoichiometry of the network. The n×m stoichiometry matrix
Γ = {γij} has entries:

γij = bij − aij , i = 1, . . . , n , j = 1, . . . ,m . (4.2)

Thus, γij counts the net change in the number of units of species Si each time that reaction Rj takes
place.

We will denote by γj the jth column of Γ:

γj = bj − aj

where3

aj = (a1j, . . . , anj)
′ and bj = (b1j, . . . , bnj)

′

and assume that no γj = 0 (that is, every reaction changes at least one species).

Stoichiometry information is not sufficient, by itself, to completely characterize the behavior of the
network: one must also specify the rates at which the various reactions take place. This can be done
by specifying “propensity” or “intensity” functions.

We will consider deterministic as well as stochastic models, and propensities take different forms in
each case. To help readability, we will use the symbol ρσ, possibly subscripted, to indicate stochastic
propensities, and ρ# and ρc to indicate deterministic propensities (for numbers of elements or for
concentrations, respectively).

3prime indicates transpose
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4.2 Stochastic models of chemical reactions

Stochastic models of chemical reaction networks are described by a column-vector Markov stochastic
process X = (X1, . . . , Xn)′ which is indexed by time t ≥ 0 and takes values in Zn≥0. Thus, X(t) is
a Zn≥0-valued random variable, for each t ≥ 0. Abusing notation, we also write X(t) to represent an
outcome of this random variable on a realization of the process. The interpretation is:

Xi(t) = number of units of species i at time t .

One is interested in computing the probability that, at time t, there are k1 units of species 1, k2 units
of species 2, k3 units of species 3, and so forth:

pk(t) = P [X(t) = k]

for each k ∈ Zn≥0. We call the vector k the state of the process at time t.

Arranging the collection of all the pk(t)’s into an infinite-dimensional vector, after an arbitrary order
has been imposed on the integer lattice Zn≥0, we have that p(t) = (pk)k∈Zn≥0

is the discrete probability
density (also called the “probability mass function”) of X(t).

Biological systems are often studied at “steady state”, that is to say after processes have had time
to equilibrate. In that context, it is of interest to study the stationary (or “equilibrium”) density π
obtained as the limit as t→∞ (provided that the limit exists) of p(t). Its entries are the steady state
probabilities of being in the state k:

πk = lim
t→∞

pk(t)

for each k ∈ Zn≥0.

All these probabilities will, in general, depend upon the initial distribution of species, that is, on the
pk(0), k ∈ Zn≥0, but under appropriate conditions studied in probability theory (ergodicity), the steady
state density π will be independent of the initial density.

Also interesting, and often easier to compute, are statistical objects such as the expectation or mean
(i.e, the average over all possible random outcomes) of the numbers of units of species at time t:

E [X(t)] =
∑
k∈Zn≥0

pk(t)k

which is a column vector whose entries are the means

E [Xi(t)] =
∑
k∈Zn≥0

pk(t)ki =
∞∑
`=0

`
∑

{k∈Zn≥0,ki=`}

pk(t) =
∞∑
`=0

` p
(i)
` (t)

of the Xi(t)’s, where the vector (p
(i)
0 (t), p

(i)
1 (t), p

(i)
2 (t), . . .) is the marginal density of Xi(t). Also of

interest, to understand variability, are the matrix of second moments at time t:

E [X(t)X(t)′]

whose (i, j)th entry is E [Xi(t)Xj(t)] and the (co)variance matrix at time t:

Var [X(t)] = E
[
(X(t)− E [X(t)]) (X(t)− E [X(t)])′

]
= E [X(t)X(t)′]− E [X(t)]E [X(t)]′

whose (i, j)th entry is the covariance of Xi(t) and Xj(t), E [Xi(t)Xj(t)]− E [Xi(t)]E [Xj(t)].
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4.3 The Chemical Master Equation

A Chemical Master Equation (CME) (also known in mathematics as a Kolmogorov forward equation)
is a system of linear differential equations for the pk’s, of the following form. Suppose given m
functions

ρσj : Zn≥0 → R≥0 , j = 1, . . . ,m , with ρσj (0) = 0 .

These are the propensity functions for the respective reactionsRj . As we’ll discuss later, the intuitive
interpretation is that ρσj (k)dt is the probability that reactionRj takes place, in a short interval of length
dt, provided that the state was k at the begining of the interval. The CME is:

dpk
dt

=
m∑
j=1

ρσj (k − γj) pk−γj −
m∑
j=1

ρσj (k) pk , k ∈ Zn≥0 (4.3)

where, for notational simplicity, we omitted the time argument “t” from p, and where we make the
convention that ρσj (k − γj) = 0 unless k ≥ γj (coordinatewise inequality). There is one equation for
each k ∈ Zn≥0, so this is an infinite system of linked equations. When discussing the CME, we will
assume that an initial probability vector p(0) has been specified, and that there is a unique solution
of (4.3) defined for all t ≥ 0.

Exercise. Suppose that p(t) satisfies the CME. Show that if
∑

k∈Zn≥0
pk(0) = 1 then

∑
k∈Zn≥0

pk(t) =

1 for all t ≥ 0. (Hint: first, using that ρσj (k − γj) = 0 unless k ≥ γj , observe that, for each
j ∈ {1, . . . ,m}: ∑

k∈Zn≥0

ρσj (k − γj)pk−γj =
∑
k∈Zn≥0

ρσj (k)pk

and use this to conclude that
∑

k∈Zn≥0
pk(t) must be constant. You may use without proof that the

derivative of
∑

k∈Zn≥0
pk(t) with respect to time is obtained by term-by-term differentiation.) 2

A different CME results for each choice of propensity functions, a choice that is dictated by physical
chemistry considerations. Later, we discuss the special case of mass-action kinetics propensities.

Approximating the derivative dpk
dt

by 1
h

[pk(t+ h)− pk(t)], (4.3) means that:

pk(t+ h) =
m∑
j=1

ρσj (k − γj)h pk−γj(t) +

(
1−

m∑
j=1

ρσj (k)h

)
pk(t) + o(h) . (4.4)

This equation allows an intuitive interpretaion of the CME, as follows:

The probability of being in state k at the end of the interval [t, t+ h] is the sum of the probabilities of
the following m+ 1 events:

• for each possible reactionRj , the reactionRj happened, and the final state is k, and

• no reaction happened, and the final state is k.

We will justify this interpretation after developing some theory. The discussion will also explain why,
for small enough h, the probability that more than one reaction occurs in the interval [t, t+h] is o(h).
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We will also introduce the n-column vector:

fσ(k) :=
m∑
j=1

ρσj (k) γj = ΓRσ(k) k ∈ Zn≥0

where Rσ(k) = (ρσ1 (k), . . . , ρσm(k))′.

Interpreting ρσj (k)h as the probability that reaction Rj takes place during an interval of length h (if
the current state is k), one may then interpret fσ(k)h as the expected change of state during such an
interval (since γj quantifies the size of the jump if the reaction isRj). Thus, fσ(k) may be thought of
as the rate of change of the state, if the state is k.

When studying steady-state properties, we will not analyze convergence of the random variablesX(t)
as t → ∞. We will simply define a (not necessarily unique) steady state distribution π = (πk) of the
process as any solution of the equations

m∑
j=1

ρσj (k − γj) πk−γj −
m∑
j=1

ρσj (k) πk = 0 , k ∈ Zn≥0 .

4.3.1 Propensity functions for mass-action kinetics

We first introduce some additional notations. For each j ∈ {1, . . . ,m},

Aj =
n∑
i=1

aij

is the total number of units of all species participating in one reaction of typeRj , the order ofRj .

For each k = (k1, . . . , kn)′ ∈ Zn≥0, we let (recall that aj denotes the vector (a1j, . . . , anj)
′):

(
k

aj

)
=

n∏
i=1

(
ki
aij

)

where
(
ki
aij

)
is the usual combinatorial number ki!/(ki−aij)!aij!, which we define to be zero if ki < aij .

The most commonly used propensity functions, and the ones best-justified from elementary physical
principles, are ideal mass action kinetics propensities, defined as follows:

ρσj,Ω(k) =
cj

ΩAj−1

(
k

aj

)
, j = 1, . . . ,m . (4.5)

The subscript Ω is used for emphasis, even though Ω is a constant, when we want to emphasize how
the different rates depend on the volume, but it is omitted when there is no particular interest in the
dependence on Ω. Them non-negative constants c1, . . . , cm are arbitrary, and they represent quantities
related to the shapes of the reactants, chemical and physical information, and temperature.
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4.3.2 Some examples

We will illustrate our subsequent discussions with a few simple but extremely important examples.

mRNA production and degradation
Consider the chemical reaction network consisting of the two reactions 0 → M (formation) and
M → 0 (degradation), also represented as:

0
α−→M

β−→ 0 (4.6)

where α and β are the respective rates and mass-action kinetics is assumed. The symbol “0” is used
to indicate an empty sum of species.

The application we have in mind is that in which M indicates number of mRNA molecules, and
the formation process is transcription from a gene G which is assumed to be at a constant level of
activity. (Observe that one could alternatively model the transcription process by means of a reaction
“G→ G + M” instead of “0→ M”, where G would indicate the activity level of the gene G. Since
G is neither “created” nor “destroyed” in the reactions, including it in the model is redundant. Of
course, if we wanted also to include in our model temporal changes in the activation of G, then a
more complicated model would be called for.)

The stoichiometry matrix and propensities are:4

G = (1 −1) , ρσ1 (k) = α , ρσ2 (k) = βk (4.7)

so that
fσ(k) = α− βk . (4.8)

The CME becomes:
dpk
dt

= αpk−1 + (k + 1)βpk+1 − αpk − kβpk (4.9)

where, recall, the convention is that a term is zero if the subscript is negative. Observe that here
k ∈ K = Z≥0 is just a non-negative integer.

We later discuss how to solve the CME for this example. For now, we limit ourselves to a discussion
of its steady-state solution.

In general, let π be the steady-state probability distribution obtained by setting dp
dt

= 0. Under appro-
priate technical conditions, not discussed here, there is a unique such distribution, and it holds that
πk = limt→∞ pk(t) for each k ∈ Zn≥0 and every solution p(t) of the CME for an initial condition
that is a probability density (

∑
k pk(0) = 1). We may interpret π as the probability distribution of a

random variable X(∞) obtained as the limit of X(t) as t→∞.

In this example, by definition the numbers πk satisfy:

απk−1 + (k + 1)βπk+1 − απk − kβπk = 0 , k = 0, 1, 2, . . . (4.10)

(the first term is not there if k = 0). It is easy to solve recursively for πk, k ≥ 1 in terms of π0, and
then use the condition

∑
k πk(0) = 1 to find π0; there results that

πk = e−λ
λk

k!
(4.11)

4Volume dependence is assumed to be already incorporated into α, in this and other examples.
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where λ = α
β

. In other words, the steady state probability distribution is Poisson distributed with
parameter λ.

Exercise. Show, using induction on k, that indeed (4.11) solves (4.10).

Bursts of mRNA production
In an often-studied variation of the above model, mRNA is produced in “bursts” of r > 1 (assumed

to be a fixed integer) transcripts at a time. This leads to the reactions

0
α−→ rM , M

β−→ 0 (4.12)

with stoichiometry matrix and propensities:

Γ = (r −1), ρσ1 (k) = α , ρσ2 (k) = βk (4.13)

so that
fσ(k) = rα− βk . (4.14)

The form of fσ is exactly the same as in the non-bursting case: the only difference is that the rate α
has to be redefined as rα. This will mean that the deterministic chemical equation representation is
the same as before (up to this redefinition), and, as we will see, the mean of the stochastic process
will also be the same (up to redefinition of α). Interestingly, however, we will see that the “noisiness”
of the system can be lowered by a factor of up to 1/2.

Exercise. Write the CME for the bursting model.

A simple dimerization example
Here is another simple example. Suppose that a molecule of A can be produced at constant rate α and
degrades when dimerized:

0
α−→A , A+ A

β−→0 (4.15)

which leads to

Γ = (1 −2) , ρσ1 (k) = α , ρσ2 (k) =
βk(k − 1)

2
(4.16)

and
fσ(k) = α− βk(k − 1) = α + βk − βk2 . (4.17)

Exercise. Write the CME for the dimerization model.

A model of transcription and translation
One of the most-studied models of gene expression is as follows. We consider the reactions for

mRNA production and degradation (4.6):

0
α−→M

β−→ 0

together with:

M
θ−→M + P , P

δ−→0 (4.18)

where P represents the protein translated from M . Now

Γ =

(
1 −1 0 0
0 0 1 −1

)
, ρσ1 (k) = α , ρσ2 (k) = βk1 , ρσ3 (k) = θk1 , ρσ4 (k) = δk2 . (4.19)



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 216

where k = (k1, k2) is a vector that counts mRNA and protein numbers respectively, and (writing
“(M,P )” instead of k = (k1, k2)):

fσ(M,P ) =

(
α− βM
θM − δP

)
. (4.20)

Observe that P does not affectM , so the behavior ofM will be the same as in the transcription model,
and in particular the steady-state distribution of M is Poisson. However, P depends on M , making
the problem much more interesting.

Exercise. Write the CME for the transcription/translation model. (Remember that now “k” is a vector
(k1, k2).)

Remark on FACS: Experimentally estimating the probability distribution of protein numbers
Suppose that we wish to know at what rate a certain gene X is being transcribed under a particular set
of conditions in which the cell finds itself. Fluorescent proteins may be used for that purpose. For
instance, green fluorescent protein (GFP) is a protein with the property that it fluoresces in green when
exposed to UV light. It is produced by the jellyfish Aequoria victoria, and its gene has been isolated
so that it can be used as a reporter gene. The GFP gene is inserted (cloned) into the chromosome,
adjacent to or very close to the location of gene X, so both are controlled by the same promoter region.
Thus, gene X and GFP are transcribed simultaneously and then translated. and so by measuring the
intensity of the GFP light emitted one can estimate how much of X is being expressed.

Fluorescent protein methods are particularly useful when combined with flow cytometry.5 Flow Cy-
tometry devices can be used to sort individual cells into different groups, on the basis of characteristics
such as cell size, shape, or amount of measured fluorescence, and at rates of up to thousands of cells
per second. In this manner, it is possible, for instance, to classify the strength of gene expression in
individual cells in a population, perhaps under different sets of conditions.

fluorescent protein construct

cell count versus intensity
5FACS = “fluorescence-activated cell sorting”.
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4.4 Theoretical background, algorithms, and discussion

The abstract theoretical mathematical background for the CME is as follows.

4.4.1 Markov Processes

Suppose that {X(t)}, t ∈ [0,∞) is a stochastic process, that is to say a collection of jointly distributed
random variables, each of which takes values in a fixed countable set K (K = Zn≥0 in our case).6

From now on, we assume that the process is a continuous-time stationary Markov chain, meaning that
it satisfies the following properties:7

• [Markov] For any two non-negative real numbers t, h, any function x : [0, s] → K, and any
k ∈ K,

P [X(t+ h) = k |X(s) = x(s), 0 ≤ s ≤ t ] = P [X(t+ h) = k |X(t) = x(t) ] .

This property means that X(t) contains all the information necessary in order to estimate the
future valuesX(T ), T ≥ t: additional values from the past do not help to get a better prediction.

• [Stationarity] The conditional or transition probabilities P [X(s) = ` |X(t) = k ] depend only
on the difference t− s. This property, also called homogeneity, means that the probabilities do
not change over time.

• [Differentiability] With p`k(h) := P [X(t+ h) = ` |X(t) = k ] and pk(t) := P [X(t) = k] for
every `, k ∈ K and all t, h ≥ 0, the functions p`k(h) and pk(t) are differentiable in h, t.

Note the following obvious facts:

•
∑

`∈K p`k(h) = 1 for every k ∈ K and h ≥ 0.

• p`k(0) =

{
0 if ` 6= k
1 if ` = k .

Take any t, h > 0, and any ` ∈ K. Then

p`(t+ h) = P [X(t+ h) = `] =
∑
k∈K

P [X(t+ h) = ` & X(t) = k]

=
∑
k∈K

P [X(t+ h) = ` |X(t) = k] × P [X(t) = k]

6The more precise notation would be “Xt(ω)”, where ω is an element of the outcome space, but we adopt the standard
convention of not showing ω. We also do not specify the sample space nor the sigma-algebra of measurable sets which
constitute events to which a probability is assigned. If one imposes the requirement that, with probability one, sample
paths are continuous from the right and have well-defined limits from the left, a suitable sample space can then be taken
to be a space of piecewise constant mappings from R≥0 to K.

7A subtle fact, usually not mentioned in textbooks, is that conditional probabilities are not always well-defined:
“P [A|B] = P [A&B]/P [B]” makes no sense if P [B] = 0. However, for purposes of our discussions, one may de-
fine P [A|B] arbitrarily in that case, and no arguments will be affected.
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because the events {X(t) = k} are mutually exclusive for different k. In other words:

p`(t+ h) =
∑
k∈K

p`k(h)pk(t) . (4.21)

Similarly. we have8 the Chapman-Kolmogorov equation for the process:

p`˜̀(t+ h) =
∑
k∈K

p`k(t) pk˜̀(h) . (4.22)

4.4.2 The jump time process: how long do we wait until the next reaction?

Suppose thatX(t0) = k, and consider a time interval I = [t0, t0 +h]. IfX(t) 6= k for some t ∈ I , one
says that a “change of state” or an “event” has occurred during the interval, or, for chemical networks,
that “a reaction has occurred”.

For each k ∈ K and h ≥ 0, let:

Ck(h) := P [no reaction occurred on [t0, t0 + h] | X(t0) = k]

= P [X(t) = k ∀t ∈ [t0, t0 + h] | X(t0) = k]

(the definition is independent of the particular t0, by homogeneity). The function Ck(h) is non-
increasing on h, and Ck(0) = 1. Consider any two h1 ≥ 0 and h2 ≥ 0. We claim that

Ck(h1 + h2) = Ck(h1)Ck(h2) .

Indeed, using the shorthand notation “X(a, b) = k” to mean that “X(t) = k for all t ∈ [a, b]”, we
have:

P [X(t0, t0 + h1 + h2) = k | X(t0) = k]

= P [X(t0, t0 + h1 + h2) = k & X(t0) = k] /P [X(t0) = k]

= P [X(t0, t0 + h1 + h2) = k] /P [X(t0) = k]

= P [X(t0, t0 + h1) = k & X(t0 + h1, t0 + h1 + h2) = k] /P [X(t0) = k]

= P [X(t0, t0 + h1) = k] × P [X(t0 + h1, t0 + h1 + h2) = k | X(t0, t0 + h1) = k] /P [X(t0) = k]

= P [X(t0, t0 + h1) = k] × P [X(t0 + h1, t0 + h1 + h2) = k | X(t0 + h1) = k] /P [X(t0) = k]

= (P [X(t0, t0 + h1) = k] /P [X(t0) = k]) × P [X(t0 + h1, t0 + h1 + h2) = k | X(t0 + h1) = k]

= Ck(h1)Ck(h2)

(we used the formula P [A&B] = P [A] × P [B|A] which comes from the definition of conditional
probabilities, as well as the Markov property).

Thus, if we define ck(h) = lnCk(h), we have that ck(h1 + h2) = ck(h1) + ck(h2), that is, ck is an
additive function. Notice that the functions Ck, and hence also ck, are monotonic. Therefore each ck
is linear: ck(h) = −λkh, for some number λk ≥ 0.9 (The negative sign because ck(h) is the logarithm
of a probability, which is a number ≤ 1.) We conclude that Ck(h) = e−λkh.

