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The first version of these notes dates back to 2005. They were originally heavily inspired by Leah
Keshet’s beautiful book Mathematical Models in Biology (McGraw-Hill, 1988), and the reader will
notice much material “borrowed” from there as well as other sources. In time, I changed the emphasis
to be heavier on “systems biology” ideas and lighter on traditional population dynamics and ecology.
(Topics like Lotka-Volterra predator-prey models are only done as problems, the assumption being
that they have been covered as examples in a previous ODE course.) The goal was to provide students
with an overview of the field. With more time, one would include much other material, such as Turing
pattern-formation and detailed tissue modeling. Starting with Version 6, there is a first very short
chapter on difference equations, which can be skipped without loss of continuity. (And, conversely,
can be covered by itself.)

The writing is not always textbook-like, but is sometimes “telegraphic” and streamlined, so as to
make for easy reading and review. (The style is, however, not consistent, as the notes have been
written over a long period.) Furthermore, I do not use “definition/theorem” rigorous mathematical
style, so as to be more “user-friendly” to non-mathematicians. However, the reader can rest assured
that every statement made can be cast as a theorem! Also, I tried to focus on intuitive and basic ideas,
as opposed to going deeper into the beautiful theory that exists on ordinary and partial differential
equation models in biology — for which many references exist.

Please note that many figures are scanned from books or downloaded from the web, and their copy-
right belongs to the respective authors, so please do not reproduce.

Originally, the deterministic chapters (ODE and PDE) of these notes were prepared for the Rutgers
course Math 336, Dynamical Models in Biology, which is a junior-level course designed for Biomath-
ematics undergraduate majors, and attended as well by math, computer science, genetics, biomedical
engineering, and other students. Math 336 does not cover discrete methods (genetics, DNA sequenc-
ing, protein alignment, etc.), which are the subject of a companion course. With time, the notes were
extended to include the chapter on stochastic kinetics, covered in Math 613, Mathematical Founda-
tions of Systems Biology, a graduate course that also has an interdisciplinary audience. In its current
version, the material no longer fits in a 1-semester course. Without the stochastic kinetics chapter, it
should fit in one semester, though in practice, given time devoted to exam reviews, working out of
homework problems, quizzes, etc., this is unrealistic.

Pre-requisites for the deterministic part of notes are a solid foundation in calculus, up to and including
sophomore ordinary differential equations, plus an introductory linear algebra course. Students should
be familiar with basic qualitative ideas (phase line, phase plane) as well as simple methods such as
separation of variables for scalar ODE’s. However, it may be possible to use these notes without the
ODE and linear algebra prerequisites, provided that the student does some additional reading. (An
appendix provides a quick introduction to ODE’s.) The stochastic part requires good familiarity with
basic probability theory.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 2

I am routinely asked if it is OK to use these notes in courses at other universities. The answer is,
obviously, “of course!”. I do strongly suggest that a link to the my website be provided, so that
students can access the current version. And please provide feedback!
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Chapter 1

Difference Equations

In this short chapter, we provide a brief introduction to scalar difference equations.! With differen-
tial equations, things get interesting only in higher dimensions. On the other hand, with difference
equations, certain behaviors, such as periodic orbits and chaos, can already appear in models with just
one variable. In addition, it is possible to understand this material without knowledge of calculus nor
linear algebra, and as such, it provides an easy introduction to ideas about dynamics.

1.1 Iterations, the P and A formalisms, and exponential growth

We use t to denote the time variable, which in this chapter is taken to be discrete, t = 0,1,2, .. ..

It is implicitly assumed that we have fixed a unit of time measurement; for example, ¢ may be mea-
sured in generations if we are interested in genetics, or in hours, days, or years if studying population
size for cells, flies, or humans respectively.

We use the letter P for a function that describes a time-dependent quantity that we wish to study, such
as the size of a certain population. Depending on the context, we find sometimes more convenient to
write “P;” instead of P(t)” for the population at time .