8Prove this as an exercise.
9Read the Wikipedia article on “Cauchy’s functional equation”.
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In summary:
P [no reaction takes place on [t0, t0 + h] | X(t0) = k] = e−λkh

from which it follows that

P [at least one reaction takes place on [t0, t0 + h] | X(t0) = k] = 1− e−λkh = λkh+ o(h) .

A central role in both theory and numerical algorithms is played by the following random variable:

Tk := time until the next reaction (“event”) will occur, if the current state isX(t0) = k .

That is,
if X(t0) = k, an outcome Tk = h means that the next reaction occurs at time t0 + h.

Observe that, because of the stationary Markov property, Tk depends only on the current state k, and
not on the current time t0,

If the current time is t0, then these two events:

• “the next reaction occurs at some time > h”

• “no reaction occurs during the interval [t0, t0 + h]”

are the same. Thus:
P [Tk > h] = e−λkh

which means that:

the variable Tk is exponentially distributed with parameter λk .

Starting from state k, the time to wait until the N th subsequent reaction takes place is:

Tk(1) + Tk(2) + . . .+ Tk(N)

where k(1) = k, k(2) is the state reached after the first reaction, k(3) is the state reached after the second
reaction (starting from state k(2)), and so forth. Note that the choice of which particular “waiting time”
random variable T` is used at each step depends on the past state sequence.

If two or more reactions happen during an interval [t0, t0 + h], then Tk(1) + Tk(2) + . . .+ Tk(N) ≤ h for
some N and some sequence of states, so in particular Tk + T` ≤ h for some `. Observe that

P [Tk + T` ≤ h] ≤ P [Tk ≤ h& T` ≤ h] = P [Tk ≤ h]×P [T` ≤ h] = (λkh+o(h))(λ`h+o(h)) = o(h)

because the variables T are conditioned on the initial state, and are therefore independent.10 The
probability that ≥ 2 reactions happen is upper bounded by

∑
` P [Tk + T` ≤ h], where the sum is

taken over all those states ` that can be reached from k after one reaction. We assume from now on
that:

jumps from any given state k can only take place to one of a finite number of possible states `
(4.23)

10This step in the argument needs to be made more rigorous: one should specify the joint sample space for the T ’s.
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(as is the case with chemical networks). Thus this sum is finite, and so we can conclude:

P [≥ 2 reactions happen on the interval [t0, t0 + h] | X(t0) = k] = o(h) .

Note that

1− e−λkh = P [some reaction happens on [t0, t0 + h] | X(t0) = k]

= P [exactly one reaction happens on [t0, t0 + h] | X(t0) = k]

+ P [≥ 2 reactions happen on [t0, t0 + h] | X(t0) = k]
(

= o(h)
)

and thus

P [exactly one reaction happens on [t0, t0 + h] | X(t0) = k] = 1− e−λkh + o(h) = λkh+ o(h) .

For any two states k 6= `, and any interval [t0, t0 + h], p`k(h) = P [X(t+ h) = ` |X(t) = k ] is the
sum of

P [there is a jump from k to ` in the interval [t0, t0 + h]]

plus

P [there is no (direct) jump from k to `, but there is a sequence of jumps that take k into `]

and, as the probability of ≥ 2 jumps is o(h), this last probability is o(h). Thus:

p`k(h) = P [there is a jump from k to ` in the interval [t0, t0 + h]] + o(h) .

Assumption (4.23) then implies that

p`k(h) = o(h) for all but a finite number of states ` .

4.4.3 Propensities

A key role in Markov process theory is played by the infinitesimal transition probabilities defined as
follows:

q`k :=
dp`k(h)

dh

∣∣∣∣
h=0

Since p`k(h) = o(h) for all but a finite number of states `, it follows that, for each k, there are only
a finite number of nonzero q`k’s. In general, p`k(h) = p`k(0) + q`kh + o(h), so, since p`k(0) = 0 if
` 6= k and = 1 if ` = k:

p`k(h) =

{
hq`k + o(h) if ` 6= k
1 + hqkk + o(h) if ` = k.

Recall that λk is the parameter for the exponentially distributed random variable Tk that gives the time
of the next reaction provided that the present state is k. We claim that:

qkk = −λk for all k .

Indeed, pkk(h) := P [X(t+ h) = k |X(t) = k ], and this event is the union of the mutually exclusive
events “no reaction happened” (which has probability e−λkh) and “two or more reactions happened,
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and the end state is again k”. This second event has probability o(h), because the probability that
more than one reaction happens (even if the final state is different) is already o(h). Thus: pkk(h) =
e−λkh + o(h), which gives (dpkk/dt)(0) = −λk, as claimed.

Note also that, since
∑

`∈K p`k(h) = 1 for all h, taking d/dh|h=0 gives:∑
`∈K

q`k = 0 or, equivalently, qkk = −
∑
` 6=k

q`k (4.24)

and hence also λk =
∑
6̀=k q`k, for every k.

Recall that the Chapman-Kolmogorov equation (4.22) says that p`˜̀(t+ h) =
∑

k∈K p`k(t) pk˜̀(h) for
all t, h. By definition, q`k = (dp`k/dh)(0), so taking the derivative with respect to h and evaluating at
h = 0, we arrive at the forward Kolmogorov differential equation

dp`˜̀
dt

=
∑
k∈K

p`k qk˜̀ (4.25)

which is an equation relating conditional probabilities through the infinitesimal transitions. Similarly,
the corresponding equation on probabilities (4.21) is pk(t + h) =

∑
`∈K pk`(h)p`(t), which leads

under differentiation to:
dpk
dt

=
∑
`∈K

qk` p` . (4.26)

This differential equation is often also called the forward Kolmogorov equation, and it is exactly the
same as the CME (4.3) dpk

dt
=
∑m

j=1 ρ
σ
j (k − γj) pk−γj −

∑m
j=1 ρ

σ
j (k) pk, where

the propensities ρσj (k) are, by definition, the infinitesimal transition probabilities q`k.

More precisely, consider the m reactions Rj , which produce the stoichiometry changes k 7→ k + γj
respectively. We define ρσj (k) = q`k for ` = k + γj , j = 1, . . . ,m. So:

qk` =


ρσj (`) if ` = k − γj for some j ∈ {1, . . . ,m}
−
∑
6̀=k q`k = −

∑m
j=1 ρ

σ
j (k) if ` = k (recall (4.24))

0 otherwise .

Since λk = −qkk,

λk =
∑
`6=k

q`k =
m∑
j=1

ρσj (k) . (4.27)

4.4.4 Interpretation of the Master Equation and propensity functions

Since, by definition of the q`k’s, pk+γj ,k(h) = qk+γj ,kh + o(h) = ρσj (k)h + o(h) and pkk(h) =
1 + qkkh+ o(h) = 1−

∑m
j=1 ρ

σ
j (k)h+ o(h),

P [X(t+ h) = k + γj |X(t) = k] = ρσj (k)h + o(h) ≈ ρσj (k)h

and

P [X(t+ h) = k |X(t) = k] = 1−
m∑
j=1

ρσj (k)h + o(h) ≈ 1−
m∑
j=1

ρσj (k)h .
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Since the probability that more than one reaction occurs on an interval of length h is o(h), the proba-
bility that X(t+ h) = k + γj is approximately the same as that ofRj happening in the interval. This
justifies the intepretation of the propensity of the reactionRj as:

ρσj (k)h ≈ probability that the reactionRj will take place, during a time interval [t, t+h]
of (short) duration h, if the state was k at time t.

In other words, ρσj is the rate at which the reaction Rj “fires”. This rate depends, obviously, on how
many units of the various reactants are present (k). Furthermore, with this interpretation,

ρσj (k)h pk(t) ≈
P [reactionRj takes place during interval [t, t+ h] | state was k at time t]× P [state was k at time t]
= P [state was k at time t & reactionRj takes place during interval [t, t+ h]] ,

and so
m∑
j=1

ρσj (k)h pk(t)

is the probability that the state at time t is k and some reaction takes place during the time interval
[t, t + h]. (Implicitly assuming that these events are mutually exclusive, i.e. at most one reaction can
happen, if the time interval is very short.)

Therefore, the second term in (4.4):(
1−

m∑
j=1

ρσj (k)h

)
pk(t) = pk(t)−

m∑
j=1

ρσj (k)h pk(t)

≈ P [{initial state was k} \ {initial state was k and some reaction happens during interval [t, t+ h]}]
= P [initial state was k and no reaction happens during interval [t, t+ h]]

= P [final state is k and no reaction happens during interval [t, t+ h]]

where the last equality is true because the events:
no reaction happened and the initial state was k

and
no reaction happened and the final state is k

are the same.

On the other hand, regarding the m first terms in (4.4), note that the event:
reactionRj happened and the final state is k

is the same as the event:
reactionRj happened and the initial state was k − γj ,

and the probability of this last event is ≈ ρσj (k − γj)h pk−γj(t)
In summary, we are justified in interpreting (4.4) as asserting that the probability of being in state k at
the end of the interval [t, t+ h] is the sum of the probabilities of the following m+ 1 events:

• for each possible reactionRj , the reactionRj happened, and the final state is k, and

• no reaction happened, and the final state is k.
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4.4.5 The embedded jump chain

The exponentially distributed variable T tells what is the waiting time until the next reaction. In order
to understand the behavior of the system as a sequence of jumps, one needs, in addition, a random
variable that specifies which reaction takes place next (or, more generally for Markov processes, to
which state is the next transition), given that a transition happens.

For each ` 6= k and h, let α`k(h) be the probability that the state is ` at time t + h, assuming that
the initial state is k and that some reaction has happened. If k is not an absorbing state, that is, if
transitions out of k are possible, an elementary calculation with conditional probabilities (using that
X(t+ h) = ` implies X(t+ h) 6= k) shows that:11

α`k(h) = P [X(t+ h) = ` | X(t) = k & X(t+ h) 6= k] =
P [X(t+ h) = ` |X(t) = k]

P [X(t+ h) 6= k |X(t) = k]
.

Ideally, one would like to compute this expression, but the transition probabilities are hard to obtain.
However,

lim
h→0

α`k(h) = lim
h→0

p`k(h)

1− pkk(h)
= lim

h→0

hq`k + o(h)

1− (1 + hqkk + o(h))
= − q`k

qkk
=

q`k∑˜̀6=k q˜̀k =: d
(k)
` .

(If k is an absorbing state, the denominators are zero, but in that case we know that α`k(h) = 0 for all
` 6= k.)

Although in principle only an approximation, it was proved by J.L. Doob12 that the discrete probability
distribution d(k)

` (for any fixed k, over all ` 6= k), together with the process Tk, characterize a process
with the same probability distribution as the original X(t). By itself, the matrix D with entries d(k)

`

is the transition matrix for the discrete-time embedded Markov chain or jump chain of the process.
This discrete chain provides a complete statistical description of the possible sequences of states
visited, except that it ignores the actual times at which jumps occur. It is very helpful in theoretical
developments, especially in the classification of states (“recurrent”, “transient”, etc.) of the continuous
process.

4.4.6 The stochastic simulation algorithm (SSA)

To understand the behavior of the process X(t), one could attempt to solve the CME (with a known
initial p(0)) and compute the probability vector p(t). For most problems, this is a computationally
very difficult task, starting with the fact that p(t) is an infinite vector. Thus, it is often useful to
simulate sample paths of the process. Statistics, such as means and variances, can then be obtained
by averaging the results of several such simulations.

The naı̈ve approach to simulation is to discretize time into small intervals, and iterate on intervals,
randomly deciding at each instant whether a reaction happens. This is not at all an efficient way to
proceed: if the discretization is too fine, no reactions will take place in most intervals, and the iteration
step is wasted; if the discretization is too gross, we miss fast behaviors. Luckily, there is a far better
way to proceed. The basic method13 for simulating sample paths of CME’s is the stochastic simulation

11The calculation is: P [A|B&C] = P [A&B&C]
P [B&C] = P [A&B]

P [B&C] == P [A|B]P [B]
P [C|B]P [B] = P [A|B]

P [C|B] .
12“Markoff chains - Denumerable case,” Transactions of the American Mathematical Society 58(1945): 455-473.
13There are many variants that are often more efficient to implement, but the basic idea is always the same.
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algorithm. Also known as the kinetic Monte Carlo algorithm14, it has been probably known and used
for a long time, at least since J.L. Doob’s work cited earlier, but in its present form was introduced
independently by A.B. Bortz, M.H. Kalos, and J.L. Lebowitz15 and by D.T. Gillespie16 (the SSA is
often called the “Gillespie algorithm” in the systems biology field).

The method is very simple: if the present state is k, first use the random variable Tk to compute the
next-reaction time, and then pick the particular reaction according to the discrete distribution d(k)

j ,
where we are writing d(k)

j instead of d(k)
k+γj

, for each j ∈ {1, . . . ,m} (all other d(k)
` = 0). With the

notations for propensities used in the CME, we have, for each J ∈ {1, . . . ,m}:

d
(k)
J =

qk+γJ ,k∑˜̀=k+γj
q˜̀,k =

ρσJ(k)∑m
j=1 ρ

σ
j (k)

=
ρσJ(k)

λk
.

Generating samples of the exponential random variable Tk is easy provided that a uniform (pseudo)
random number generator is available, like the “rand” function in MATLAB. In general, if U is a
uniformly distributed random variable on [0, 1], that is, P [U < p] = p for p ∈ [0, 1], then T = − lnU

λ

is an exponentially distributed random variable with parameter λ, because:

P [T > t] = P
[
− lnU

λ
> t

]
= P

[
U < e−λt

]
= e−λt .

Here is the pseudo-code for the SSA:

Initialization:

1. inputs: state k, maximal simulation time Tmax

2. set current simulation time t := 0.

Iteration:

1. compute ρσj (k), for each reaction Rj, j = 1, . . . ,m

2. compute λ :=
∑m

j=1 ρ
σ
j (k)

3. if λ = 0, stop (state is an absorbing state, no further transitions
are possible)

4. generate two uniform random numbers r1, r2 in [0, 1]

5. compute T := − 1
λ

ln r1

6. if t+ T > Tmax, stop

7. find the index J such that 1
λ

∑J−1
j=1 ρ

σ
j (k) ≤ r2 <

1
λ

∑J
j=1 ρ

σ
j (k)

8. update k := k + γJ

9. update t := t+ T.

Note that, in step 7, the probability that a particular j = J is picked is the same as the length of the
interval [ 1

λ

∑J−1
j=1 ρ

σ
j (k), 1

λ

∑J
j=1 ρ

σ
j (k)], which is 1

λ
ρσJ(k) = d

(k)
J .

14In general, “Monte Carlo” methods are algorithms that rely on repeated random sampling to compute their results.
15“New algorithm for Monte-Carlo simulations of Ising spin systems,” J. Comput. Phys. 17(1975): 10-18.
16“A general method for numerically simulating the stochastic time evolution of coupled chemical reactions,” Journal

of Computational Physics 22(1976): 403-434.
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Of course, one will also want to add code to store the sequence of states k and the jump times T , so
as to plot sample paths. Note that, in MATLAB, if v is an array with the numbers ρσj (k), then the
command “J = find(cumsum(v)>sum(r2 ∗ v))” provides the index J .

Exercise. (1) Implement the SSA in your favorite programming system (MATLAB, Maple, Math-
ematica). (2) Take the mRNA/protein model described earlier, pick some parameters, and an initial
state; now plot many sample paths, averaging to get means and variances as a function of time, as
well as steady state means and variances. (3) Compare the latter with the numbers obtained by using
theory as described later. 2

Remark: An equivalent way to generate the next reaction in the SSA (“direct method”) is as fol-
lows (the “first reaction method”, also discussed by Gillespie): generate m independent exponential
random variables Tj , j = 1, . . . ,m, with parameters λ(j)

k = ρσj (k) respectively –we think of Tj as
indicating when the reaction j would next take place– and pick the “winner” (smallest Tj) as the
time (and index) of the next reaction. The same result obtains, because of the following general
mathematical fact:17 if T1, . . . , Tm are independent exponentially distributed random variables with
rate parameters µ1, . . . , µm respectively, then T = minj Tj is also exponentially distributed, with
parameter µ =

∑
j µj . This fact is simple to prove:

P [T > t] = P [T1 > t& . . . & Tm > tm] =
∏
j

P [Tj > t] =
∏
j

e−µjt = e−µt .

Moreover, it is also true that the index J of the variable which achieves the minimum –i.e., the
“next reaction”– is a discrete random variable with is distributed according to the law P [J = p] =
µp/(

∑
j µj).

From a computational point of view, the first reaction method would appear to be less efficient than the
direct method, as m random variables have to be generated at each step (compared to just two for the
direct method). However, the first reaction method has one advantage: since any given reaction will
typically affect only a small number of species, there is no need to re-compute propensities for those
indices j for which ρσj (k) has not changed. This observation, together with the use of an indexed
priority queue data structure, and a re-use of previously-generated Tj’s, leads to a more efficient
algorithm, the “next reaction method” due to M.A. Gibson and J. Bruck.18

4.4.7 Interpretation of mass-action kinetics

We explain now, through an informal discussion, how the formula (4.5): ρσj,Ω(k) =
cj

ΩAj−1

(
k
aj

)
(j =

1, . . . ,m) is derived.

Suppose that the state of the system at time t is k = (k1, . . . , kn)′, and we consider an interval of
length 0 < h� 1. What is the probability of a reactionRj taking place in the interval [t, t+ h]?

For this reaction to even have a chance of happening, the first requirement is that some subset S
consisting of
a1,j units of species S1, a2,j units of species S2, a3,j units of species S3, . . . , an,j units of species Sn

17While formally this provides the same numbers, it is not clear a priori why reaction times should be independent!
18“Efficient exact stochastic simulation of chemical systems with many species and many channels,” J. Phys. Chem. A

104(2000): 1876-1889.
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come together in some small volume Ω0 (Ω0 depends on the physical chemistry of the problem). For
the purpose of this discussion, let us call such an event a “collision” and a set of this form a “reactant
set” for reactionRj .

The system is assumed to be “well-mixed”, in the sense that species move randomly and fast, thus
giving every possible reactant set an equal chance to have a collision.

The basic assumption of mass-action kinetics is that the probability ρσj (k)h that some collision will
happen, during a short interval [t, t+ h], is proportional to:

• the length h of the interval;

• the probability that a fixed reactant set has a collision; and

• the number of ways in which a reactant set can be picked, if the state is k.

This model implicitly assumes that, if Ω0 � Ω (the total volume), then the chance that more than one
collision will happen during a short period is much smaller than the probability of just one collision.

There are
(
k
aj

)
=
∏n

i=1

(
ki
aij

)
possible reactant subsets, if the state is k.

Next, we will argue that the probability of a collision, for any one given reactant set S, is
(

Ω0

Ω

)r−1,
where r = Aj is the cardinality of S (the order of the reaction).

From here, one obtains the formula for ρσj (k). (The constant Ω0 is absorbed into the proportionality
constant cj , which also includes other biophysical information, such as the probability that a reaction
takes place when a collision happens, which in turn depends on the collision energy exceeding a
threshold value and on the temperature. The Arrhenius equation gives the dependence of the rate
constant on the absolute temperature T as k = Ae−E/RT , were E is the “activation energy” and R is
the gas constant.)

Suppose that N = Ω
Ω0

is an integer. (This is a mild hypothesis, if Ω � Ω0.) Then, the probability of
having a collision, for a given reactant set S, is the probability that r balls all land in the same bucket
(an “urn” in probability theory) when assigned uniformly at random to one of N buckets.

XXXXz
XXXz

O
O

O
O

O
O

r balls

N buckets

We need to show that this probability is
(

1
N

)r−1. Indeed, the probability that all balls end up in the first
bucket is

(
1
N

)r (each ball has probability 1/N of landing in bucket 1, and the events are independent).
The probability that all balls end up in the second bucket is also

(
1
N

)r, and similarly for all other
buckets.

Since the events “all balls land in bucket i” and “all balls land in bucket j” are mutually exclusive for
i 6= j, the probability of success is N ×

(
1
N

)r
=
(

1
N

)r−1, which is what we wanted to prove.

The main examples are:
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(0) zeroth-order reactions, in which an isolated species is created by means of a process which involve
precursors which are not explicitly made a part of the model and which are well-distributed in space;
in this case Aj = 0 and ρσj (k) is independent of k, so it is just a constant, proportional to the volume;

(1) first-order or monomolecular reactions, in which a single unit of species i is degraded, diluted,
decays, flows out, or gets transformed into one or more species; in this case Aj = 1 and exactly one
aij is equal to 1 and the rest are zero, so ρσj (k) = cjki (since Ω0 = 1);

(2) homogeneous second-order (bimolecular) reactions involving two different species Si and S`,
one unit of each; now there two entries aij and a`j equal to 1, and the rest are zero, Aj = 2, and
ρσj (k) = 1

Ω
cjkik`;

(3) homogeneous second-order (bimolecular) reactions involving two units of the same species Si;
now Aj = 2 and exactly one aij is equal to 2 and the rest are zero, so ρσj (k) = 1

Ω
cj
ki(ki−1)

2
.

It is frequently argued that at most mono and bimolecular reactions are possible in the real world, since
the chance of three or more molecules coming together in a small volume is vanishingly small. In
this case, reactions involving multiple species would really consist of a sequence of more elementary
bimolecular reactions, involving short-lived, intermediate, species. However, multi-species reactions
might still make sense, either as an approximation of a more complicated sequence that occurs very
fast, or if molecules are very large compared to the volume, of if the model is one that involves
non-chemical substances (for example, in population biology).
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4.5 Moment equations and fluctuation-dissipation formula

We next see how to obtain equations for the derivatives of the mean E [Xi(t)] and the covariance
Var [X(t)] of X(t), assuming that the probability density of X(t) is given by a CME as in (4.3). No
special form needs to be assumed for the propensities, for these theoretical considerations to be valid,
but in examples we use mass-action kinetics.

We provide first a very general computation, which we will later specialize to first and second mo-
ments. Suppose for this purpose that we have been given a function M which will be, in our two
examples, a vector- of matrix-valued function defined on the set of non-negative integers. More ab-
stractly, we take M : Zn≥0 → V , where V is any vector space. For first moments (means), we have
V = Rn and M(k) = k. For second moments, V = Rn×n, the space of all n × n matrices, and
M(k) = kk′.19

The first goal is to find a useful expression for the time derivative of E [M(X(t))]. The definition of
expectation gives:20

E [M(X(t))] =
∑
k∈Zn≥0

pk(t)M(k)

because P [X(t) = k] = pk(t). We have:

d

dt
E [M(X(t))] =

∑
k∈Zn≥0

dpk
dt

(t)M(k) =
∑
k∈Zn≥0

(
m∑
j=1

ρσj (k − γj) pk−γj −
m∑
j=1

ρσj (k) pk

)
M(k) .

Note this equality, for each fixed j:∑
k∈Zn≥0

pk−γj(t)ρ
σ
j (k − γj)M(k) =

∑
k∈Zn≥0

pk(t)ρ
σ
j (k)M(k + γj)

(by definition, ρσj (k − γj) = 0 unless k ≥ γj , so one may perform a change of variables k̃ = k − γj).
There results:

d

dt
E [M(X(t))] =

∑
k,j

pk(t)ρ
σ
j (k)M(k + γj) −

∑
k,j

pk(t)ρ
σ
j (k)M(k)

=
∑
k∈Zn≥0

pk(t)
m∑
j=1

ρσj (k) [M(k + γj)−M(k)] .

Let us define, for any γ ∈ Zn≥0, the new function ∆γM given by (∆γM)(k) := M(k + γ) −M(k).
With these notations,

d

dt
E [M(X(t))] = E

[
m∑
j=1

ρσj (X(t)) ∆γM(X(t))

]
. (4.28)

Note that this is not an ordinary differential equation for E [M(X(t)], because the right-hand side is
not, generally, a function of E [M(X(t))]. In some cases, however, various approximations result in
differential equations, as discussed below.

19As usual, prime indicates transpose, so this is the product of a column vector by a row vector, which is a rank 1 matrix
if k 6= 0.

20Note that this is a deterministic function, not depending on the random outcomes of the process.
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Remark. Suppose that M is a polynomial of degree δM and that the propensities are polynomials of
degree ≤ δρ (the maximal order of reactions, in the mass action case). Then ∆γM is a polynomial of
degree δM − 1, so the monomials appearing inside the expectation have degree ≤ δρ + δM − 1. This
means that d

dt
E [M(X(t))] depends on moments of order ≤ δρ + δM − 1. Thus, if all reactions have

order at most 1, a system of differential equations can obtained for the set of moments of up to any
fixed order: the derivative of each moment depends only on equal and lower-order ones, not higher
moments. On the other hand, if some reactions have order larger than 1, then δρ + δM − 1 > δM , so
in general no clsoed set of equations is available for any finite subset of moments.

4.5.1 Means

For the mean E [X(t)], we have M(k) = k, so ∆jM(k) = k+ γj − k = γj (a constant function), and
thus:

m∑
j=1

ρσj (X(t)) ∆γM(X(t)) =
m∑
j=1

ρσj (X(t)) γj = fσ(X(t))

where, recall, we defined the n-column vector:

fσ(k) :=
m∑
j=1

ρσj (k) γj k ∈ Zn≥0 .

With these notations, Equation (4.28) specializes to:

d

dt
E [X(t)] = E [fσ(X(t))] . (4.29)

Recall that fσ(k) can also be written in the form

fσ(k) = ΓRσ(k) (4.30)

where Rσ(k) = (ρσ1 (k), . . . , ρσm(k))′ and Γ is the stoichiometry matrix.

For mass-action kinetics, the function fσ is basically the same one21 that is used in the deterministic
differential equation model for the corresponding chemical network. Thus, it is a common mistake
to think that the deterministic equation represents an equation that is satisfied by the mean µ(t) =
E [X(t)], that is to say, to believe that dµ/dt = fσ(µ). However, the precise formula is (4.29).
Since expectation of a nonlinear function is generally not the same as the nonlinear function of the
expectation22, (4.29) is, in general, very different from (d/dt)E [X(t)] = fσ(E [X(t)]). One important
exception, which permits the replacement E [fσ(X(t))] = fσ(E [X(t)]), is that in which fσ is an
affine function (linear + constant), that is to say if all propensities are affine, which for mass-action
kinetics means that all the reactions involve zero or at most one reactant:

d

dt
E [X(t)] = fσ(E [X(t)]) if all reactions are mass-action of order 0 or 1 . (4.31)

21There is just a very minor difference, discussed later, having to do with replacing terms such as “x(x − 1)” in a
second-order homodimerization reaction by the simpler expression x2.

22Example: E
[
X2
]
6= E [X]

2; in fact, the variance of X is precisely the concept introduced in order to quantify the
difference between these two quantities!
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On the other hand, even for reactions of arbitrary order, one might expect that Equation (4.31) holds at
least approximately provided that the variance of X(t) is small, so that X(t) is almost deterministic.
More precisely, one has the following argument.

Let us assume that the function fσ, which is defined only for non-negative integer vectors, can be
extended to a differentiable function, also written as fσ(x), that is defined for all non-negative real
numbers x. This is the case with all propensities that are used in practice, such as those arising from
mass-action kinetics. Thus, around each vector ξ, we may expand fσ(x) to first-order around x = ξ:

fσ(x) = fσ(ξ) + J(ξ)(x− ξ) + gξ(x− ξ) (4.32)

where J(x) is the Jacobian matrix of fσ evaluated at x = ξ and where gξ is a vector function which is
o(|x− ξ|). When f is second-order differentiable, the entries giξ of the vector gξ can be expressed as:

giξ(x) =
1

2
(x− ξ)′Hi(ξ) (x− ξ) + o(|x− ξ|2)

where Hi(ξ) is the Hessian of the ith component of the vector field fσ (the matrix of second order
partial derivatives) evaluated at x = ξ.

For notational simplicity, let us write µ for means: µ(t) = E [X(t)]. In the particular case that
ξ = µ(t) and x = X(t) (along a sample path), we have:

fσ(X(t)) = fσ(µ(t)) + J(µ(t)) (X(t)− µ(t)) + gµ(t)(X(t)− µ(t)) . (4.33)

Now, J(µ(t)) is a deterministic function, so, since the expectation operator is linear,

E [J(µ(t)) (X(t)− µ(t))] = J(µ(t)) (E [X(t)]− µ(t)) = J(µ(t)) (E [X(t)]− E [X(t)]) = 0 .

Since also fσ(µ(t)) is deterministic, it follows that:

d

dt
E [X(t)] = E [fσ(X(t))] = fσ(E [X(t)]) + G(t)

where
G(t) = E

[
gµ(t)(X(t)− µ(t))

]
. (4.34)

This term involves central moments (covariances, etc.) of order ≥ 2.

4.5.2 Variances

For the matrix of second order moments E [X(t)X(t)′], we have M(k) = kk′, so

∆jM(k) = (k + γj)(k + γj)
′ − kk′ = kγ′j + γjk

′ + γjγ
′
j

and so Equation (4.28) d
dt
E [M(X(t))] = E

[∑m
j=1 ρ

σ
j (X(t)) ∆γM(X(t))

]
specializes to:

d

dt
E [X(t)X(t)′] = E

[
m∑
j=1

ρσj (X(t))X(t) γ′j

]
+E

[
m∑
j=1

ρσj (X(t)) γj X(t)′

]
+

m∑
j=1

E
[
ρσj (X(t))

]
γjγ

′
j

(4.35)
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(note that the ρσj (X(t))’s are scalar, and that X(t) and the γj’s are vectors). Since we had defined
fσ(k) =

∑m
j=1 ρ

σ
j (k) γj , the second term in this sum can be written as E [fσ(X(t))X(t)′]. Similarly,

the first term is E [X(t) fσ(X(t))′]. The last term can be written in the following useful form.

We introduce the n× n diffusion matrix23 B(k) = (Bpq(k)) which has the following entries:

Bpq(k) =
m∑
j=1

ρσj (k) γpj γqj , p, q = 1, . . . , n , (4.36)

where γpj is the pth row of the column vector γj , that is to say the (p, j)th entry of the stoichiometry
matrix Γ, so that γpjγqj is the (p, q)th entry of the matrix γjγ′j . Note that B is an n × n symmetric
matrix. In summary, we can write (4.35) as follows:

d

dt
E [X(t)X(t)′] = E [X(t) fσ(X(t))′] + E [fσ(X(t))X(t)′] + E [B(X(t))] . (4.37)

One interpretation of the entries E
[
Bpq(X(t)

]
is as follows. The product γpjγqj is positive provided

both species Sp and Sq change with the same sign (both increase or both decrease) when the reaction
Rj fires. The product is negative if one species increases but the other decreases, whenRj fires. The
absolute value of this product is large if at least one of these two species jumps by a large amount.
Finally, the expected value of the coefficient ρσj (k) quantifies the rate at which the corresponding
reaction takes place. In this manner, E

[
Bpq(X(t)

]
contributes toward an instantaneous change in the

correlation between species Sp and Sq.

An equation for the derivative of the variance is easily obtained from here. By definition, Var [X(t)] =
E [X(t)X(t)′]−E [X(t)]E [X(t)]′, so we need to compute the derivative of this last term. For a vector
function v = v(t), (d/dt)vv′ = v(dv/dt)′ + (dv/dt)v′, so with dv/dt = d

dt
E [X(t)] = E [fσ(X(t))]

from (4.29),

d

dt
Var [X(t)] = E [(X(t)− µ(t)) fσ(X(t))′] + E [fσ(X(t)) (X(t)− µ(t))′] + E [B(X(t))]

(4.38)
where we wrote µ(t) = E [X(t)] for clarity.

Exercise. Show that an alternative way of writing the third term in the right-hand side of (4.38) is as
follows:

Γ diag (E [ρσ1 (X(t))] , . . . ,E [ρσm(X(t))]) Γ′ (4.39)

(where “diag (r1, . . . , rm)” means a diagonal matrix with entries ri in the diagonal). 2

The first-order Taylor expansion of fσ, fσ(X(t)) = fσ(µ(t)) + J(µ(t))(X(t)−µ(t)) + gµ(t)(X(t)−
µ(t)), given in (4.33), can be substituted into the term E [fσ(X(t)) (X(t)− µ(t))′] in the formula (4.38)
for the covariance, giving (dropping the arguments “t” for readability):

E [fσ(X)(X − µ)′] = E [fσ(µ)(X − µ)′] + E [J(µ)(X − µ)(X − µ)′] + E [gµ(X − µ)(X − µ)′]

= J(µ)Var [X] + E [gµ(X − µ)(X − µ)′]

23Normally, “diffusion” is interpreted in a spatial sense. Here it is thought of, instead, as diffusion in “concentration
space”.
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where we used that fσ(µ(t)) and J(µ(t)) are deterministic and that E [X − µ] = 0. Similarly,

E [(X − µ)fσ(X)′] = Var [X] J(µ)′ + E [(X − µ) gµ(X − µ)′]

(the covariance matrix is symmetric, so there is no need to transpose it). Therefore,

d

dt
Var [X(t)] = Var [X(t)] J(µ(t))′ + J(µ(t))Var [X(t)] + E [B(X(t))] + α(t) (4.40)

where α(t) = E
[
(X(t)− µ(t)) gµ(t)(X(t)− µ(t))′ + (X(t)− µ(t)) gµ(t)(X(t)− µ(t))′

]
. Dropping

the term α(t), one has the fluctuation-dissipation formula:

d

dt
Var [X(t)] ≈ Var [X(t)] J(µ(t))′ + J(µ(t))Var [X(t)] + E [B(X(t))] (FD) . (4.41)

If the higher-order moments of X(t) are small, one may be justified in making this approximation,
because α(t) is o(|X(t)− µ(t)|2), while the norm of the covariance matrix is O(|X(t)− µ(t)|2).

Equation (4.41) is sometimes called the mass fluctuation kinetics equation, and the term “fluctuation-
dissipation” is used for a slightly different object, as follows. Suppose that we expandB(x) as a Taylor
series around the mean E [X(t)]. Arguing as earlier, we have that E [B(X(t))] = B(E [X(t)]) +
o(|X(t)− µ(t)|). This suggests replacing the last term in (FD) by B(E [X(t)]).

4.5.3 Reactions or order ≤ 1 or ≤ 2

The special case in which fσ is a polynomial of degree two is arguably the most general that often
needs to be considered. (Recall the discussion about reactions of order > 2.) In this case, the func-
tion gξ in (4.32) is a vector field that is quadratic on the coordinates of X(t) − µ(t), with constant
coefficients, because the Hessian of a quadratic polynomial is constant. The expectations of such
expressions are the covariances Cov [Xi(t), Xj(t)] (variances if i = j). So, G(t) is a linear function
L of the n2 entries of Var [X(t)]. The linear function L can be easily computed from the second
derivatives of the components of fσ. Similarly, as the entries of the diffusion matrix (4.36) are poly-
nomials of degree equal to the largest order of the reactions, when all reactions have order ≤ 2 the
term E [B(X(t))] is an affine linear function of the entries of E [X(t)] and Var [X(t)], which we write
as H0 +H1E [X(t)] +H2Var [X(t)]. Thus:

For mass-action kinetics and all reactions of order at most 2, the fluctuation-dissipation equation
says that the mean µ(t) = E [X(t)] and covariance matrix Σ(t) = Var [X(t)] satisfy

dµ/dt = fσ(µ) + LΣ (4.42a)
dΣ/dt ≈ Σ J(µ)′ + J(µ) Σ + H0 +H1µ+H2Σ (4.42b)

(where the “approximate” sign indicates that α, which involves third-order moments, because gµ(t) is
quadratic, was dropped). Moreover, the function J(µ(t)) is linear in µ(t).

The FD formula is exact for zero- and first-order mass-action reactions, because in that case the
Hessian and thus gµ(t) are zero, so also α(t) ≡ 0. Moreover, in this last case the entries Bpq(k) =∑m

j=1 ρ
σ
j (k)γpjγqj of the diffusion matrix are also affine, so that the last term is just B(E [X(t)]). It is

worth emphasizing this fact:
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For mass-action kinetics and all reactions of order zero or one, the mean µ(t) = E [X(t)] and
covariance matrix Σ(t) = Var [X(t)] are solutions of the coupled system of differential equations

µ̇ = fσ(µ) (4.43a)
Σ̇ = Σ J ′ + J Σ + B(µ) (4.43b)

and in this case J does not depend on µ, because J is a constant matrix, being the Jacobian of an
affine vector field. Also,

B(µ) = Γ diag (ρσ1 (µ), . . . , ρσm(µ)) Γ′ (4.44)

in the case of order ≤ 1.

Note that (4.43) is a set of n + n2 linear differential equations. Since covariances are symmetric,
however, one can equally well restrict to the equations on the diagonal and upper-triangular part of Σ,
so that it is sufficient to solve n+ n(n+ 1)/2 equations.

The term “fluctuation-dissipation” is used because the first two terms for Σ may be though of as
describing a “dissipation” of initial uncertainty, while the last term can be thought of as a “fluctuation”
due to future randomness. To understand the dissipation component, let’s discuss what would happen
if the fluctuation term were not there. Then (FD) is a linear differential equation on Var [X(t)] (a
“Lyapunov equation” in control theory). Given the initial variance Var [X(0)], a solution can be
computed. This solution is identically zero when X(0) is perfectly known (that is, p(0) has exactly
one nonzero entry), because Var [X(0)] = 0 in that case. But even for nonzero Var [X(0)], and under
appropriate stability conditions one would have that Var [X(t)] → 0 as t → ∞. If a matrix J has
eigenvalues with negative real part, then the operator P 7→ PJ ′ + JP on symmetric matrices has all
eigenvalues also with negative real part.24 So if µ(t) is approximately constant and the linearization
of the differential equation for the mean is stable, the equation for the variance will be, too. Since in
general the matrices J(µ(t)) depend on t, this argument is not quite correct, but it provides the basic
intuition for the term “dissipation”.

24This is because the eigenvalues of this operator are the sums of pairs of eigenvalues of J ; see e.g. the author’s control
theory textbook.
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4.6 Generating functions

We next discuss how to use generating functions in order to (1) find solutions of the CME, or at
least (2) find differential equations satisfied by moments. Often only simple problems can be solved
explicitly with this technique, but it is nonetheless a good source of theoretical insight.

We assume that p(t), an infinite vector function of time indexed by k ∈ K = Zn≥0, is a solution of the
CME (4.3):

dpk
dt

=
m∑
j=1

ρσj (k − γj) pk−γj −
m∑
j=1

ρσj (k) pk .