A difference equation is a just rule that tells us how the population at the next time ¢ + 1 depends on
the population at the current time ¢:
Py =F (P t)

where “P” is some scalar function. It is usually too hard to find closed-form solutions of such equa-
tions, but numerical experiments can help tremendously, especially if coupled with qualitative under-
standing of the type that we describe next.

It is sometimes more convenient (and it provides better intuition about the transition to differential
equations) to think of a rule that tells us not what the next state will be, but instead quantifies the
change in population that will be observed. We write this increment as “A P, defined mathematically
as follows:

APy =P — B

I'The material here is largely “borrowed” from part of Chapter 1 of Mathematical Models in Biology: An Introduction,
2004, by Allman and Rhodes. The reader is encouraged to consult that text for much more material, including vector
systems of difference equations and for applications to molecular evolution, phylogenetic trees, classical genetics, and
epidemics.
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Of course, it is obvious from this definition that we can compute F,; by starting from F, and adding
the change to it:

Py =F+ AP,

In other words, a rule for specifying APF;, or a rule for specifying P, q, as functions of P, are just
different ways of conveying the same information.

We adopt the following convention, to be used whenever ¢ is clear from the context. Instead of
P,y = F(P,), we write
Pt = F(P)

(think of the superscript “+ as “step the index up by one”) and instead of A P, we write A P, dropping
t.

1.1.1 Linear equations

Let us start with a very simple example, basically the exponential growth model described by Malthus
in the late 18th century (which may be treated also using differential equations, if time is assumed
continuous instead of discrete). Suppose that at each time ¢, the population change is as follows:

1. add a multiple f of the population (think of a “fecundity” due to births), and

2. subtract a fraction d of the population (think of a death rate).

Given how we said this, this specifies a rule for the change A P, namely:
AP, = fP,—dP, = (f —d)P,.
Sometimes we write this in short form, as:
AP = (f—-d)P

but we should always remember the arguments ¢ in both sides. Of course we also have a rule for
computing the next P+:

Pr=P+AP=P+(f—d)P=(1+f—d)P =P,

where we write
A=1+f—-d

for convenience (because only the value of A\, and not the individual fecundity and death rate, matter
for the subsequent analysis); A is called the growth rate of the population.

As a trivial example, suppose that f = 0.1, d = 0.02, sothat A = 1 + f — d = 1.08. If we specify an
“initial condition” such as Fy = 100, we may recursively compute:

Pt =1.08P, Py= 100
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by repeatedly multiplying by 1.08. We get

Day Population
0 100
1 (1.08)100 = 108
2 (1.08)%100 = 116.64
3 (1.08)%100 = 125.971
4 (1.08)*100 ~ 136.0489

and, obviously, we know the solution for all ¢ in closed form: P = 100(1.08)".

What is the meaning of non-integer populations? It depends on the units in which P is being specified.
For example, P, may be measured in millions of individuals (cells, people) at time ¢, in which case
fractions have an obvious meaning: 136.0489 means 1,360,489 individuals. Or, we may be measuring
populations by weight, such as in tons if dealing with a harvest of a crop or fish. In any event, all
models are ultimately simplifications of reality, so we may view a number like “136.0489” as simply
“approximately 136 and ignore the fractional part.

A word description of such a problem might be as follows. Suppose we study an insect species for
which, in each generation, each female lays 150 eggs.>? We also assume that when eggs hatch, only
2% survive to become adult females. (The remaining eggs are assumed to not hatch or to be males.)
We assume that we measure time in generations, and all adults die before the next generation size is
computed. Thus, the death rate is d = 1 (everyone dies) and the effective fecundity is

f=.02(150) = 3
which leads to the following equation for the female population:
PT=(01+3-1)P=3P

(we ignored males in order to simplify the model; assume that enough males are available that the
model makes sense).