The (probability) generating function P (z, t) is a scalar-valued function of time t ≥ 0 and of n
auxilliary variables z = (z1, . . . , zn) (which may be thought of as complex variables), defined as
follows:

P (z, t) := E
[
zX
]

=
∑
k∈K

pk(t) z
k (4.45)

where we denote zk := zk11 . . . zknn and z0
i = 1. As the pk(t)’s are non-negative and add up to one, the

series is convergent for z = 1 (we write the vector (1, . . . , 1) as “1” when clear from the context):

P (1, t) = 1 for all t ≥ 0. (4.46)

Moments of arbitrary order can be computed once that P is known. For example,

∂P (z, t)

∂z

∣∣∣∣
z=1

= E [X(t)] ,

where we interpret the above partial derivative as the vector
(
∂P (t,z)
∂z1

∣∣∣
z=1

, . . . , ∂P (t,z)
∂zm

∣∣∣
z=1

)′
. Also,

∂2P (z, t)

∂zi∂zj

∣∣∣∣
z=1

=

{
E [Xi(t)Xi(t)] if i 6= j
E [Xi(t)

2]− E [Xi(t)] if i = j .

Note that Var [X(t)] can be computed from these formulas.

Exercise. Prove the above two formulas. 2

We remark that there are other power series than are often associated to P , especially the moment
generating function25

M(θ, t) := E
[
eθX
]

=
∑
k∈K

pk(t) e
θk

where we define eq = eq1 . . . eqn .

Of course, actually computing P (z, t) from its definition is not particularly interesting, since the
whole purpose of using generating functions is to gain information about the unknown pk(t)’s. The
idea, instead, is to use the knowledge that p(t) satisfies an infinite system of ordinary differential
equations in order to obtain a finite set of partial differential equations for P . Sometimes these PDE’s
can be solved, and other times just the form of the PDE will be enough to allow computing ODE’s for
moments. We illustrate both of these ideas next, through examples.

25The terminology arises from the fact that the coefficients of the Taylor expansions of P and M , at z = 0 and θ = 0,
give the probabilities and moments, respectively.
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Let us start with the mRNA example given by the reactions in (4.6), 0
α−→M β−→0, for which (cf. (4.7)-

(4.9)) G = (1,−1), ρσ1 (k) = α, ρσ2 (k) = βk, fσ(k) = α− βk, and the CME is

dpk
dt

= αpk−1 + (k + 1)βpk+1 − αpk − kβpk .

Let us compute now a PDE for P (z, t). For simplicity, from now on we will write ∂
∂t
P as Pt and ∂

∂z
P

as Pz.

By definition, P (z, t) =
∑∞

k=0 pk(t)z
k, so

Pt =
∞∑
k=0

dpk
dt

zk = α
∞∑
k=1

pk−1z
k + β

∞∑
k=0

(k + 1)pk+1z
k − α

∞∑
k=0

pkz
k − β

∞∑
k=1

kpkz
k (4.47)

where we started the first sum at 1 because of the convention that p−1 = 0, and the last at 1 because
for zero we have a factor k = 0. The third sum in the right-hand side is just P ; the rest are:

∞∑
k=1

pk−1z
k = z

∞∑
k=1

pk−1z
k−1 = z

∞∑
k=0

pkz
k = zP

∞∑
k=0

(k + 1) pk+1z
k =

∞∑
k=1

k pkz
k−1 = Pz

∞∑
k=1

k pkz
k = z

∞∑
k=1

k pkz
k−1 = zPz .

Thus, P satisfies:
Pt = αzP + βPz − αP − βzPz (4.48)

which can also be written as
Pt = (z − 1) (αP − βPz) . (4.49)

To obtain a unique solution, we need to impose an initial condition, specifying p(0), or equivalently
P (z, 0).

(Recall from Equation (4.46) that we also have the boundary condition P (1, t) = 1 for all t, because
p(t) is a probability distribution.)

Let us say that we are interested in the solution that starts with M = 0: p0(0) = P [M(0) = 0] = 1
and pk(0) = P [M(0) = k] = 0 for all k > 0. This means that P (z, 0) =

∑∞
k=1 pk(0)zk = 1.

Equation (4.49) is a first-order PDE for P . Generally speaking, such PDE’s can be solved by the
“method of characteristics.” Here we simply show that the following guess, which satisfies P (1, t) =
0 and P (z, 0) = 1:

P (z, t) = e
α
β (1−e−βt)(z−1) (4.50)

is a solution.26 Indeed, note that, with this definition,

Pt(z, t) = αe−βt(z − 1)P (t, z) (4.51)

26To be added: solution by characteristics and proof of uniqueness.
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Pz(z, t) =
α

β
(1− e−βt)P (t, z) (4.52)

so:

Pt = (z − 1)αe−βtP = (z − 1)

[
αP − βα

β
(1− e−βt)P

]
= (z − 1) (αP − βPz)

as claimed.

Once that we have obtained the formula (4.50) for P (z, t), we can expand it in a Taylor series in order
to obtain pk(t). For example, for k = 1 we have:

P [X(t) = 1] = p1(t) = Pz(0, t) =
α

β
(1− e−βt)P (0, t) =

α

β
(1− e−βt)e−

α
β (1−e−βt) .

We can also compute moments, for example

µ(t) = E [X(t)] = Pz(1, t) =
α

β

(
1− e−βt

)
P (1, t) =

α

β

(
1− e−βt

)
.

As mentioned above, even without solving the PDE for P , one may obtain ODE’s for moments from
it. For example we have:27

µ̇ =
∂

∂t

∂

∂z

∣∣∣∣
z=1

P =
∂

∂z

∣∣∣∣
z=1

Pt =
∂

∂z

∣∣∣∣
z=1

(z − 1) (αP − βPz)

= (αP − βPz) + (z − 1) (αPz − βPzz) |z=1

= α− βPz(1, t) = α− βµ .

Since every reaction has order 0 or 1, this equation for the mean is the same as the deterministic
equation satisfied by concentrations.

Exercise. Use the PDE for P to obtain an ODE for the variance, following a method similar to that
used for the mean.

Still for the mRNA example, let us compute the generating function Q(z) of the steady state dis-
tribution π obtained by setting dp

dt
= 0. At steady state, that is setting Pt = 0, we have that

(z − 1) (αQ− βQz) = 0, so αQ − βQz = 0, or equivalently Qz = λQ, where λ = α
β

. Thus,
Q(z) = ceλz for some constant c. Since π is a probability distribution, Q(1) = 1, and so c = e−λ, and
thus we conclude:

Q(z) = e−λeλz = e−λ
∞∑
k=0

λk

k!
zk .

Therefore, since by definition Q(z) =
∑∞

k=0 qkz
k, it follows that

qk = e−λ
λk

k!

and we yet again have recovered the fact that the steady-state distribution is that of a Poisson random
variable with parameter λ.

27Using ∂
∂t

∂
∂z = ∂

∂z
∂
∂t .
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4.7 Examples computed using the fluctuation-dissipation formula

Consider again the mRNA example given by the reactions in (4.6), 0
α−→M β−→0, for which (cf. (4.7)-

(4.9)) G = (1,−1), ρσ1 (k) = α, ρσ2 (k) = βk, fσ(k) = α− βk. Since the reactions are of order 0 and
1, the FD formula is exact, so that the mean and variance µ(t) and Σ(t) satisfy (4.43): µ̇ = fσ(µ),
Σ̇ = ΣJ ′ + JΣ + B(µ). Here both µ and Σ are scalar variables. The Jacobian of fσ is J = −β. The
diffusion term is

B(µ) =
2∑
j=1

ρσj (µ)γ1jγ1j = α12 + βµ(−1)2 = α + βµ ,

so that the FD equations become:

µ̇ = α− βµ (4.53a)
Σ̇ = −2βΣ + α + βµ . (4.53b)

Note that the equation for the mean is the same that we derived previously using the probability
generating function. There is a unique steady state for this equation, given by µ = α/β = λ (the
parameter of the Poisson random variable X(∞)) and, solving −2βΣ + α + βµ = 0:

Σ =
α + βµ

2β
=
α

β
= λ

which is, of course, consistent with the property that the variance and mean of a Poisson random
variable are the same.

Exercise. Derive the variance equation from the probability generating function, and show that the
same result is obtained.

Exercise. Solve explicitely the linear differential equations (4.53). (Use matrix exponentials, or
variation of parameters.)

One measure of how “noisy” a scalar random variable X is, is the ratio between its standard deviation
σ =
√

Σ and its mean, called the coefficient of variation:

cv [X] :=
σ [X]

E [X]

(only defined if E [X] 6= 0).

This number may be small even if the variance is large, provided that the mean is large. It represents
a “relative noise” and is a “dimensionless” number, thus appropriate, for example, when comparing
objects measured in different units.28

For a Poisson random variable X with parameter λ, E [X] = λ and σ [X] =
√
λ, so cv [X] = 1/

√
λ.

Next, we return to the mRNA bursting example given by the reactions in (4.12), 0
α−→rM , M

β−→0,
for which (cf. (4.13)-(4.14)) G = (r,−1), ρσ1 (k) = α, ρσ2 (k) = βk, fσ(k) = rα − βk. Since the

28Related to the CV, but not dimensionless, is the “Fano factor” defined as σ2(X)
E[X] .
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reactions are of order ≤ 1, the FD formula is exact. We have that J = −β and B(µ) = αr2 + βµ, so
that:

µ̇ = f(µ) = αr − βµ (4.54a)
Σ̇ = −2βΣ +B(µ) = −2βΣ + αr2 + βµ . (4.54b)

In particular, at steady state we have:

µ =
αr

β
= λr

Σ =
αr2 + β αr

β

2β
=

αr2 + αr

2β
= λ

r(r + 1)

2

where we again denote λ = α
β

. Thus,

cv [M ]2 = λ
r(r + 1)

2

/
λ2r2 =

r + 1

2r

1

λ

which specializes to 1/λ in the Poisson case (no bursting, r = 1). Note that noise, as measured by the
CV, is lower when r is higher, but never lower than 1/2 of the Poisson rate.

This example is a typical one in which experimental measurement of means (or of the deterministic
model) does not allow one to identify a parameter (r in this case), but the parameter can be identified
from other statistical information: r (as well as λ) can be recovered from µ and Σ.

Next, we return to the dimerization example given by the reactions in (4.15), 0
α−→A, A+A

β−→0, for
which (cf. (4.16)-(4.17)) G = (1,−2), ρσ1 (k) = α, ρσ2 (k) = βk(k−1)

2
, fσ(k) = α + βk − βk2. Some

reactions are now of order 2, and the FD formula is not exact. In fact,

µ̇ = E [fσ(X(t))] = α + 2βm− βE
[
X(t)2

]
= α + βµ− β(Σ + µ2) = α + βµ− βµ2 − βΣ

shows that the mean depends on the variance

Exercise. Obtain an equation for Σ̇ (which will depend on moments of order three).

Finally, we study in some detail the transcription/translation model (4.6)-(4.18):

0
α−→M β−→0 , M

θ−→M + P , P
δ−→0 .

We had from (4.19)-(4.20) that

Γ =

(
1 −1 0 0
0 0 1 −1

)
, ρσ1 (k) = α , ρσ2 (k) = βk1 , ρσ3 (k) = θk1 , ρσ4 (k) = δk2 .

and (writing “(M,P )” instead of k = (k1, k2)):

fσ(M,P ) =

(
α− βM
θM − δP

)
.

Since all reactions are of order at most one, the FD formula is exact. There are 5 differential equa-
tions: 2 for the means and 3 (omiting one by symmetry) for the covariances. For means we have:

µ̇M = α− βµM (4.55a)
µ̇P = θµM − δµP . (4.55b)
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Now, using the formula E [B(X(t))] = Γ diag (E [ρσ1 (X(t))] , . . . ,E [ρσm(X(t))]) Γ′ (see (4.39)) for
the expectation of the diffusion term, we obtain that B(µ) equals:

(
1 −1 0 0
0 0 1 −1

)
α

βµM
θµM

δµP




1 0
−1 0
0 1
0 −1

 =

(
α + βµM 0

0 θµM + δµP

)
.

Also,

J = Jacobian of
(

α− βM
θM − δP

)
=

(
−β 0
θ −δ

)
.

It follows that the variance part of the FD equation

Σ̇ = ΣJ ′ + JΣ +B

is (omitting the symmetric equation for ΣPM ):

Σ̇MM = −2β ΣMM + α + βµM (4.56a)
Σ̇PP = −2δΣPP + 2 θΣMP + θµM + δµP (4.56b)
Σ̇MP = θΣMM − (β + δ) ΣMP . (4.56c)

In particular, at steady state we have the following mean number of proteins:

µP =
αθ

βδ
(4.57)

and the following squared coefficient of variation for protein numbers:

cv [P ]2 =
ΣPP

µ2
P

=
(θ + β + δ)βδ

αθ(β + δ)
=

1

µP
+

1

µM

δ

β + δ
. (4.58)

Exercise. Prove the above formula for the CV. Show also that ΣMP = θα
β(β+δ)

.

The first term in (4.58) is usually referred to as the “intrinsic noise” of transcription, in the sense that
this is what the cv would be, if M was constant (so that P would be a Poisson process).

The second is term is usually referred to as the “extrinsic noise” of transcription, due to mRNA
variability.

Notice that the total noise is bounded from below by the intrinsic noise, and from above by the sum
of the intrinsic noise and the mRNA noise, in the following sense:

1

µP
≤ cv [P ]2 ≤ 1

µP
+

1

µM

(the second inequality because δ
β+δ

< 1).

Also, note that even if the mean protein number µP � 1, the second term, 1
µM

δ
β+δ

, may be large, so
that extrinsic noise may dominate even in “large” systems.

Moreover, even accounting for much faster mRNA than protein degradation: β � δ, which implies
δ

β+δ
� 1, this term may well be large if µM � 1.
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Yet another way to rewrite the total protein noise is as follows:

cv [P ]2 =
1

µP

[
1 +

b

1 + η

]
where η = θ

β
is the ratio of mRNA to protein lifetimes, and b = θ/β is the burst factor of the

translation/transcription process. The number η is typically very small, in which case we have the
approximation cv [P ]2 ≈ 1+b

µP
. Since b is typically much larger than one, this means that the noise in

P is much larger than would be expected for a Poisson random variable (1/µP ).29

Exercise. Give an argument to justify why the burst factor may be thought of as the average number
of proteins produced per transcript (i.e, during an mRNAs’ lifetime). (The argument will be similar
to the one used in the context of epidemics.)

29According to M. Thattai and A. Van Oudenaarden, “Intrinsic noise in gene regulatory networks,” Proc. Natl Acad.
Sci. USA 98, 8614-8619, 2001, which is one of the foundational papers in the field, ‘typical values for b are 40 for lacZ
and 5 for lacI’.
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4.8 Conservation laws and stoichiometry

Suppose that ν ∈ ker Γ′, i.e. its transpose ν ′ is in the left nullspace of the stoichiometry matrix Γ,
ν ′Γ = 0. For differential equation models of chemical reactions, described as ẋ = ΓR(x), it is clear
that ν ′x(t) is constant, because d(ν ′x)/dt = ν ′ΓR(x) = 0. A similar invariance property holds for
solutions of the CME. The basic observation is as follows.

Suppose that ν ′γj = 0 and that c ∈ Z. Then∑
ν′k=c

ρσj (k − γj) pk−γj(t) =
∑
ν′k=c

ρσj (k) pk(t) ,

where the sums are being taken over all those k ∈ Zn≥0 such that ν ′k = c (recall the convention that
ρσj (`) = 0 if ` 6∈ Zn≥0). This is clear by a change of variables ` = k − γj , since ν ′k = c if and only if
ν(k − γj) = 0.

Therefore, for any ν ∈ ker Γ′ it follows that (dropping arguments t):

d

dt

∑
ν′k=c

ṗk =
m∑
j=1

∑
ν′k=c

[
ρσj (k − γj) pk−γj − ρσj (k) pk

]
=

m∑
j=1

0 = 0 .

So
∑

ν′k=c pk(t) is constant.

Suppose that the initial state X(0) is known to satisfy ν ′X(0) = c. In other words,
∑

ν′k=c pk(0) = 1.
It then follows that

∑
ν′k=c pk(t) = 1, which means that, with probability one, ν ′X(t) = c for each

t ≥ 0. This invariance property is an analogue of the one for deterministic systems.

The limit π = p(∞), if it exists, of the distribution vector satisfies the constraint
∑

ν′k=c πk = 1.
This constraint depends on the initial conditions, through the number c. Steady-state solutions of
the CME are highly non-unique when there are conservation laws. To deal with this problem, the
usual approach consists of reducing the space by expressing redundant species in terms of a subset of
“independent” species, as follows.

Consider a basis ν1, . . . , νs of ker Γ′. If it is known that ν ′iX(0) = ci for i = 1, ..., s, then the above
argument says that

∑
ν′ik=ci

pk(t) = 1 and ν ′iX(t) = ci for each i = 1, ..., s and each t ≥ 0. This fact
typically allows one to reduce the Markov chain to a smaller subset.

The simplest example is that of the reaction network

A
µ−→ B , B

ν−→ A ,

for which we have:

Γ =

(
−1 1
1 −1

)
, ρσ1 (k) = µk1 , ρσ2 (k) = νk2 .

We pick s = 1 and ν = (1, 1)′.

Suppose that, initially, there is just one unit of A, that is, X(0) = (A(0), B(0))′ = (1, 0)′. Thus
ν ′X(0) = 1, from which it follows that A(t) + B(t) = ν ′X(t) = 1 for all t ≥ 0 (with probability
one), or equivalently, that

∑
k1+k2=1 pk(t) = 1 for all t ≥ 0.

Since pk(t) = 0 if either k1 < 0 or k2 < 0, this amounts to saying that p(1,0)′(t) + p(0,1)′(t) = 1 for all
t ≥ 0, and pk(t) = 0 for all other k.
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If we are only interested in the initial condition X(0) = (1, 0)′, there is no need to compute pk(t)
except for these two k’s. The finite Markov chain with the two states (1, 0)′ and (0, 1)′ carries all the
information that we care for. Moreover, since p(0,1)′(t) = 1 − p(1,0)′(t), it is enough to consider the
differential equation for p(t) = p(1,0)′(t):

ṗ = ρσ1


 1

0

−
 −1

1


p

 1
0

−
 −1

1




+ ρσ2


 1

0

−
 1
−1


p

 1
0

−
 1
−1




− ρσ1

 1
0

p 1
0


− ρσ2

 1
0

p 1
0


.

Since ρσ1 (2,−1)′ = ρσ2 (1, 0)′ = 0, ρσ2 (0, 1)′ = ν, and ρσ1 (1, 0)′ = µ and p(0,1)′ = 1 − p, we conclude
that

ṗ = (1− p)ν − pµ , p(0) = 1 ,

so

p(t) =
ν

µ+ ν
+ e−(µ+ν)t

(
1− ν

µ+ ν

)
.

In particular, at steady state,

p 1
0


(∞) =

ν

µ+ ν
, p 0

1


(∞) =

µ

µ+ ν
,

i.e., the steady-state distribution is Bernoulli with parameter ν
µ+ν

.

Exercise. Suppose that, in the reaction network A
µ−→B, B ν−→A, we know that initially, there are

just r units of A, that is, X(0) = (A(0), B(0))′ = (r, 0)′. Show how to reduce the CME to a Markov
chain on s+ 1 states, and that the steady-state probability distribution is a binomial distribution.

Exercise. The example of A
µ−→B, B ν−→A with X(0) = (A(0), B(0))′ = (r, 0)′ can be thought of

as follows: A is the inactive form of a gene, and B is its active form. There are a total of r copies of
the same gene, and the activity of each switches randomly and independently. Suppose that we now
consider transcription and translation, where transcription is only possible when one of these copies
of the gene is active. This leads to the following system:

A
µ−→ B , B

ν−→ A , B
α−→M +B , M

β−→ 0 , M
θ−→M + P , P

δ−→ 0 .

1. Write down the CME for this system.

2. Assuming only one copy of the gene, r = 1, compute (using the FD method or generating
functions) the steady-state mean and standard deviation of M .