2Obviously, this is nonsense. Not every female will lays the exact same number of eggs. To keep things simple,
however, we assume that they are all perfect and lay precisely 150 eggs. In probabilistic terms, we are looking at mean or
expected values.
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1.2 Some nonlinear models

The exponential growth model is, of course, not realistic: in practice, birth and death rates are depen-
dent on available resources (such as food, water, or space), and thus, at least indirectly, on the size of
the population. Thus, it is reasonable to modify the linear growth model by assuming that the growth
rate decreases as the population size increases. This is sometimes called the “density-dependent
growth” model.

To introduce the model, let us consider the per-capita growth rate over a single time step, that is to
say, the change in population per individual A P,/ P, that happens between times ¢ and ¢ + 1.

In the usual exponential growth model, we have a constant AP,/ P, = .

It is reasonable to assume that, for small populations, there are sufficient environmental resources to
support a positive per capita growth at rate r, but that for large populations the per-capita growth is
smaller as individuals compete for both food and space. For even larger populations, say, larger than
some number K (called the “carrying capacity” of the environment), the per-capita growth rate should
be negative, as there are insufficient resources to maintain the population size (some will starve and
will not be able to reproduce; more will die).

So, we want a function that expresses that % decreases with increasing P, eventually becoming
negative, as shown in the left panel in the figure.

AP/P I\P/P

P
K P K

The simplest such function is a linear function as shown in the right panel:

AP (P
p K)-

In other words, AP, = rP; (1 — £t), and, since P,y = P, + AP, the model can also be described

)

One calls this the logistic model. (To be more precise, one should call it the “discrete” logistic model,
to differentiate it from the continuous model studied for ODE’s.) Note that when the population is
small (meaning that P < K), P/K = (0 so we have

Pt~ AP, where \=1+r

— in other words, when the population is far below the carrying capacity, we have a behavior just as
in the simpler exponential growth model.

There is no simple expression for the iterates, comparable to “\' Py for the exponential growth model.
However, we can numerically iterate in order to have some feel for the solutions. It is rather amazing
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that this simple model can lead to very interesting and unexpected behaviors, as we see later. For
some parameters, however, the behavior is not too surprising. For example, if we iterate

Pt = P(1+.7(1 — P/10)), Py = 0.4346
we obtain:
Py = .7256, P, = 1.1967, Py = 1.9341, P, = 3.0262, Ps = 4.5034, Ps = 6.2362,
P; = 7.8792, Py = 9.0489, Py = 9.6514, P;y = 9.8869, Py, = 9.9652, Py = 9.9895, . ..

as plotted below.?

Population P

0 5 10 15
Time

(Only values at integer times ¢ are computed; the interpolating line segments are only shown to help
your eyes to follow the behavior over time.)

Note that the population increases monotonically toward the carrying capacity value of 10, first slowly,
then more rapidly, and finally slowing up again. A “sigmoidal” picture, as often seen in lab experi-
ments, is observed.

1.2.1 Cobwebbing

A most useful qualitative tool for understanding nonlinear discrete iterations is as follows. Consider
the same example as earlier:

PT=P(1+.7(1-P/10)), Py=23

and now proceed as follows:

1. graph the parabola (defined by the equation that specifies P* in terms of P);

2. graph the diagonal line P = P;

3. mark the point (Fy, Py) = (2.3,2.3) on the diagonal;

4. to find P, move vertically toward to the graph of the parabola, to reach the point (Fy, P;);

5. to find P, we first need to mark P; on the z-axis, or equivalently we mark (P;, P;) on the diagonal;
we do this as follows: move horizontally from (P, P;) toward the diagonal, hitting it at (P;, P;) (thus,
we kept the y-second coordinate same, and changed the x-coordinate);

6. finally, to find P,, we move vertically back to the parabola to find (P, P,);

7. now iterate the procedure “vertically to parabola, horizontally to diagonal, vertically to parabola”
until the pattern becomes obvious.

3Most figures in this chapter are reproduced, or generated using their MATLAB scripts, from Allman and Rhodes’s
book.
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The figure shown below illustrates the procedure.

Populafion at time t+1

20

— 8.0 0

—

—

—

t
R

t
R

t
R,

4

6

8 10 12 14 16 18 20

Population at time t

It is clear from the graph that, whenever the initial population F; is between 0 and K=10, the popu-
lation increases, asymptotically approaching the carrying capacity K (formally, lim; ., P = K).
Still with the same parameters r=0.7 and K'=10, let us now start from F, = 18. With this F, and
more generally whenever F, > K=10, the population also has lim, .., P, = K. The approach back
to K might be monotonically decreasing, or, if P,y < K, there is first an “undershoot” followed by
a recovery.

20
1871
16
14 r

Population at time t+1

0 2 4 6 8 10 12 14 16 18 20

Population at time t

Actually, when the population starts extremely high, the population could become negative, which

is of course nonsense. Therefore, the model is still very unrealistic. One way to fix the model is to

just truncate the parabola at zero, indicating extinction of the population, but many other changes are
e 4

possible.

Incidentally, the MATLAB code used to plot the parabola and the diagonal is as follows:
x=0:0.01:20

y=x.% (1+0.7* (1-x)) ;
plot (x,v,%x,x%x,’linewidth’, 2)

Note the use of “.*” because we want a component-wise product. We are using “linewidth” of 2 to
get thicker pictures for printing.

4See Section 1.4 in Allman-Rhodes for many proposed models.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 15

1.3 Equilibria and linearizations

In the logistic example, with the parameters used earlier (r = 0.7 and K = 10), one can verify that
P, - K = 10 as t — oo, no matter what is the initial state, with the only exception of the very
special state in which the population is empty, /) = 0. Note that, in particular, if P, = 10 exactly,
then P, = 10. Each of 0 and 10 is a steady state.

More generally, a steady state of PT = F'(P) (also called an equilibrium or a fixed point) is a value
P* with the property that

F(P*) = P

or equivalently, if we write the iteration as AP = G(P), a steady state must satisfy that there is no
change:

G(P")=0
(this second condition makes it easier to compare to equilibria in ODE’s).
Graphically, equilibria correspond to the intersection of the graph of F'(P) with the diagonal, and

algebraically, they are obtained by solving P = F'(P). For example, solving the quadratic equation
P = P(1+.7(1 — P/10)) for P gives the two solutions P = 0 and P = 10.

Although they are both equilibria, there is a major difference between 0 and 10. A population that

starts near 0 tends to move away from 0, but a population that starts near 10 tends to move toward 10.
20 T T T T T T T T T

18
16 |
14 |
12 |
10| A
. P

—

Populafion at time t+1

T _:Ulrsulcsul

—-

—

1

o Bk O

ot

IFC):I F1)I F)z 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20
Population at time t

0

Mathematically, we say that P* = 0 is an unstable or repelling equilibrium while P* = 10 is a stable
or attracting equilibrium.

To be precise, an equilibrium value P* is said to be (locally, asymptotically) stable if the following
property holds:

For each € > ( there is some 6 > 0 such that
|Ph—P|<é = |P—P|<eVt>0 and tlimPt:P*
— 00

This definition says that provided that we start near P*, we will never deviate too much from P* (no
“large excursions”), and eventually will asymptotically approach it.
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For the purposes of these notes, we’ll just say “stable” and understand the property as saying that
lim; .., P, = P* provided that we start from a F, near enough P*.

Note that the notion of stability is “local” in the sense that we only ask about trajectories that start
“close enough” to P*. Certainly, if there is another equilibrium (such as “0” in our previous example),
then starting from that other equilibrium, there is no way that we’ll ever approach P*, even if P* is
stable!

On the other hand, in practice it is very difficult to ever see a real system at one of its unstable
equilibria, because the smallest perturbation will take us away from that state. Think of a pen perfectly
balanced in a vertical position, of a ball placed at the top of a hill. Thus, stable equilibria are of great
interest.