3. Optional (very tedious computation): again with r = 1, use the FD formula to compute the
steady-state mean and standard deviation of P .

4. Optional: repeat the calculations with an arbitrary copy number r.
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4.9 Relations to deterministic equations, and approximations

In this section, we briefly discuss various additional topics, in an informal fashion. All propensities
are mass-action type now.

4.9.1 Deterministic chemical equations

The mean of the stateX(t) satisfies the differential equation (4.29):
d

dt
E [X(t)] = E [fσ(X(t))]. This

suggests the approximation
d

dt
E [X(t)] ≈ fσ(E [X(t)]) , (4.59)

which is an equality when the reactions have order 0 or 1. This would also be an equality of the
variability of X(t) were small. However, in general, the variance of X(t) is large, of the order of the
volume Ω in which the reaction takes place, as we discuss later.

On the other hand, if we consider the concentration Z(t) = X(t)/Ω, this quantity has variance of
order Ω/Ω2 = 1/Ω. So, for concentrations, and assuming that Ω is large, it makes sense to expect
that the analog of (4.59) will be very accurate.

Now, to get a well-defined meaning of concentrations Z(t) = X(t)/Ω as Ω → ∞, X(t) must also
be very large. (Since otherwise Z(t) = X(t)/Ω ≈ 0.) This is what one means by a “thermodynamic
limit” in physics.

What equation is satisfied by E [Z(t)]? To be precise, let us consider the stochastic process Z(t) =
X(t)

Ω
that describes concentrations as opposed to numbers of units. Equation (4.29) said that d

dt
E [X(t)] =

E [fσ(X(t))]. Therefore,

d

dt
E [Z(t)] =

1

Ω

d

dt
E [X(t)] =

1

Ω
E [fσ(X(t))] = E

[
1

Ω
fσ(ΩZ(t))

]
. (4.60)

The numbers Z(t), being concentrations, should be expected to satisfy some sort of equation that
does not in any way involve volumes. Thus, we want to express the right-hand side of (4.60) in a
way that does not involve Ω-dependent terms. Unfortunately, this is not possible without appealing to
an approximation. To illustrate the problem, take a homodimerization reaction, which will contribute
terms of the form 1

Ω
k(k − 1) to the vector field fσ. Then the right-hand side of (4.60) will involve an

expression

1

Ω2
(ΩZ(t)) (ΩZ(t)− 1) =

(
ΩZ(t)

Ω

)(
ΩZ(t)

Ω

)(
1− 1

Z(t)Ω

)
= Z(t)2

(
1− 1

Z(t)Ω

)
Thus, we need to have Z(t) Ω� 1 in order to eliminate Ω-dependence. This is justified provided that
Ω→∞ and Z(t) 6→ 0. More generally, the discussion is as follows.

The right-hand side of (4.60) involves 1
Ω
fσ, which is built out of terms of the form 1

Ω
ρσj , where the

propensities for mass-action kinetics are ρσj (k) =
cj

ΩAj−1

(
k
aj

)
for each j ∈ {1, . . . ,m}.

The combinatorial numbers
(
k
aj

)
=
∏n

i=1

(
ki
aij

)
can be approximated as follows. For each j ∈

{1, . . . ,m}, using the notation aj! =
∏n

i=1 aij!, we have:(
k

aj

)
=

kaj

aj!

[
1 +O

(
1

k

)]
. (4.61)
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For example, since (
k1

3

)
=

1

3!
k1(k1 − 1)(k1 − 2) =

k3
1

3!

[
1 +

1

k1

P

(
1

k1

)]
(
k2

2!

)
=

1

2
k2(k2 − 1) =

k2
2

2!

[
1 +

1

k2

Q

]
with P (x) = −3 + 2x, and Q = −1, then if n = 2 and aj = (3, 2)′ (that is, the reactionRj consumes
three units of S1 and two of S2), we have that(

k1

3

)
×
(
k2

2

)
=

k3
1k

2
2

3!2!

[
1 +

1

k1

P +
1

k2

Q+
1

k1k2

PQ

]
.

Let us introduce the following functions:

ρcj(s) =
cj
aj!

saj

where, for each s ∈ Rn
≥0 with components si,

saj =
n∏
i=1

s
aij
i

(with the convention that s0 = 1 for all s).

Observe that, with our notations,
kaj

ΩA
j

=

(
k

Ω

)aj
.

So, we consider the approximation:

1

Ω
ρσj (k) =

cj
ΩAj

(
k

aj

)
=

cj
ΩAj

kaj

aj!

[
1 +O

(
1

k

)]
= ρcj

(
k

Ω

)[
1 +O

(
1

k

)]
≈ ρcj

(
k

Ω

)
,

(4.62)
which is valid if

both k →∞ and Ω→∞ in such a way that the ratio k/Ω remains constant.

This type of limit is often referred to as a “thermodynamic limit”. It is interpreted as saying that both
the copy numbers and volume are large, but the concentrations or densities are not. Another way to
think of this is by thinking of a larger and larger volume in which a population of particles remains
at constant density (so that the number of particles scales like the volume). For purposes of this
discussion, let us just agree to say that “in the thermodynamic approximation” will mean whenever
the approximation has been performed.

Recall from Equation (4.30) that fσ(k) = ΓRσ(k), where Rσ(k) = (ρσ1 (k), . . . , ρσm(k))′ and Γ is the
stoichiometry matrix. Let R(x) be defined for any non-negative real vector s as follows:

R(x) := (ρc1(s), . . . , ρcm(s))′ (4.63)

and let
f(s) := ΓR(s) . (4.64)
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Under the thermodynamic approximation for (4.62),

1

Ω
fσ(k) ≈ f

(
k

Ω

)
.

That is to say, (4.60) becomes
d

dt
E [Z(t)] ≈ E [f(Z(t))] . (4.65)

We achieved our goal of writing an (approximate) expression that is volume-independent, for the rate
of change of the mean concentration

Provided that the variance ofZ(t) is small compared to its mean, then we may approximate E [f(Z(t))] ≈
f(E [Z(t)]) and write

d

dt
E [Z(t)] ≈ f(E [Z(t)]) .

This argument motivates the form of the deterministic chemical reaction equation30 which is (using
dot for time derivative, and omitting the time argument):

ṡ = f(s) = ΓR(s) . (4.66)

Observe that we may also write this deterministic equation as an equation on the abundances x(t) of
the species, where x(t) = Ωs(t). The equation is:

ẋ = f#(x) = ΓR#(x) (4.67)

where
R#(x) :=

(
ρ#

1 (x), . . . , ρ#
m(x)

)′
(4.68)

and
ρ#
j (x) = Ωρcj

( x
Ω

)
=

cj
ΩAj−1

xaj

aj!
.

The only difference with the expression for concentrations is that now there is a denominator which
depends on volume.

Both forms of deterministic equations are used in the literature, usually not distinguishing among
them. They both may be written in the same form, using rates “ρ(u) = kju

aj” after collecting all
constants into kj , and the only difference is the expression of kj in terms of the volume. For problems
in which the deterministic description is used, and if one is not interested in the stochastic origin of the
reaction constants kj , this is all unimportant. In fact, in practice the coefficients kj are often estimated
by fitting to experimental data, using a least-squares or maximum-likelihood method. In that context,
the physical origin of the coefficients, and their volume dependence or lack thereof, plays no role.

4.9.2 Unit Poisson representation

We next discuss an integral representation which is extremely useful in the theoretical as well as in
the intuitive understanding of the behavior of the process X(t).

30Also called a “mean field equation” in physics
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To motivate this representation, note first that a vector x(t) is a solution of the deterministic differential
equation ẋ(t) = f(x(t)) with initial condition x(0) = x0 if and only if x(t) = x0 +

∫ t
0
f(x(τ)) dτ for

all t. This reformulation as an integral equation is merely a statement of the Fundamental Theorem of
Calculus, and in fact is a key step in proving existence theorems for differential equations (by looking
for fixed points of the operator x 7→ x0 +

∫ t
0
f(x(τ)) dτ in function space).

Specialized to the chemical reaction case, using abundances x, f(x) = f#(x) = ΓR#(x), the integral
equation reads:

x(t) = = x(0) +
m∑
j=1

γj yj(t) , where yj(t) =

∫ t

0

ρ#
j (x(τ)) dτ . (4.69)

The quantity yj(t) may be thought of as the number of reactions ofRj that have taken place until time
t, because each such reaction adds γj to the state. As ẏj(t) = ρ#

j (x(t)), ρ#
j can be interpreted as the

rate at which the reactionRj takes place.

We now turn to the stochastic model. The random state X(t) at time t is obtained from a sequence of
jumps:

X(t) = X(0) +W1 + . . .+WN .

Collecting all the terms Wv that correspond to events in which Rj fired, and keeping in mind that,
every time that the reactionRj fires, the state changes by +γj , there results:

X(t) = X(0) +
m∑
j=1

γj Ỹj(t) , (4.70)

where Ỹj counts how many times the reaction j has taken place from time 0 until time t. The stochastic
Equation (4.70) is a counterpart of the deterministic Equation (4.69). Of course, Ỹj(t) depends on the
past history X(τ), τ < t. The following Poisson representation makes that dependence explicit:

X(t) = X(0) +
m∑
j=1

γj Yj

(∫ t

0

ρσj (X(τ)) dτ

)
, (4.71)

where the Yj’s are m independent and identically distributed (“IID”) Poisson processes with unit
rate. This most beautiful formula is exact and requires no approximations31. Here we simply provide
an intuitive idea of why one may expect such a formula to hold. The intuitive idea is based on an
argument as the one used to derive the SSA.

If k = Xv−1(tv−1) is the state right after the (v− 1)st jump, then the time until the next jump is given
by the variable Tk, which is exponential with the parameter in Equation (4.27), λk =

∑m
j=1 ρ

σ
j (k). If

the state k does not change much, then these distributions do not depend strongly on k, and we can
say that reactions occur at times that are separated by an exponentially distributed random variable T
with rate λ. From basic probability theory, we know that this means that the total number of reactions
during an interval of length t is Poisson distributed with parameter tλ. That is to say, there is a Poisson
process Y with rate λ that counts how many reactions happen in any given interval.

31For details, including proofs, see S.N. Ethier and T.G. Kurtz, Markov processes: Characterization and convergence,
John Wiley & Sons, New York, 1986.
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The random choice of which reaction takes place is distributed according to the probabilities

P [next reaction isRj] = d
(k)
j =

ρσj (k)∑m
j=1 ρ

σ
j (k)

.

If the reaction events form a Poisson process with parameter λ, and if at each time the reaction to
be used is picked according to a discrete distribution with pj = dj = ρσj /λ (we drop “k” since we
are assuming that it is approximately constant), then the events “Rj fires” form a “thinning” of the
Poisson stream and hence are known, again from elementary probability theory, to be themselves
Poisson distributed, with parameter djλ = ρσj .

This means, putting back the k now, that the number of reactions of typeRj that occur are distributed
according to Ỹj(t) = Yj(ρ

σ
j (k)t), where the Yj are independent unit Poisson processes32 (indepen-

dence also assumes that k is approximately constant during the interval). Now, if we break up a long
interval into small intervals of length dt, in each of which we assume that k is constant (somewhat
analogous to making an approximation of an integral using a rectangle rule), we have that the total
Ỹj(t) is a sum of Poisson random variables, one for each sub-interval, with rates ρσj (k)dt. A sum of
(independent) Poisson random variables with rates µ1, . . . , µν is Poisson with rate µ1 + . . .+µν , and,
as the intervals get smaller, this sum approximates the integral

∫ t
0
ρσj (X(τ)) dτ , if the µi = ρσj (X(τi)).

This results in the formula (4.71), though of course the argument is not at all rigorous as given.

4.9.3 Diffusion approximation

A stochastic differential equation (SDE) is an ordinary differential equation with noise terms in its
right-hand side, so that its solution is random.33 The Markov jump process X(t) is not the solution of
an SDE, since by definition, it is discrete-valued.34 However, there is an SDE whose solutions give a
so-called diffusion approximation of X(t).35 The diffusion approximation is useful when numbers of
species are “large enough”. (But not so large that the equation becomes basically deterministic and so
there is no need for stochastics to start with.) It arises as a normal approximation of a Poisson process.
We very roughly outline the construction, as follows.

We consider the formula (4.71), which works on any interval [t, t+ h]:

X(t+ h) = X(t) +
m∑
j=1

γj Yj

(∫ t+h

t

ρσj (X(τ)) dτ

)
where the Yj’s are IID unit Poisson random processes.

In general, under appropriate conditions (λ � 1), if a variable Y is Poisson with parameter λ, then
it is well approximated by a normal random variable N with mean λ and variance λ (this is a special

32Saying that Z is a Poisson process with rate λ is the same as saying that Z(t) = Y (λt), where Y is a unit-rate Poisson
process.

33In physics, SDE’s are called Langevin equations.
34Of course, there is an ODE associated toX(t), namely the CME. But the CME is a deterministic differential equation

for the probability distribution of X(t), not for the sample paths of X(t).
35As if things were not confusing enough already, there is yet another (deterministic) differential equation that enters

the picture, namely the Fokker-Planck Equation (FPE), which, describes the evolution of the probability distribution of
the state of the SDE, just like the CME describes the evolution of the probability distribution of the state X(t). The FPE
is a PDE (enough acronyms?), because the probability the state of the SDE is a continuous variable, hence requiring a
variable for space as well as time.
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case of the Central Limit Theorem). Equivalently,

Y ≈ λ +
√
λN0 ,

where N0 is an N (0, 1) random variable.

We make this approximation in the above formula. We denote the random variable N0 as “Nj(t)”
to indicate the fact that we have a different one for each j and for each interval [t, t + h] where the
approximation is made. Note that, given the initial state X(t), the changes in the interval [t, t + h]
are independent of changes in previous intervals; thus the Nj(t) are independent of previous values.
Using that f =

∑
j γjρ

σ
j :

X(t+ h) ≈ X(t) +
m∑
j=1

γj

(∫ t+h

t

ρσj (X(τ)) dτ

)
+

√(∫ t+h

t

ρσj (X(τ)) dτ

)
Nj(t)


≈ X(t) + f(X(t))h +

m∑
j=1

γj

√
ρσj (X(t))

√
hNj(t) .

The expressions
√
hNj(t) correspond to increments on time h of a Brownian motion. Thus (dividing

by h and letting h→ 0), formally we obtain:

dX(t) ≈ f(X(t)) dt +
m∑
j=1

γj

√
ρσj (X(t))Bj(t)

where the Bt are independent standard Brownian motion processes.36

4.9.4 Relation to deterministic equation

We next sketch why, in the thermodynamic limit, the solution s(t) of the deterministic equation for
concentrations provides a good approximation of the mean E [X(t)].

We consider a thermodynamic limit, and let Z(t) = X(t)/Ω. Then:

X(t) = X(0) +
m∑
j=1

γjYj

(∫ t

0

ρσj (ΩZ(τ)) ds

)
= X(0) +

m∑
j=1

γjYj

(
Ω

∫ t

0

ρcj(Z(τ)) ds

)
.

On any fixed time interval, Z(τ) is bounded (assuming that there is a well-defined behavior for the
densities in the thermodynamic limit), so that the variance of each Yj(. . .) is O(Ωt) (if Y is a unit
random process, the variance of Y (λt) is λt), and hence so is the variance of X(t). On a bounded
time interval, we may drop the “t” and just say that Var [X(t)] = O(Ω)

Now,

d

dt
E [Z(t)] =

d

dt
E [X(t)/Ω] =

1

Ω

d

dt
E [X(t)] =

1

Ω
fσ(E [X(t)]) +

M

Ω
≈ f(E [Z(t)]) +

M

Ω

36For technical reasons, one does not write the derivative form of the equation. The problem is that dBj/dt is not
well-defined as a function because B is highly irregular.
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where “M” represents terms that involve central moments of X(t) of order≥ 2 (recall (4.34)). More-
over, M comes from a Taylor expansion of fσ, and the nonlinear terms in fσ (corresponding to all
the reactions of order > 1) all have at least a factor 1/Ω. Thus, M is of order O((1/Ω)×Var [X(t)]).
Since, by the previous discussion, Var [X(t)] = O(Ω), it follows that M = O(1). We conclude that,
in the thermodynamic limit,

d

dt
E [Z(t)] ≈ f(E [Z(t)]) + O

(
1

Ω

)
≈ f(E [Z(t)]) ,

which is (with equality) the deterministic equation.

Note, also, that Var [Z(t)] = 1
Ω2Var [X(t)] = O(1/Ω). In other words, the “noise” in concentrations,

as measured by their standard deviations, scales as 1/
√

Ω.

We close this section with a citation to a precise theorem of Kurtz37 that provides one rigorous version
of the above arguments. It says roughly that, on each finite time interval [0, T ], and for every ε > 0,

P [∀ 0 ≤ t ≤ T , |Z(t)− s(t)| < ε ] ≈ 1

if Ω is large, where Z = X/Ω and s(t) is the solution of the deterministic equation, assuming that
X(0) = s(0) (deterministic initial condition) and that the solution of s(t) exists on this interval. In
other words, “almost surely” the sample paths of the process, normalized to concentrations, are almost
identical to the solution of the deterministic system. Of course, X(0) = s(0) means Z(0) = Ωs(0),
which makes no sense as Ω→∞. So the precise statement is as follows:

Suppose that XΩ(t) is a sample path of the process with volume Ω (that is, this is the volume that
appears in the propensities), for each Ω. If 1

Ω
XV (0)→ s(0), then:

lim
Ω→∞

P
[

sup
0≤t≤T

∣∣∣∣ 1

Ω
XV (t)− s(t)

∣∣∣∣ ≥ ε

]
= 0

for all T ≥ 0 and all ε > 0.

It is important to realize that, on longer time intervals (or we want a smaller error ε, the required Ω
might need to be larger.

37See the previously cited book. Originally from T.G. Kurtz, “The relationship between stochastic and deterministic
models for chemical reactions,” The Journal of Chemical Physics 57(1972): 2976-2978.
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4.10 Problems for stochastic kinetics

1. Suppose that p(t) satisfies the CME. Show that if
∑

k∈Zn≥0
pk(0) = 1 then

∑
k∈Zn≥0

pk(t) = 1

for all t ≥ 0. (Hint: first, using that ρσj (k − γj) = 0 unless k ≥ γj , observe that, for each
j ∈ {1, . . . ,m}: ∑

k∈Zn≥0

ρσj (k − γj)pk−γj =
∑
k∈Zn≥0

ρσj (k)pk

and use this to conclude that
∑

k∈Zn≥0
pk(t) must be constant. You may use without proof that

the derivative of
∑

k∈Zn≥0
pk(t) with respect to time is obtained by term-by-term differentiation.)

2. Show, using induction on k, that, as claimed in the notes, πk = e−λ λ
k

k!
, where λ = α

β
, solves

απk−1 + (k + 1)βπk+1 − απk − kβπk = 0 , k = 0, 1, 2, . . .

(the first term is not there if k = 0).

3. Write the CME for the bursting model.

4. Write the CME for the dimerization model.

5. Write the CME for the transcription/translation model. (Remember that now “k” is a vector
(k1, k2).)

6. This is a problem regarding the SSA.

Implement the SSA in your favorite programming system (MATLAB, Maple, Mathemat-
ica).

(a)(b) Take the mRNA/protein model described in the notes, pick some parameters, and an initial
state; now plot many sample paths, averaging to get means and variances as a function of
time, as well as steady state means and variances.

(c) Compare the latter with the numbers obtained by using theory as described in the notes.

7. Show that an alternative way of writing the diffusion term in the FD equation is as follows:

Γ diag (E [ρσ1 (X(t))] , . . . ,E [ρσm(X(t))]) Γ′

(where “diag (r1, . . . , rm)” means a diagonal matrix with entries ri in the diagonal).

8. Prove that, for the probability generating function P :

∂2P (z, t)

∂zi∂zj

∣∣∣∣
z=1

=

{
E [Xi(t)Xi(t)] if i 6= j
E [Xi(t)

2]− E [Xi(t)] if i = j .

9. For the mRNA example, derive the variance equation from the probability generating function,
and show that the same result is obtained as in the notes.

10. For the mRNA example, solve explicitely the FD differential equations shown in the notes.
(You may use matrix exponentials and variation of parameters, Laplace transforms, or whatever
method you prefer.)
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11. For the dimerization example, obtain an equation for Σ̇ (which will depend on moments of
order three).

12. For the transcription/translation example:

(a) prove this formula for the squared coefficient of variation for protein numbers:

cv [P ]2 =
ΣPP

µ2
P

=
(θ + β + δ)βδ

αθ(β + δ)
=

1

µP
+

1

µM

δ

β + δ
.

(b) Show that ΣMP = θα
β(β+δ)

.

13. Suppose that, in the reaction network A
µ−→B, B ν−→A, we know that initially, there are just r

units of A, that is, X(0) = (A(0), B(0))′ = (r, 0)′. Show how to reduce the CME to a Markov
chain on s+1 states, and that the steady-state probability distribution is a binomial distribution.

14. The example of A
µ−→B, B ν−→A with X(0) = (A(0), B(0))′ = (r, 0)′ can be thought of as

follows: A is the inactive form of a gene, and B is its active form. There are a total of r copies
of the same gene, and the activity of each switches randomly and independently. Suppose that
we now consider transcription and translation, where transcription is only possible when one of
these copies of the gene is active. This leads to the following system:

A
µ−→ B , B

ν−→ A , B
α−→M +B , M

β−→ 0 , M
θ−→M + P , P

δ−→ 0 .

(a) Write down the CME for this system.

(b) Assuming only one copy of the gene, r = 1, compute (using the FD method or generating
functions) the steady-state mean and standard deviation of M .

(c) Optional (very tedious computation): again with r = 1, use the FD formula to compute
the steady-state mean and standard deviation of P .

(d) Optional: repeat the calculations with an arbitrary copy number r.
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Appendix A

Review of ordinary differential equations

A.1 Modeling

A differential equation is just an equation which involves “differentials”, that is to say, derivatives. A
simple example is:

dy

dt
= 0,

where we understand that y is a function of an independent variable t. (We use t because in many
examples the independent variable happens to be time, but of course any other variable could be
used. It is sometimes convenient to use informal notation, and refer to this example as “y′ = 0” or
as “ẏ = 0” (the latter notation is favored in engineering and applied mathematics), though such a
notation blurs the distinction between functions and the expressions used to define them.

If y′ = 0, y must be constant. In other words, the general solution of the given equation is y ≡ c, for
some constant c.

Another easy example of a differential equation is:

dy

dt
= −27.

This means that y = y(t) has a graph which is a line with slope −27. The general solution of this
equation is y = −27t+ c, for some constant c.

An initial value problem is a problem in which we give a differential equation together with an extra
condition at a point, like:

dy

dt
= −27, y(0) = 3.

There is a unique solution of this initial-value problem, namely y(t) = −27t + 3. It can be found by
first finding the general solution y = −27t + c and then plugging in t = 0 to get 3 = −27(0) + c, so
c = 3. This “initial” condition may be specified, of course, at any value of the independent variable t,
(not just t = 0) for example:

dy

dt
= −27, y(2) = 3.

The solution of this initial-value problem can be also obtained by plugging into the general form
y = −27t + c: we substitute 3 = y(2) = −27(2) + c, which gives that c = 57, and so the solution is

253
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y(t) = −27t+ 57. Although the word “initial” suggests that we intend to start at that point and move
forward in time, the solutions we have found are defined for all values of t. We will not always be so
fortunate, but do we expect solutions defined on an interval with the “initial” value in the interior.

A slightly more complicated example of a differential equation is:

dy

dt
= sin t+ t2.

The general solution is (by taking antiderivatives) y = − cos t+ t3/3 + c. Another example:

dy

dt
= e−t

2

.

This equation has a general solution, but it cannot be expressed in terms of elementary functions
like polynomials, trigs, logs, and exponentials. (The solution is the “error function” that is used in
statistics to define the cumulative probability of a Gaussian or normal probability density.) One of
the unfortunate facts about differential equations is that we cannot always find solutions as explicit
combinations of elementary functions. So, in general, we have to use numerical, geometric, and
graphical techniques in the analysis of properties of solutions.

The examples just given are too easy (even if y′ = e−t
2 doesn’t look that easy), in the sense that they

can all be solved, at least theoretically, by taking antiderivatives. The subject of differential equations
deals with far more general situations, in which the unknown function y appears on both sides of the
equation:

y′ = f(t, y)

or even much more general types: systems of many simultaneous equations, higher order deriva-
tives, and even partial derivatives when there are other independent variables (which leads to “partial
differential equations” and are the subject of more advanced courses).

One aspect of differential equations is comparatively easy: if someone gives us an alleged solution
of an equation, we can check whether this is so. Checking is much easier than finding! (Analogy: if
I ask you to find a solution of the algebraic equation 10000x5 − 90000x4 + 65100x3 + 61460x2 +
13812x+ 972 = 0 it may take you some time to find one. On the other hand, if I tell you that x = 3/2
is a root, you can check whether I am telling the truth or not very easily: just plug in and see if you get
zero.) For example, if someone claims that the function y = 1

/
(1 + t2) is a solution of the equation

y′ = −2ty2, we can check that she is right by plugging in:(
1

1 + t2

)′
= − 2t

(1 + t2)2
= −2t

(
1

1 + t2

)2

.

But if someone claims that y = 1
/

(1 + t) is a solution, we can prove him to be wrong:(
1

1 + t

)′
= − 1

(1 + t)2
6= −2t

(
1

1 + t

)2

because the two last functions of t are not the same. They even have different values at t = 0.

About Modeling

Most applications of mathematics, and in particular, of differential equations, proceed as follows.
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Starting from a “word problem” description of some observed behavior or characteristic of the real
world, we attempt to formulate the simplest set of mathematical equations which capture the essential
aspects. This set of equations represents a mathematical model of reality. The study of the model
is then carried out using mathematical tools. The power of mathematics is that it allows us to make
quantitative and/or qualitative conclusions, and predictions about behaviors which may not have been
an explicit part of the original word description, but which nonetheless follow logically from the
model.

Sometimes, it may happen the results of the mathematical study of the model turn out to be inconsis-
tent with features found in the “real world” original problem. If this happens, we must modify and
adapt the model, for example by adding extra terms, or changing the functions that we use, in order
to obtain a better match. Good modeling, especially in science and engineering, is often the result of
several iterations of the “model/reality-check/model” loop!

Unrestricted Population Growth

When dealing with the growth of a bacterial culture in a Petri dish, a tumor in an animal, or even an
entire population of individuals of a given species, biologists often base their models on the following
simple rule:

The increase in population during a small time interval of length ∆t is proportional to ∆t and to the
size of the population at the start of the interval.

For example, statistically speaking, we might expect that one child will be born in any given year
for each 100 people. The proportionality rule then says that two children per year are born for every
200 people, or that three children are born for each 100 people over three consecutive years. (To be
more precise, the rate of increase should be thought of as the “net” rate, after subtracting population
decreases. Indeed, the decreases may also assumed proportional to population, allowing the two
effects to be combined easily.)

The rule is only valid for small intervals (small ∆t), since for large ∆t one should also include
compounding effects (children of the children), just as the interest which a bank gives us on savings
(or charges us on loan balances) gets compounded, giving a higher effective rate.

Let us call P (t) the number of individuals in the population at any given time t. The simplest way to
translate into math the assumption that “the increase in population P (t + ∆t)− P (t) is proportional
to ∆t and to P (t)” is to write

P (t+ ∆t)− P (t) = kP (t)∆t (A.1)

for some constant k. Notice how this equation says that the increase P (t+ ∆t)−P (t) is twice as big
if ∆t is twice as big, or if the initial population P (t) is twice as big.

Example: in the “one child per 100 people per year” rule, we would take k = 10−2 if we are measuring
the time t in years. So, if at the start of 1999 we have a population of 100,000,000, then at the
beginning of the year 2001 = 1999+2 the population should be (use ∆t = 2):

P (2001) = P (1999) + 10−2P (1999)∆t = 108 + 10−2108(2) = 102, 000, 000

according to the formula. On the other hand, by the end of January 3rd, 1999, that is, with ∆t =
3/365, we would estimate P (1999 + 3/365) = 108 + 10−2108(3/365) ≈ 100, 008, 219 individuals.
Of course, there will be random variations, but on average, such formulas turn out to work quite well.
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The equation (A.1) can only be accurate if ∆t is small, since it does not allow for the “compound
interest” effect. On the other hand, one can view (A.1) as specifying a step-by-step difference equation
as follows. Pick a “small” ∆t, let us say ∆t = 1, and consider the following recursion:

P (t+ 1) = P (t) + kP (t) = (1 + k)P (t) (A.2)

for t = 0, 1, 2, . . .. Then we compute P (2) not as P (0) + 2kP (0), but recursively applying the rule:
P (2) = (1 + k)P (1) = (1 + k)2P (0). This allows us to incorporate the compounding effect. It has
the disadvantage that we cannot talk about P (t) for fractional t, but we could avoid that problem by
picking a smaller scale for time (for example, days). A more serious disadvantage is that it is hard to
study difference equations using the powerful techniques from calculus. Calculus deals with things
such as rates of change (derivatives) much better than with finite increments. Therefore, what we will
do next is to show how the problem can be reformulated in terms of a differential equation. This is
not to say that difference equations are not interesting, however. It is just that differential equations
can be more easily studied mathematically.

If you think about it, you have seen many good examples of the fact that using derivatives and calculus
is useful even for problems that seem not to involve derivatives. For example, if you want to find an
integer t such that t2−189t+17 is as small as possible, you could try enumerating all possible integers
(!), or you could instead pretend that t is a real number and minimize t2 − 189t + 17 by setting the
derivative to zero: 2t − 189 = 0 and easily finding the answer t = 94.5, which then leads you, since
you wanted an integer, to t = 94 or t = 95.

Back to our population problem, in order to use calculus, we must allow P to be any real number
(even though, in population studies, only integers P would make sense), and we must also allow the
time t to be any real number. Let us see where equation (A.1) leads us. If we divide by ∆t, we have

P (t+ ∆t)− P (t)

∆t
= kP (t).

This equation holds for small ∆t, so we may let ∆t→ 0. What is the limit of (P (t+ ∆t)− P (t))
/

∆t as ∆t→ 0? It is, as you remember from Calculus I (yes, you do), the derivative of P evaluated at
t. So we end up with our first differential equation:

P ′(t) = kP (t). (A.3)

This is the differential equation for population growth. We may read it like this:

The rate of change of P is proportional to P .

The solution of this differential equation is easy: since P ′(t)/P (t) = k, the chain rule tells us that

(lnP (t))′ = k,

and so we conclude that lnP (t) = kt+ c for some constant c. Taking exponentials of both sides, we
deduce that P (t) = ekt+c = Cekt, where C is the new constant ec. Evaluating at t = 0 we have that
P (0) = Ce0 = C, and we therefore conclude:

P (t) = P (0)ekt.

(Actually, we cheated a little, because P ′/P doesn’t make sense if P = 0, and also because if P
is negative then we should have used ln(−P (t)). But one can easily prove that the formula P (t) =
P (0)ekt is always valid. In any case, for population problems, P is positive.)
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Which is better in practice, to use the difference equation (A.2) or the differential equation (A.3)? It is
hard to say: the answer depends on the application. Mathematically, differential equations are usually
easier to analyze, although sometimes, as when we study chaotic behavior in simple one-dimensional
systems, difference equations may give great insight. Also, we often use difference equations as a
basis of numerical techniques which allow us to find an approximation of the solution of a differential
equation. For example, Euler’s method basically reverses the process of going from (A.1) to (A.3).

Let us now look at some more examples of differential equations.

Limits to Growth: Logistic Equation

Often, there are limits imposed by the environment on the maximal possible size of a population: not
enough nutrients for a large bacterial culture, insufficient food for the human population of an island,
or a small hunting territory for a given animal species. Ecologists talk about the carrying capacity
of the environment, a number N with the property that no populations P > N are sustainable.
If the population starts bigger than N , the number of individuals will decrease. To come up with
an equation that represents this situation, we follow the same steps that we did before, except that
now we have that P (t + ∆t) − P (t) should be negative if P (t) > N . In other words, we have
P (t+∆t)−P (t) = f(P (t))∆t, where f(P ) is not just “kP ” but should be instead a more complicated
expression involving P , and which has the properties that:

• f(0) = 0 (no increase in the population if there is no one around to start with!),

• f(P ) > 0 when 0 < P < N (the population increases while there are enough resources), and

• f(P ) < 0 when P > N .

Taking limits just like we did before, we arrive to the differential equation:

P ′(t) = f(P (t)).

From now on, we will drop the “t” when it is obvious, and use the shorthand notation P ′ = f(P )
instead of the more messy P ′(t) = f(P (t)). We must still decide what function “f” is appropriate.
Because of the properties wanted (f(0) = 0, f(P ) > 0 when 0 < P < N , f(P ) < 0 when P > N ),
the simplest choice is a parabola which opens downward and has zeroes at P = 0 and P = N :
f(P ) = −cP (P −N), with c > 0, or, with k = cN , f(P ) = kP (1−P/N). We arrive in this way to
the logistic population model

P ′ = kP

(
1− P

N

)
. (A.4)

(Remember: this is shorthand for P ′(t) = kP (t)(1− P (t)/N). ) The constant k is positive, since it
was obtained as cN .

Solution of Logistic Equation

Like P ′ = kP , equation (A.4) is one of those (comparatively few) equations which can actually be
solved in closed form. To solve it, we do almost the same that we did with P ′ = kP (this is an ex-
ample of the method of separation of variables): we write the equation as dP/dt = kP (1− (P/N)),
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formally multiply both sides by dt and divide by P (1− (P/N)), arriving at

dP

P (1− P/N)
= k.

Next we take antiderivatives of both sides, obtaining∫
dP

P (1− P/N)
=

∫
kdt.

The right-hand side can be evaluated using partial fractions:

1

P (1− P/N)
=

N

P (N − P )
=

1

P
+

1

N − P

so

lnP − ln(N − P ) + c1 = kt+ c2

for some constants c1 and c2, or, with c = c2 − c1,

ln

(
P

N − P

)
= kt+ c (A.5)

and, taking exponentials of both sides,

P

N − P
= Cekt (A.6)

with C = ec. This is an algebraic equation for P , but we can go a little further and solve explicitly:

P = Cekt(N − P )⇒ CektP + P = CektN ⇒ P =
CektN

Cekt + 1
=

N

1 + 1
C
e−kt

.

Finally, to find C, we can evaluate both sides of equation (A.6) at t = 0:

C =
P (0)

N − P (0)

and therefore conclude that

P (t) =
P (0)N

P (0) + (N − P (0))e−kt
. (A.7)

Observe that, since e−kt → 0 as t→∞, P (t)→ N , which is not surprising. (Why?)

This formula is also valid for negative values of t with P (t)→ 0 as t→ −∞.

Homework assignment: use a computer to plot several solutions of the equation, for various values
of N and of P (0).
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Some “Small-Print Legal Disclaimers”

(You may want to skip this section in a first reading.)

We cheated a bit when deriving the solution for the logistic equation. First of all, we went a bit too fast
over the “divide by dt” business. What is the meaning of dividing by the differential? Well, it turns
out that it is OK to do this, because what we did can be interpreted as, basically, just a way of applying
(backwards) the chain rule. Let us justify the above steps without using differentials. Starting from
the differential equation (A.4) we can write, assuming that P 6= 0 and P 6= N (so that we are not
dividing by zero):

P ′

P (1− P/N)
= k. (A.8)

Now, one antiderivative of 1
/

(P (1− P/N)), as a function of P , is the function

Q(P ) = ln (P / (N − P ))

(let us suppose that N > P , so the expression inside the log is positive). So, the chain rule says that

dQ(P (t))

dt
=
dQ

dP

dP

dt
=

1

P (1− P/N)
P ′(t).

Therefore, equation (A.8) gives us that

dQ(P (t))

dt
= k

from which we then conclude, by taking antiderivatives, that

Q(P (t)) = kt+ c

which is exactly the same as the equation (A.5) which had before been obtained using differentials.
In general, we can always justify “separation of variables” solutions in this manner, but from now on
we will skip this step and use the formal method.

There is still a small gap in our arguments, namely we assumed that P 6= 0 and that P 6= N (so that
we were not dividing by zero) and also N > P , so the expression inside the log was positive.

There is a theorem that states that, under appropriate conditions (differentiability of f ), solutions are
unique. Thus, since P = 0 and P = N are equilibria, any solution that starts with P (0) > N will
always have P (t) > N , and a similar property is true for each of the intervals P < 0 and 0 < P < N .
So we can treat each of the cases separately.

If N < P , then the antiderivative is ln |P / (N − P ) | (that is, we use absolute values). But this
doesn’t change the general solution. All it means is that equation (A.6) becomes∣∣∣∣ P

N − P

∣∣∣∣ = Cekt

which can also be written as in (A.6) but with C negative. We can treat the case P < 0 in the same
way.

Finally, the exceptional cases when P could be zero or N are taken care of once we notice that the
general solution (A.7) makes sense when P (0) = 0 (we get P ≡ 0) or when P (0) = N (we get
P ≡ N ).
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Equilibria

Observe that if, for some time t0, it happens that P (t0) = 0, then the right-hand side of the differential
equation (A.4) becomes zero, so P ′(t0) = 0, which means that the solution cannot “move” from that
point. So the value P = 0 is an equilibrium point for the equation: a value with the property that if we
start there, then we stay there forever. This is not a particularly deep conclusion: if we start with zero
population we stay with zero population. Another root of the right hand side is P = N . If P (t0) = N
then P ′(t0) = 0, so if we start with exactly N individuals, the population also remains constant,
this time at N . Again, this is not surprising, since the model was derived under the assumption that
populations larger than N decrease and populations less than N increase.

In general, for any differential equation of the form y′ = f(y), we say that a point y = a is an
equilibrium if a is a root of f , that is, f(a) = 0. This means that if we start at y = a, we cannot
move away from y = a. Or, put in a different way, the constant function y(t) ≡ a is a solution of
y′ = f(y) (because y′(t) = a′ ≡ 0 and also f(y(t)) = f(a) = 0. One says also that the constant
function y(t) = a is an equilibrium solution of y′ = f(y).

The analysis of equilibria allows us to obtain a substantial amount of information about the solutions
of a differential equation of the type y′ = f(y) with very little effort, in fact without even hav-
ing to solve the equation. (For “nonautonomous” equations, when t appears in the right hand side:
y′ = f(t, y), this method doesn’t quite work, because we need to plot f against two variables. The
technique of slope fields is useful in that case.) The fundamental fact that we need is that — assuming
that f is a differentiable function — no trajectory can pass through an equilibrium: if we are ever
at an equilibrium, we must have always been there and we will remain there forever. This will be
explained later, when covering uniqueness of solutions.