1.3.1 Linearization at an equilibrium P*

As stability depends on what happens close to an equilibrium, we look at the deviation from an
equilibrium P*:
pe =B — P"

and, since

Ipec1| < |ps] = P* moves closer to P*

Ipe+1] > |pd] = PT moves away from P*

all we need to do is to understand if the ratio is<lor>1.

Pt+1
t

We use calculus to figure this out, remembering that the perturbation p, is ~ .

Since
py1 = Py —P" = F(P)— P = F(P"+p)— P,

we have:
P+ _ F(P* +pt) _F<P*) ~ F/<P*)
Dt Dt

where we used the definition of derivative, which says that w — F'(x) as h — 0. In other
words,

Pi+1 = F’(P*)pt-

With a little more formalism, one can in fact prove rigorously that if P* is an equilibrium for Pt =
F(P,), then:

|F'(P*)]<1 = P* stable
|F'(P*)]>1 = P* unstable.

One often calls F’(P*) the linearization at the given equilibrium.

Let us revisit our previous example F(P) = P(1 + .7(1 — P/10)) using linearizations. We know
that the equilibria are 0 and 10. Now, in general, F'(P) = (1 + .7(1 — P/10)) + P(.7)(—1/10),
s0, in particular: F’(0) = 1.7 > 1, confirming that O is unstable, and F’(10) = 1 —.7 = 0.3 < 1,
confirming that 10 is stable.
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When |F’(P*)| = 1, one cannot decide using just first derivatives.® To illustrate this, take the example
F(P) = P + P? and the equilibrium P* = 0. Note that F'(P*) = 1. One can see graphically (using
cobwebbing) that starting at ) = —0.01 results in convergence to 0, but starting at F; = 0.01 results
in divergence from 0, so this state is in fact neither stable nor unstable.

z

151

1t
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graph of F/(P) = P + P? and diagonal

As an optional homework problem, you may want to analyze these two other cases where F’(0) = 1:
F(P)=P+ P3and F(P) =P — P3.

1.4 Oscillations, Bifurcations, and Chaos

Let us continue the analysis of the logistic model P = P(1+ r(1 — P/K). For simplicity, we’ll use
only K = 1 from now on:

F(P)=P1+r(1-P))=P1+r—rP)
but we will investigate the behavior of this system for different positive r’s (before, we had studied

the special case r = 0.7).

No matter the value of r, there are only two equilibria, P* = 0 and P* = 1, and we can easily
compute the linearizations at each: F'(0) = 1+ r, F'(1) = 1 — r. Thus, 0 unstable (for any given
value of the parameter > (), but what about P* = 1? Now things get really interesting! We study
various examples one at a time.

141 0<r<l1

Since F'(1) =1 —rand 0 < 1—r < 1, P* = 1 is stable. Moreover,
P~ F'(D)p = (1 —1)p,

shows that the sign of p, does not change. Therefore, not only does the perturbation shrink, but an
initially positive perturbation remains positive and an initially negative one remains negative. In other
words, the population moves toward the equilibrium P = 1 without overshoot (assuming Fy ~ P*).
You should see this by performing a cobwebbing on the graph shown for the example » = 0.5.

>This is quite analogous to, when checking for local minima and maxima, we get a zero second derivative - we may
have a min, a max, or an inflection point.
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142 1<r<?2

As F'(1) = 1—rand —1 < 1—r < 0, the equilibrium P* = 1 is still stable, but since p;; ~ (1—7r)p,
the sign of p, alternates between positive and negative as ¢ increases. In other words, we expect to
see an oscillatory behavior above and below the equilibrium, as the perturbation from equilibrium
alternates in sign. The population approaches equilibrium as a damped oscillation. You should see
this by performing a cobwebbing on the graph shown for the example » = 1.5.