For example, suppose that we know that the plot of f(y) against y looks like this:

B CA D E

where we labeled the points where f(y) has roots, that is to say, the equilibria of y′ = f(y).

We can conclude that any solution y(t) of y′ = f(P ) which starts just to the right ofAwill move right-
wards, because f(y) is positive for all points between A and B, and so y′ > 0. Moreover, we cannot
cross the equilibrium B, so any such trajectory stays in the interval (A,B) and, as t increases, it ap-
proaches asymptotically the point B. To summarize, if y(0) = y0 with y0 ∈ (A,B), then the graph of

the solution y(t) of y′ = f(y) must look more or less like this:
Homework assignment: For the same function f shown above, give an approximate plot of a solution
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of y′ = f(y) for which y(0) ∈ (B,C). Repeat with y(0) ∈ (C,D) and with y(0) ∈ (D,E).

Systems

More generally, one considers systems of differential equations, such as for example:

dx

dt
= 2 x − 5xy

dy

dt
= −y + 1.2xy .

This example might represent the number of individuals of each of two species of animals, in which
the “y” species is a predator of “x”. The first species reproduces (at rate “2”) if there are no y’s
present, but when there are y’s around, there is a “death rate” for x that is proportional to the number
of predators. Similarly, the second population grows in proportion to the population size of x’s, but it
diminishes when there are no x’s (its only source of nutrition).

More Examples

Let us discuss some more easy examples (of single-variable problems).

(a) Populations under Harvesting

Let us return to the population model (A.4):

P ′ = kP

(
1− P

N

)
which describes population growth under environmental constraints. Suppose that P (t) represents the
population of a species of fish, and that fishing removes a certain number K of fish each unit of time.
This means that there will be a term in P (t + ∆t) − P (t) equal to −K∆t. When we divide by ∆t
and take limits, we arrive at the equation for resources under constant harvesting:

P ′ = kP

(
1− P

N

)
−K.

Many variations are possible. For example, it is more realistic to suppose that a certain proportion of
fish are caught per unit of time (the more fish, the easier to catch). This means that, instead of a term
−K∆t for how many fish are taken away in an interval of length ∆t, we’d now have a term of the
form −KP (t)∆t, which is proportional to the population. The differential equation that we obtain is
now P ′ = kP (1− (P/N)) −KP . Or, if only fish near the surface can be caught, the proportion of
fish caught per unit of time may depend on the power P 2/3 (do you understand why? are you sure?).
This would give us the equation P ′ = kP (1− (P/N))−KP 2/3.
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(b) Epidemics

The spread of epidemics is another example whose study can be carried out using differential equa-
tions. Suppose that S(t) counts the number of individuals infected with a certain virus, at time t, and
that people mix randomly and get infected from each other if they happen to be close. One model
is as follows. The increase in the number of infected individuals S(t + ∆t) − S(t) during a time
interval of length ∆t is proportional to the number of close encounters between sick and healthy
individuals, that is, to S(t)H(t)∆t, because S(t)H(t) is the total number of pairs of (sick,healthy)
individuals, and the longer the interval, the more chances of meeting. Taking limits as usual, we ar-
rive to S ′(t) = kS(t)H(t), where k is some constant. If the total number of individuals is N , then
H(t) = N − S(t), and the equation becomes:

S ′ = kS(t)(N − S(t))

which is a variant of the logistic equation. There are many extensions of this idea. For instance,
if in every ∆t time interval a certain proportion of infected individuals get cured, we’d have a term
−kS(t).

(c) Chemical Reactions

Chemical reactions also give rise to similar models. Let us say that there are two reactants A and B,
which may combine to give C via A+B → C (for each molecule of A and B, we obtain a molecule
of C). If the chemicals are well-mixed, the chance of two molecules combining is proportional to how
many pairs there are and to the length of time elapsed (just like with the infection model, molecules
need to get close enough to react). So c′(t) = ka(t)b(t), where a(t) is the amount of A at time t and
b(t) the amount of B. If we start with amounts a0 and b0 respectively, and we have c(t) molecules of
C at time t, this means that a(t) = a0− c(t) and b(t) = b0− c(t), since one molecule of A and B was
used up for each molecule of C that was produced. So the equation becomes

c′ = k(a0 − c)(b0 − c).

(d) Air Resistance

Consider a body moving in air (or another fluid). For low speeds, air resistance (drag) is proportional
to the speed of the object, and acts to slow down the object, in other words, it acts as a force k |v|, in
a direction opposite to movement, where |v| is the absolute value of the velocity. Suppose that a body
is falling towards the earth, and let us take “down” as the positive direction of movement. In that case,
Newton’s “F = ma” law says that the mass times the acceleration v′ is equal to the total force on the
body, namely mg (its weight) plus the effect of drag, which is −kv (because the force acts opposite
to the direction of movement):

mv′ = mg − kv.

For large velocities, drag is often modeled more accurately by a quadratic effect −kv2 in a direction
opposite to movement. This would lead to an equation like mv′ = mg − kv2 for the velocity of a
falling object. Both of these equations can be solved exactly. This allows the validity of the model to
be tested by comparing these formulas to experimental results.
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(e) Newton’s Law of Cooling

The temperature inside a building is assumed to be uniform (same in every room) and is given by
y(t) as a function of the time t. The outside air is at temperature a(t), which also depends on the
time of the day, and there is a furnace which supplies heat at a rate h(t) (or, for negative h, an air-
conditioning unit which removes heat at that rate). What is the temperature in the building? Newton’s
law of cooling tells us that the rate of change of temperature dy/dt will depend on the difference
between the inside and outside temperatures (the greater the difference, the faster the change), with a
term added to model the effect of the furnace:

mcy′ = −k(y − a(t)) + h(t),

where the mass of air in the building is the constant m (no windows can be opened, and doors are
usually tightly closed, being opened rarely and briefly, so we assume that m is a constant), c is
a positive constant (the heat capacity), and k is another positive constant (which is determined by
insulation, building layout, etc).

Homework Problem

You should match the following word descriptions and differential equations. More than one equation
may match a description, and vice versa.

Descriptions:

1. The rate of change of the population of a certain country, which depends on the birth and death
rates as well as on the number of immigrants, who arrive at a constant rate into the country.

2. The rate of change of the population of a certain country, which depends on the birth and death
rates, but there is a net emigration from the country (at a constant rate).

3. Fish in a certain area, which reproduce in proportion to the population, subject to limits imposed
by the carrying capacity of the environment, and the population of which is also reduced by
fishing which proceeds at a constant rate.

4. The temperature of a building, when the outside temperature varies periodically (it goes down
during the night, up during the day) and there is no heating or air-conditioning.

5. The temperature of a building, when the outside temperature varies periodically (it goes down
during the night, up during the day) and heating is being applied at a constant rate.

6. The temperature of a building, when the outside temperature is constant, and there is no heating
or air-conditioning.

7. The temperature of a building, when the outside temperature is constant, and heating is being
applied at a constant rate.

8. The amount of money in a savings account, when interest is compounded continuously, and
also additional money is being added at a constant rate (the person always deposits a certain
percentage of her paycheck).
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9. The rate of change of the volume of a raindrop, which evaporates at a rate proportional to its
surface area.

10. The rate of change of the volume of a raindrop, which evaporates at a rate proportional to its
diameter.

11. The mass of a radioactive substance which is decaying (at a rate proportional to the amount
present).

12. The amount of chlorine in a swimming pool; chlorinated water is added at a fixed rate, the water
in the pool is well-mixed, and water is being removed from the pool so that the total volume is
constant.

Equations (all constants are positive):

• y′ = −ky Answer(s):

• y′ = −ky + c Answer(s):

• y′ = −ky1/3 Answer(s):

• y′ = −ky2/3 Answer(s):

• y′ = ky(K − y) Answer(s):

• y′ = ky(K − y) + c Answer(s):

• y′ = ky(K − y)− c Answer(s):

• y′ = −k(y − sin t) + c Answer(s):

• y′ = −k(y − sin t) Answer(s):

• y′ = −k(y − sin t)− c Answer(s):

• y′ = −k(y −K) + c Answer(s):

• y′ = −k(y −K)− c Answer(s):

• y′ = −k(y −K) Answer(s):

• y′ = ky Answer(s):

• y′ = ky + c Answer(s):

• y′ = ky − c Answer(s):
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A.2 Phase-planes

A technique which is often very useful in order to analyze the phase plane behavior of a two-
dimensional autonomous system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

is to attempt to understand the graphs of solutions (x(t), y(t)) as the level sets of some function
h(x, y).

Some Examples.

Example 1

For example, take

dx

dt
= −y

dy

dt
= x

(that is, f(x, y) = −y and g(x, y) = x). If we could solve for t as a function of x, by inverting
the function x(t), and substitute the expression that we obtain into y(t), we would end up with an
expression y(x) for the y-coordinate in terms of the x coordinate, eliminating t. This cannot be done
in general, but it suggests that we may want to look at dy/dx. Formally (or, more precisely, using the
chain rule), we have that

dy

dx
=
dy/dt

dx/dt
=

x

−y
which is a differential equation for y as a variable dependent on x. This equation is separable:∫

dy

y
=

∫
−dx
x

so we obtain, taking antiderivatives,
y2

2
= −x

2

2
+ c

where c is an undetermined constant, and since c must be nonnegative, we can write c = r2. In
conclusion, the solutions (x(t), y(t)) all lie in the circles x2 + y2 = r2 of different radii and centered
at zero. Observe that we have not solved the differential equation, since we did determine the forms
of x and y as functions of t (which, as a matter of fact, are trigonometric functions x = r cos t,
y = r sin t that draw circles at constant unit speed in the counterclockwise direction). What we have
done is just to find curves (the above-mentioned circles) which contain all solutions. Even though this
is less interesting (perhaps) than the actual solutions, it is still very interesting. We know what the
general phase plane picture looks like.
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A variation of this example is:

dx

dt
= −y

dy

dt
= 2x

for which it is easy to see, by a similar reasoning, that the solutions line in ellipses of the form

x2 +
y2

2
= r2 .

Example 2

Another example is this:

dx

dt
= y5ex

dy

dt
= x5ex.

Here, dy/dx = x5/y5 so we get again a separable equation, and we see that the solutions all stay in
the curves

x6 − y6 = c.

Example 3

More interesting is the general case of predator-prey equations:

dx

dt
= ax− bxy

dy

dt
= −cy + dxy

where a, b, c, d are all positive constants. Then

dy

dx
=
y(−c+ dx)

x(a− by)

so ∫ (
a

y
− b
)
dy =

∫ (
− c
x

+ d
)
dx

and from here we conclude that the solutions all stay in the sets

a ln(y)− by + c ln(x)− dx = k

for various values of the constant k. It is not obvious what these sets look like, but if you graph the
level sets of the function

h(x, y) = a ln(y)− by + c ln(x)− dx
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you’ll see that the level sets look like the orbits of the predator-prey system shown, for the special
values a = 2, b = 1.2, c = 1, and d = 0.9 shown in the Maple plot below

0

0.5

1

1.5

2

y

0.5 1 1.5 2
x

using the values a = b = 6 and c = d = 2. The initial values for these three curves were (1, 1.25),
(0.5, 1), and (1, 1, 5).

(Of course, the scales will be different for different values of the constants, but the picture will look
the same, in general terms.) This argument is used to prove that predator-prey systems always lead to
periodic orbits, no matter what the coefficients of the equation are.

Homework

In each of the following problems, a system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

is given. Solve the equation
dy

dx
=
g(x, y)

f(x, y)

and use the information to sketch what the orbits of the original equation should look like. Exercise 1

dx

dt
= y(1 + x2 + y2)

dy

dt
= x(1 + x2 + y2)

Exercise 2

dx

dt
= 4y(1 + x2 + y2)

dy

dt
= dy

dt
= −x(1 + x2 + y2)

Exercise 3

dx

dt
= y3ex+y

dy

dt
= −x3ex+y
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Exercise 4

dx

dt
= y2

dy

dt
= (2x+ 1)y2

Exercise 5

dx

dt
= exy cos(x)

dy

dt
= exy
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A.3 Matrix Exponentials

Generalities

A system of autonomous linear differential equations can be written as

dY

dt
= AY

where A is an n by n matrix and Y = Y (t) is a vector listing the n dependent variables. (In most
of what we’ll do, we take n = 2, since we study mainly systems of 2 equations, but the theory is the
same for all n.)

If we were dealing with just one linear equation

y′ = ay

then the general solution of the equation would be eat. It turns out that also for vector equations the
solution looks like this, provided that we interpret what we mean by “eAt” when A is a matrix instead
of just a scalar. How to define eAt? The most obvious procedure is to take the power series which
defines the exponential, which as you surely remember from Calculus is

ex = 1 + x+
1

2
x2 +

1

6
x3 + · · ·+ 1

k!
xk + · · ·

and just formally plug-in x = At. (The answer should be a matrix, so we have to think of the term
“1” as the identity matrix.) In summary, we define:

eAt = I + At+
1

2
(At)2 +

1

6
(At)3 + · · ·+ 1

k!
(At)k + · · ·

where we understand the series as defining a series for each coefficient. One may prove that:

eA(t+s) = eAteAs for all s, t . (A.9)

and therefore, since (obviously) eA0 = I , using s = −t gives

e−At =
(
eAt
)−1

(A.10)

(which is the matrix version of e−x = 1/ex). We now prove that this matrix exponential has the
following property:

deAt

dt
= AeAt = eAtA (A.11)

for every t.

Proof Let us differentiate the series term by term:

deAt

dt
=

d

dt

(
I + At+

1

2
(At)2 +

1

6
(At)3 + · · ·+ 1

k!
(At)k + · · ·

)
= 0 + A+ A2t+

1

2
A3t2 + · · ·+ 1

(k − 1)!
Aktk−1 + · · ·

= A

(
I + At+

1

2
(At)2 +

1

6
(At)3 + · · ·+ 1

k!
(At)k + · · ·

)
= AeAt



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 270

and a similar proof, factoring A on the right instead of to the left, gives the equality between the
derivative and eAtA. (Small print: the differentiation term-by-term can be justified using facts about
term by term differentiation of power series inside their domain of convergence.) The property (A.11)
is the fundamental property of exponentials of matrices. It provides us immediately with this corol-
lary:

The initial value problem
dY

dt
= AY , Y (0) = Y0 has the unique solution Y (t) = eAtY0.

We can, indeed, verify that the formula Y (t) = eAtY0 defines a solution of the IVP:

dY (t)

dt
=
deAtY0

dt
=
deAt

dt
Y0 =

(
AeAt

)
Y0 = A

(
eAtY0

)
= AY (t) .

(That it is the unique, i.e., the only, solution is proved as follows: if there were another solution Z(t)
of the same IVP, then we could let W (t) = Y (t)−Z(t) and notice that W ′ = Y ′−Z ′ = A(Y −Z) =
AW , and W (0) = Y (0) − Z(0) = 0. Letting V (t) = e−AtW (t), and applying the product rule, we
have that

V ′ = −Ae−AtW + e−AtW ′ = −e−AtAW + e−AtAW = 0

so that V must be constant. Since V (0) = W (0) = 0, we have that V must be identically zero.
Therefore W (t) = eAtV (t) is also identically zero, which because W = Y − Z, means that the
functions Y and Z are one and the same, which is what we claimed.)

Although we started by declaring Y to be a vector, the equation Y ′ = AY makes sense as long as
Y can be multiplied on the left by A, i.e., whenever Y is a matrix with n rows (and any number of
columns). In particular, eAt itself satisfies this equation. The result giving uniqueness of solutions
of initial value problems applies to matrices since each column satisfies the equation and has the
corresponding column of the initial data as its initial value. The value of eAt at t = 0 is the n by
n identity matrix. This initial value problem characterizes eAt. Verification of these properties is an
excellent check of a calculation of eAt.

So we have, in theory, solved the general linear differential equation. A potential problem is, however,
that it is not always easy to calculate eAt.

Some Examples

We start with this example:

A =

(
1 0
0 2

)
. (A.12)

We calculate the series by just multiplying A by t:

At =

(
t 0
0 2t

)
and now calculating the powers of At. Notice that, because At is a diagonal matrix, its powers are
very easy to compute: we just take the powers of the diagonal entries (why? if you don’t understand,
stop and think it over right now). So, we get

eAt =

(
1 0
0 1

)
+

(
t 0
0 2t

)
+

1

2

(
t2 0
0 (2t)2

)
+

1

6

(
t3 0
0 (2t)3

)
+ · · ·+ 1

k!

(
tk 0
0 (2t)k

)
+ · · ·
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and, just adding coordinate-wise, we obtain:

eAt =

(
1 + t+ 1

2
t2 + 1

6
t3 + · · ·+ 1

k!
tk + · · · 0

0 1 + 2t+ 1
2
(2t)2 + 1

6
(2t)3 + · · ·+ 1

k!
(2t)k + · · ·

)
which gives us, finally, the conclusion that

eAt =

(
et 0
0 e2t

)
.

So, in this very special case we obtained the exponential by just taking the exponentials of the diagonal
elements and leaving the off-diagonal elements zero (observe that we did not end up with exponentials
of the non-diagonal entries, since e0 = 1, not 0).

In general, computing an exponential is a little more difficult than this, and it is not enough to just
take exponentials of coefficients. Sometimes things that seem surprising (the first time that you see
them) may happen. Let us take this example now:

A =

(
0 1
−1 0

)
. (A.13)

To start the calculation of the series, we multiply A by t:

At =

(
0 t
−t 0

)
and again calculate the powers of At. This is a little harder than in the first example, but not too hard:

(At)2 =

(
−t2 0
0 −t2

)
(At)3 =

(
0 −t3
t3 0

)
(At)4 =

(
t4 0
0 t4

)
(At)5 =

(
0 t5

−t5 0

)
(At)6 =

(
−t6 0
0 −t6

)
and so on. We won’t compute more, because by now you surely have recognized the pattern (right?).
We add these up (not forgetting the factorials, of course):

eAt =

(
1 0
0 1

)
+

(
0 t
−t 0

)
+

1

2

(
−t2 0
0 −t2

)
+

1

3!

(
0 −t3
t3 0

)
+

1

4!

(
t4 0
0 t4

)
+ · · ·

and, just adding each coordinate, we obtain:

eAt =

(
1− t2

2
+ t4

4!
− · · · t− t3

3!
+ t5

5!
− · · ·

−t+ t3

3!
− t5

5!
+ · · · 1− t2

2
+ t4

4!
− · · ·

)
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which gives us, finally, the conclusion that

e

 0 1
−1 0

t
= eAt =

(
cos t sin t
− sin t cos t

)
.

It is remarkable that trigonometric functions have appeared. Perhaps we made a mistake? How could
we make sure? Well, let us check that property (A.11) holds (we’ll check only the first equality, you
can check the second one). We need to test that

d

dt

(
cos t sin t
− sin t cos t

)
= A

(
cos t sin t
− sin t cos t

)
. (A.14)

Since
d

dt
(sin t) = cos t, and

d

dt
(cos t) = − sin t,

we know that
d

dt

(
cos t sin t
− sin t cos t

)
=

(
− sin t cos t
− cos t − sin t

)
and, on the other hand, multiplying matrices:(

0 1
−1 0

)(
cos t sin t
− sin t cos t

)
=

(
− sin t cos t
− cos t − sin t

)
so we have verified the equality (A.14).

As a last example, let us take this matrix:

A =

(
1 1
0 1

)
. (A.15)

Again we start by writing

At =

(
t t
0 t

)
and calculating the powers of At. It is easy to see that the powers are:

(At)k =

(
tk ktk

0 tk

)
since this is obviously true for k = 1 and, recursively, we have

(At)k+1 = (At)kA =

(
tk ktk

0 tk

)(
t t
0 t

)
=

(
tkt tkt+ ktkt
0 tkt

)
=

(
tk+1 (k + 1)tk+1

0 tk+1

)
.