05

-0.5F

-1

L L L L L L L L L
0 0z 04 0.6 0.8 1 1z 14 1.8 1.8 z

F(P) and diagonal when » = 0.5 and r = 1.5

143 r>2

Now F'(1) =1—rand 1 —r < —1, so P* = 1 is unstable.
We first study the special case, r = 2.4. It is hard to see exactly what happens here. So we first plot a
few iterates (with an initial condition of 0.3):

151

Fopulation p

=
o

i 1 i 1 i i
a 5 10 15 z0 25 30 35 40
Time

Some iterates when r = 2.4, quickly approaching periodic orbit

To algebraically find this period-2 oscillation, that is to say a point P, such that P, = F(P,) and
P2 :F<P1) :Pg,Wewrite

F(P) = F(F(P)) = F(P)(3.4 — 24F(P)) = P(3.4 — 24P)(3.4 — 2.4P(3.4 — 2.4P))
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and solve F>(P) = P for a fixed point P. This gives 0 and 1 (which also solve F(P) = P, so we
already knew about that), as well as two new solutions: ~ 0.6402812675, 1.193052066.

Cobwebbing confirms a period-2 oscillation when starting from one of these states:

nar

0e6F

04

nzr

0 L L L L L L L L L
04 0.5 0.6 0.7 0.4 04 1 11 1.2 1.3 14

Cobwebbing for r = 2.4

As 7 is increased further, the values in the 2-cycle change, but the existence of some 2-cycle persists,
until we hit another value of r, where a new qualitative change occurs this time we see the 2-cycle

becoming a 4-cycle.

For example, let us study another special case, » = 2.5 and again start by plotting a few iterates,
discovering that there is a period-4 orbit:

Fopulation p

7] SRRTITTRRR IO B .......... TR RPN ...........

i 1 i 1 i i
a 5 10 15 z0 25 30 35 40
Time

To 4 decimal digits, the numbers of this orbit are numerically found to be: 1.2250, 0.5359, 1.1577,
0.7012.

Further increases in r produce an 8-cycle, then a 16-cycle, and so forth. This is an example of what is
called the “period doubling route to chaos”.



Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 20

1.4.4 Bifurcations and chaos

To visualize the effect of changing r, we may draw a bifurcation diagram, which is produced as
follows: For each value of r on the horizontal axis, pick some value F,, then first iterate “enough
times” that transient behavior is over, discarding these values of ;. We then plot values of consecutive

P, on a vertical axis above this r.
14+

121

06

041

parameterr
0 1 1 1 1

1.8 2 2.2 24 26 2.8

We see that, for r = 2.4, there are two values of F; that appear (after a transient behavior that we
disregarded), consistently with our having found a periodic orbit for that value of . We also see four
points when r = 2.5, and so forth.

Even more interestingly, when 7 is increased past a certain point (= 2.692 . . .) all the bifurcations into

2"-cycles have already taken place, and a new type of behavior emerges: the values seem to be spread
out. Take for example r = 2.75. A plot of the first few P,’s shows what looks like “random” behavior.

Population p
Population p

Time Time

r =2.75, two different initial conditions

Of course there is nothing random (in the sense of coin-flipping): a deterministic formula produces
the values. But such irregular behavior is usually referred to as “chaotic”. An interesting feature
is that of high sensitivity to initial conditions or “butterfly effect” as it was called by the American
mathematician and meteorologist Edward Lorenz in 1961.° For the two only slightly different initial

The butterfly effect is the sensitive dependence on initial conditions, in which a small change in one state of a
deterministic nonlinear system can result in large differences in a later state. Lorenz used this term as a metaphor, referring
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values shown earlier, the populations change similarly only for a few time steps, but quickly become
very different, as clearly seen when superimposed.
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to the details of a hurricane being influenced by minor perturbations such as the flapping of the wings of a distant butterfly

several weeks earlier.
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1.5 Problems for Scalar Difference Equations chapter

Problems SDE1: Formalisms and exponential growth

1. It is known that a given population triples each hour, due to the net effect of fecundity and
deaths.

(a) Assuming an initial population at time ¢ = 0 of 100, compute the population sizes for
t=1,23,4,5.