Therefore,

eAt =
∞∑
k=0

(
tk/k! ktk/k!

0 tk/k!

)

=


∞∑
k=0

tk

k!

∞∑
k=0

ktk

k!

0
∞∑
k=0

tk

k!


=

(
et tet

0 et

)
.

To summarize, we have worked out three examples:
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• The first example (A.12) is a diagonal matrix, and we found that its exponential is obtained by
taking exponentials of the diagonal entries.

• The second example (A.13) gave us an exponential matrix that was expressed in terms of
trigonometric functions. Notice that this matrix has imaginary eigenvalues equal to i and −i,
where i =

√
−1.

• The last example (A.15) gave us an exponential matrix which had a nonzero function in the
(1, 2)-position. Notice that this nonzero function was not just the exponential of the (1, 2)-
position in the original matrix. That exponential would give us an et term. Instead, we got a
more complicated tet term.

In a sense, these are all the possibilities. Exponentials of all two by two matrices can be obtained
using functions of the form eat, teat, and trigonometric functions (possibly multiplied by eat). Indeed,
exponentials of any size matrices, not just 2 by 2, can be expressed using just polynomial combinations
of t, scalar exponentials, and trigonometric functions. We will not quite prove this fact here; you
should be able to find the details in any linear algebra book.

Calculating exponentials using power series is OK for very simple examples, and important to do a
few times, so that you understand what this all means. But in practice, one uses very different methods
for computing matrix exponentials. (Remember how you first saw the definition of derivative using
limits of incremental quotients, and computed some derivatives in this way, but soon learned how to
use “the Calculus” to calculate derivatives of complicated expressions using the multiplication rule,
chain rule, and so on.)

Computing Matrix Exponentials

We wish to calculate eAt. The key concept for simplifying the computation of matrix exponentials is
that of matrix similarity. Suppose that we have found two matrices, Λ and S, where S is invertible,
such that this formula holds:

A = SΛS−1 (A.16)

(if (A.16) holds, one says that A and Λ are similar matrices). Then, we claim, it is true that also:

eAt = S eΛt S−1 (A.17)

for all t. Therefore, if the matrix Λ is one for which eΛt is easy to find (for example, if it is a diagonal
matrix), we can then multiply by S and S−1 to get eAt. To see why (A.17) is a consequence of (A.16),
we just notice that At = S(Λt)S−1 and we have the following “telescopic” property for powers:

(At)k =
(
S(Λt)S−1

)(
S(Λt)S−1

)
· · ·
(
S(Λt)S−1

)
= S(Λt)kS−1

since the terms may be regrouped so that all the in-between pairs S−1S cancel out. Therefore,

eAt = I + At+
1

2
(At)2 +

1

6
(At)3 + · · ·+ 1

k!
(At)k + · · ·

= I + S(Λt)S−1 +
1

2
S(Λt)2S−1 +

1

6
S(Λt)3S−1 + · · ·+ 1

k!
S(Λt)kS−1 + · · ·

= S

[
I + Λt+

1

2
(Λt)2 +

1

6
(Λt)3 + · · ·+ 1

k!
(Λt)k + · · ·

]
S−1

= SeΛtS−1

as we claimed.
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The basic theorem is this one:

Theorem. For every n by n matrix A with entries in the complex numbers, one can find an invertible
matrix S, and an upper triangular matrix Λ such that (A.16) holds.

Remember that an upper triangular matrix is one that has the following form:

λ1 ∗ ∗ · · · ∗ ∗
0 λ2 ∗ · · · ∗ ∗
0 0 λ2 · · · ∗ ∗
...

...
...

...
...

...
0 0 0 · · · λn−1 ∗
0 0 0 · · · 0 λn


where the stars are any numbers. The numbers λ1, . . . , λn turn out to be the eigenvalues of A.

There are two reasons that this theorem is interesting. First, it provides a way to compute exponentials,
because it is not difficult to find exponentials of upper triangular matrices (the example (A.15) is
actually quite typical) and second because it has important theoretical consequences.

Although we don’t need more than the theorem stated above, there are two stronger theorems that
you may meet elsewhere. One is the “Jordan canonical form” theorem, which provides a matrix
Λ that is not only upper triangular but which has an even more special structure. Jordan canonical
forms are theoretically important because they are essentially unique (that is what “canonical” means
in this context). Hence, the Jordan form allows you to determine whether or not two matrices are
similar. However, it is not very useful from a computational point of view, because they are what is
known in numerical analysis as “numerically unstable”, meaning that small perturbations of A can
give one totally different Jordan forms. A second strengthening is the “Schur unitary triangularization
theorem” which says that one can pick the matrix S to be unitary. (A unitary matrix is a matrix with
entries in the complex numbers whose inverse is the complex conjugate of its transpose. For matrices
S with real entries, then we recognize it as an orthogonal matrix. For matrices with complex entries,
unitary matrices turn out to be more useful than other generalization of orthogonal matrices that one
may propose.) Schur’s theorem is extremely useful in practice, and is implemented in many numerical
algorithms.

We do not prove the theorem here in general, but only show it for n = 2; the general case can be
proved in much the same way, by means of a recursive process.

We start the proof by remembering that every matrix has at least one eigenvalue, let us call it λ, and
an associate eigenvector, v. That is to say, v is a vector different from zero, and

Av = λv . (A.18)

If you stumble on a number λ and a vector v that you believe to an eigenvalue and its eigenvector, you
should immediately see if (A.18) is satisfied, since that is an easy calculation. Numerical methods for
finding eigenvalues and eigenvectors take this approach.

For theoretical purposes, it is useful to note that the the eigenvalues λ can be characterized as the roots
of the characteristic equation

det(λI − A) = 0.

For two-dimensional systems, this is the same as the equation

λ2 − trace (A)λ+ det(A) = 0
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with

trace
(
a b
c d

)
= a+ d

det

(
a b
c d

)
= ad− bc .

Now, quadratic equations are easy to solve, so this approach is also computationally useful for 2 by 2
matrices.

There are, for 2 by 2 matrices with real entries, either two real eigenvalues, one real eigenvalue with
multiplicity two, or two complex eigenvalues. In the last case, the two complex eigenvalues must be
conjugates of each other.

If you have λ, an eigenvector associated to an eigenvalue λ is then found by solving the linear system

(A− λI)v = 0

(since λ is a root of the characteristic equation, there are an infinite number of solutions; we pick any
nonzero one).

With an eigenvalue λ and eigenvector v found, we next pick any vector w with the property that the
two vectors v and w are linearly independent. For example, if

v =

(
a
b

)
and a is not zero, we can take

w =

(
0
1

)
(what would you pick for w is a were zero?). Now, since the set {v, w} forms a basis (this is the key
idea for all n: once you know v, you need to find n − 1 other vectors to fill out a basis containing v)
of two-dimensional space, we can find coefficients c and d so that

Aw = cv + dw . (A.19)

We can summarize both (A.18) and (A.19) in one matrix equation:

A (v w) = (v w)

(
λ c
0 d

)
.

Here (v w) denotes the 2 by2 matrix whose columns are the vectors v and w. To complete the con-
struction, we let S = (v w) and

Λ =

(
λ c
0 d

)
.

Then,
AS = SΛ

which is the same as what we wanted to prove, namely A = SΛS−1. Actually, we can even say more.
It is a fundamental fact in linear algebra that, if two matrices are similar, then their eigenvalues must
be the same. Now, the eigenvalues of Λ are λ and d, because the eigenvalues of any triangular matrix
are its diagonal elements. Therefore, since A and Λ are similar, d must be also an eigenvalue of A.

The proof of Schur’s theorem follows the same pattern, except for having fewer choices for v and w.
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The Three Cases for n = 2

The following special cases are worth discussing in detail:

1. A has two different real eigenvalues.

2. A has two complex conjugate eigenvalues.

3. A has a repeated real eigenvalue.

In cases 1 and 2, one can always find a diagonal matrix Λ. To see why this is true, let us go back to
the proof, but now, instead of taking just any linearly independent vector w, let us pick a special one,
namely an eigenvector corresponding to the other eigenvalue of A:

Aw = µw .

This vector is always linearly independent of v, so the proof can be completed as before. Notice that
Λ is now diagonal, because d = µ and c = 0.

To prove that v and w are linearly independent if they are eigenvectors for different eigenvalues,
assume the contrary and show that it leads to a contradiction. Thus, suppose that αv+βw = 0. Apply
A to get

αλv + βµw = A(αv + βw) = A(0) = 0.

On the other hand, multiplying αv+βw = 0 by λ we would have αλv+βλw = 0. Subtracting gives
β(λ − µ)w = 0, and as λ − µ 6= 0 we would arrive at the conclusion that βw = 0. But w, being an
eigenvector, is required to be nonzero, so we would have to have β = 0. Plugging this back into our
linear dependence would give αv = 0, which would require α = 0 as well. This shows us that there
are no nonzero coefficients α and β for which αv+βw = 0, which means that the eigenvectors v and
w are linearly independent.

Notice that in cases 1 and 3, the matrices Λ and S are both real. In case 1, we will interpret the
solutions with initial conditions on the lines that contain v and w as “straight line solutions”.

In case 2, the matrices Λ and S are, in general, not real. Note that, in case 2, if Av = λv, taking
complex conjugates gives

Av̄ = λ̄v̄

and we note that
λ̄ 6= λ

because λ is not real. So, we can always pick w to be the conjugate of v. It will turn out that solutions
can be re-expressed in terms of trigonometric functions — remember example (A.13) — as we’ll see
in the next section.

Now let’s consider Case 3 (the repeated real eigenvalue). We have that

Λ =

(
λ c
0 λ

)
so we can also write Λ = λI + cN , where N is the following matrix:

N =

(
0 1
0 0

)
.
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Observe that:
(λI + cN)2 = (λI)2 + c2N2 + 2λcN = λ2I + 2λcN

(because N2 = 0) and, for the general power k, recursively:

(λI + cN)k =
(
λk−1I + (k − 1)λk−2cN

)
(λI + cN)

= λkI + (k − 1)λk−1cN + λk−1cN + (k − 1)λk−2a2N2

= λkI + kλk−1cN

so

(λI + cN)ktk =
(
λkI + kλk−1cN

)
tk =

(
λktk kλk−1ctk

0 λktk

)
and therefore

eΛt =

(
eλt cteλt

0 eλt

)
(A.20)

because 0 + ct + (2λc)t2/2 + (3λ2c)t3/6! + · · · = cteλt. (This generalizes the special case in exam-
ple (A.15).)

A Shortcut

If we just want to find the form of the general solution of Y ′ = AY , we do not need to actually
calculate the exponential of A and the inverse of the matrix S.

Let us first take the cases of different eigenvalues (real or complex, that is, cases 1 or 2, it doesn’t
matter which one). As we saw, Λ can be taken to be the diagonal matrix consisting of these eigenvalues
(which we call here λ and µ instead of λ1 and λ2), and S = (v w) just lists the two eigenvectors as its
columns. We then know that the solution of every initial value problem Y ′ = AY , Y (0) = Y0 will be
of the following form:

Y (t) = eAtY0 = S eΛt S−1Y0 = (v w)

(
eλt 0
0 eµt

)(
a
b

)
= a eλtv + b eµtw

where we just wrote S−1Y0 as a column vector of general coefficients a and b. In conclusion: The
general solution of Y ′ = AY , when A has two eigenvalues λ and µ with respective eigenvectors v
and w, is of the form

a eλtv + b eµtw (A.21)

for some constants a and b. So, one approach to solving IVP’s is to first find eigenvalues and
eigenvectors, write the solution in the above general form, and then plug-in the initial condition in
order to figure out what are the right constants.

In the case of non-real eigenvalues, recall that we showed that the two eigenvalues must be conjugates
of each other, and the two eigenvectors may be picked to be conjugates of each other. Let us show now
that we can write (A.21) in a form which does not involve any complex numbers. In order to do so,
we start by decomposing the first vector function which appears in (A.21) into its real and imaginary
parts:

eλtv = Y1(t) + iY2(t) (A.22)
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(let us not worry for now about what the two functions Y1 and Y2 look like). Since µ is the conjugate
of λ and w is the conjugate of v, the second term is:

eµtw = Y1(t)− iY2(t) . (A.23)

So we can write the general solution shown in (A.21) also like this:

a(Y1 + iY2) + b(Y1 − iY2) = (a+ b)Y1 + i(a− b)Y2 . (A.24)

Now, it is easy to see that a and b must be conjugates of each other. (Do this as an optional homework
problem. Use the fact that these two coefficients are the components of S−1Y0, and the fact that Y0

is real and that the two columns of S are conjugates of each other.) This means that both coefficients
a+ b and i(a− b) are real numbers. Calling these coefficients “k1” and “k2”, we can summarize the
complex case like this: The general solution of Y ′ = AY , when A has a non-real eigenvalue λ with
respective eigenvector v, is of the form

k1 Y1(t) + k2 Y2(t) (A.25)

for some real constants k1 and k2. The functions Y1 and Y2 are found by the following procedure:
calculate the product eλtv and separate it into real and imaginary parts as in Equation (A.22). What
do Y1 and Y2 really look like? This is easy to answer using Euler’s formula, which gives

eλt = eαt+iβt = eαt(cos βt+ i sin βt) = eαt cos βt+ ieαt sin βt

where α and β are the real and imaginary parts of λ respectively.

Finally, in case 3 (repeated eigenvalues) we can write, instead:

Y (t) = eAtY0 = S eΛt S−1Y0 = (v w)

(
eλt cteλt

0 eλt

)(
a
b

)
= a eλtv + b eλt(ctv + w) .

When c = 0 we have from A = SΛS−1 that A must have been the diagonal matrix(
λ 0
0 λ

)
to start with (because S and Λ commute). When c 6= 0, we can write k2 = bc and redefine w as
1
c
w. Note that then (A.19) becomes Aw = v + λw, that is, (A − λI)w = v. Any vector w with this

property is linearly independent from v (why?).

So we conclude, for the case of repeated eigenvalues: The general solution of Y ′ = AY , when A has
a repeated (real) eigenvalue λ is either of the form eλtY0 (if A is a diagonal matrix) or, otherwise, is
of the form

k1 e
λtv + k2 e

λt(tv + w) (A.26)

for some real constants k1 and k2, where v is an eigenvector corresponding to λ and w is any vector
which satisfies (A − λI)w = v. Observe that (A − λI)2w = (A − λI)v = 0. general, one calls
any nonzero vector such that (A− λI)kw = 0 a generalized eigenvector (of order k) of the matrix A
(since, when k = 1, we have eigenvectors).
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Forcing Terms

The use of matrix exponentials also helps explain much of what is done in chapter 4 (forced systems),
and renders Laplace transforms unnecessary. Let us consider non-homogeneous linear differential
equations of this type:

dY

dt
(t) = AY (t) + u(t) . (A.27)

We wrote the arguments “t” just this one time, to emphasize that everything is a function of t, but
from now on we will drop the t’s when they are clear from the context.

Let us write, just as we did when discussing scalar linear equations, Y ′ − AY = u. We consider
the “integrating factor” M(t) = e−At. Multiplying both sides of the equation by M , we have, since
(e−AtY )′ = e−AtY ′ − e−AtAY (right?):

de−AtY

dt
= e−Atu .

Taking antiderivatives:

e−AtY =

∫ t

0

e−Asu(s) ds + Y0

for some constant vector Y0. Finally, multiplying by e−At and remembering that e−AteAt = I , we
conclude:

Y (t) = eAtY0 + eAt
∫ t

0

e−Asu(s) ds . (A.28)

This is sometimes called the “variation of parameters” form of the general solution of the forced
equation (A.27). Of course, Y0 = Y (0) (just plug-in t = 0 on both sides).

Notice that, if the vector function u(t) is a polynomial in t, then the integral in (A.28) will be a
combination of exponentials and powers of t (integrate by parts). Similarly, if u(t) is a combination
of trigonometric functions, the integral will also combine trigonometric functions and polynomials.
This observation justifies the “guesses” made for forced systems in chapter 4 (they are, of course, not
guesses, but consequences of integration by parts).

Exercises

1. In each of the following, factor the matrix A into a product SΛS−1, with Λ diagonal:

a. A =

(
1 1
0 0

)

b. A =

(
5 6
−1 −2

)
c. A =

(
2 −8
1 −4

)

d. A =

 2 2 1
0 1 2
0 0 −1
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2. For each of the matrices in Exercise 1, use the SΛS−1 factorization to calculate A6 (do not just
multiply A by itself).

3. For each of the matrices in Exercise 1, use the SΛS−1 factorization to calculate eAt.

4. Calculate eAt for this matrix:  0 1 2
0 0 1
0 0 0


using the power series definition.

5. Consider these matrices:

A =

(
1 1
0 0

)
B =

(
0 −1
0 0

)
and calculate eAt, eBt, and e(A+B)t.

Answer, true or false: is eAteBt = e(A+B)t?

6. (Challenge problem) Show that, for any two matrices A and B, it is true that

eAteBt = e(A+B)t for all t

if and only ifAB−BA = 0. (The expression “AB−BA” is called the “Lie bracket” of the two
matrices A and B, and it plays a central role in the advanced theory of differential equations.)
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law of mass action, 65
limit cycle, 101
limits to growth, 30
linear phase planes, 49
linearization, 43
logistic equation, 31

Markov chain, 217
Markov process, 217
mass fluctuation kinetics equation, 232
mass-action kinetics, 213
mean, 211
metabolic needs and diffusion, 188
Michaelis-Menten kinetics, 35, 74
mole, 209
molecular two-species competition, 98
moment generating function, 234
morphogens, 92
mRNA bursting model, 215, 237
mRNA stochastic model, 214, 234, 236, 237
muskrat spread, 183
myoglobin, 190

neuron, 119
nullclines, 51

Ohm’s law for membrane diffusion, 187
order of a reaction, 209
oscillations, 100

partial differential equations, 159
periodic behavior, 100

periodic orbit, 101
phase planes, 49
phosphorylation, 71
pitchfork bifurcation, 110
Poincaré-Bendixson Theorem, 102
polarity in embryos, 92
positional information in embryos, 92
positive feedback, 90
probability generating function, 234
propensities, 220
propensity functions, 210, 212

quasi-steady state approximation, 74

random walks, 181
receptors, 72
relaxation oscillations, 116
removed individuals (from infection), 56
rescaling of variables, 32

saddle-node bifurcation, 109
separation of variables (for PDE’s), 175
sigmoidal response, 89
singular perturbations, 80
SIRS model, 56
slow variables, 80
stability of linear systems, 44
stationarity of Markov process, 217
stationary density, 211
steady states, 41
steady states for Laplace equation, 186
steady-state behavior of PDE’s, 185
steady-state probability distribution, 211
stem cells, 95
stochastic differential equations, 247
stochastic gene expression, 215, 238
stochastic kinetics, 209
stochastic mass-action kinetics, 213
stochastic simulation algorithm (SSA), 223
stoichimetry, 209
subcritical Hopf bifurcation, 112
supercritical Hopf bifurcation, 112
susceptibles, 56
systems of PDE’s, 184

thermodynamic approximation, 245
trace/determinant plane, 50
transcritical bifurcation, 110



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 283

transport, 163
trapping region, 103
traveling waves in reaction-diffusion system, 195
traveling waves in transport equations, 165
two-sex infection model, 62

ultrasensitivity, 89
unit Poisson representation, 245

Van der Pol oscillator, 104
variance, 211
vector fields, 49