(b) Show the equations that model the population, in each of the two formalisms:

(i) provide a formula for P* in terms of P

(i1) provide a formula for AP in terms of P .
(c) What, if anything, can you say about the fecundity and death rates for this population?

2. Suppose that you observe a frog embryo in which all cells divide roughly every half hour. In
other works, the number of cells in this embryo doubles every half hour. We start with one cell
at time .

(a) Write down an equation for P in terms of P that models this situation. Explain what time
unit you are using, and what is the initial value F.

(b) How many cells are there after 5 hours?

3. Using a calculator, compute the populations at times ¢ = 0 to 6 for the following models:
(@ P"=13P, P,=1
(b) Pt = .8P, Py =10
(c) AP = 2P, P, =10

4. (a) Obtain 20 iterations of Pt = 1.3P, Py = 1 using MATLAB. You may want to enter the
following command sequence:

p=1

x=1

for i=1:20
p=1.3*p
x=[x p]

end

(b) Next, graph your data, using the command:

plot ([0:207,x)

Important note: instead of entering these commands one by one, it is far better to create a file,
let us say called “myprogram.m” which contains the above commands. Then you can just type

“myprogram” into MATLAB. Make sure to use a basic text editor (such as Notepad, or the
MATLAB editor), which does not insert any formatting characters.
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5. Fill-in:

(a) The model P™ = kP represents a growing population if & is any number in the range

!

(b) The model AP = rP represents a growing population if 7 is any number in the range

!

(c) The model P* = kP represents a declining population if % is any number in the range

!

(d) The model AP = rP represents a declining population if r is any number in the range

!

6. Explain why the model AP = r P cannot be biologically meaningful for describing a popula-
tion, if 7 is a number < —1.

7. Suppose that the size of a certain population is affected not only by birth and death, but also by
immigration and emigration, and each of these occurs in a yearly amount that is proportional to
the size of a population.

That is, if the population is P, then within a time period of 1 year, the number of births is b P,
the number of deaths is d P, the number of immigrants is P, and the number of emigrants is
e P, for some positive constants b, d, 1, e.

Model the population growth by a formula like “P*™ = \P” specifying a formula for r in terms
of b,d,1,e.
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Problems SDE2: Logistic model and basic cobwebbing

1. Using any software of your choice, and testing several different values for F), investigate the
long-term behavior of the model AP = rP(1 — P/10) for these different parameter values:
r=.2,.81.3,2.2,2.5,2.9,and 3.1.

(You may have to vary the number of time steps that you run the model to study some of these)

2. (a) Rewrite the model P™ = P + .2P(10 — P) in each of the following forms:
(i) AP =kP(1 — P/K)
(i) AP = kP — hP?
(iii)) AP = kP(K — P)
(iv) PT = kP — hP?
(pick in each case an appropriate value for the constants k£ and h).
(b) Repeat (a) for P* = 2.5P — .2P?,

3. Consider the model AP = .8P(1 — P/10).

(a) Plot AP as a function of P. You may want to use, for example, the following MATLAB
commands:

x=[0:.1:127;
y=.8%x.x (1-x/10);
plot (x,vy)

(b) Construct a table of values of P, fort = 0,1, 2, 3, 4, 5 starting from F, = 1.
(c) Graph PT as a function of P.
(d) On your graph from part (b), construct a cobweb beginning at £, = 1.

(You can add the diagonal line y = x to your graph by entering the commands “hold on” and
“plot(x,y,X,x)”.)

Compare the values from your cobweb to those that you obtained in part (b).

4. These are measurements of populations obtained in a laboratory experiment using insects:

Py= 97, P =152, P, = 231, P, = 3.36, P, = 4.63, Ps = 5.94, Py = 7.04, P; = 7.76,
Py =8.13, Py = 8.3, P,y = 8.36,

(a) Plot these points, to convince yourself that they are (roughly) consistent with a logistic
model. You may use these commands:

times=[0 1 2 3 4 5 6 7 8 9 10];
Ps=[0.97 1.52 2.31 3.36 4.63 5.94 7.04 7.76 8.13 8.3 8.36];
plot (times, Ps)

(b) Now estimate the parameters r and K in “AP = r P(1— P/ K)” by performing the following
steps (there are much better methods for estimating sigmoidal functions; we are just being
intuitive here):
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(1) first give a guess of K by looking at the graph (remember that / is the carrying capacity!);
(ii) then, using that Py < K, approximate AP,/ P, by r; what value of r do you obtain?

Plot the data and the iteration, starting at the same F, with the values that you obtained.
Finally, use some trial and error, increasing r, to see if you get a better fit.

t+1

o d—+

t+1

oW+

b.

t+1

5. Use cobwebbing to estimate the populations for the next six time increments in each of the
following models. (Take the initial populations as indicated by “F,”.)
d.

t+1 /r_\
/o
/o
/.
[
/ ;;
! P
FE| t
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Problems SDE3: Equilibria and linearizations

1. For each of the following, determine the equilibrium points:

(a) P* = 1.3P —.02P?
(b) PT =3.2P — .05P?
(c) AP = 2P(1 — P/20)
(d) AP = aP — 3P?

(e) Pt =eP —6P2.

2. For (a-e) of the preceding problem, linearize the model (i.e,, compute F’(P)) first about the
steady state 0, and then about the other steady state to determine their respective stabilities. (To
compute linearizations, you must convert (c) and (d) to the iteration form “P* = F'(P)”.) In
parts (d) and (e), your answers will be algebraic conditions on the parameters.

3. Use any software of your choice to

(a) Plot the first 100 iterates of the logistic iteration with parameter » = 2.55 and initial condi-
tion (approximately) 0.5;

(b) You will see that there is a period-8 orbit for this parameter; provide the 8 numbers for this
orbit
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Problems SDE4: Oscillations, Bifurcations, Chaos

1. The following is a bifurcation diagram for a certain one dimensional iteration that depends on
a parameter “r”, for r ranging from 1.8 to 2.7. (For your convenience, shown in the right is a
zoomed version, for the region where r ranges from 2.4 to 2.6.)
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Shown below are iteration plots for the parameters: » = 1.85,r = 2.2,r = 2.45,r = 2.56,r =
2.7. Using the information from the bifurcation diagram, you should label each figure that
follows by the appropriate value of r. Just write something like “r = 2.45” (or “no possible r
between 1.8 and 2.7”) next to the corresponding figure; no need to provide any justification.
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2. Using the same data as in the previous problem, shown below are cobweb plots for the param-
eters: r = 1.85,r = 2.2, r = 2.45,r = 2.56,r = 2.7. Label appropriately.
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Chapter 2

Deterministic ODE models

2.1 Modeling, Growth, Number of Parameters

Let us start by reviewing a subject treated in basic differential equations courses, namely how one
derives differential equations for simple exponential growth and other simple models.

2.1.1 Exponential Growth: Modeling

Suppose that N () counts the population of a microorganism in culture, at time ¢, and write the
increment in a time interval [¢, ¢ + h] as “g(N(¢), h)”, so that we have:

N({t+h) = N(t) + g(N(t),h).

(The increment depends on the previous N (), as well as on the length of the time interval.)

We expand ¢ using a Taylor series to second order:
g(N,h) = a+0bN +ch+eN?+ fh* + KNh + cubic and higher order terms
(a,b,...are some constants). Observe that
g(0,h) =0 and g(N,0) =0,

since there is no increment if there is no population or if no time has elapsed. The first condition tells
us that
a+ch+ fh*+... =0,

for all h, so a = ¢ = f = 0, and the second condition (check!) says that also b = N = 0.
Thus, we conclude that:

g(N,h) = KNh + cubic and higher order terms.

So, for h and N small:
N(t+h) = N(t)+ KN(t)h, (2.1

which says that

29
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the increase in population during a (small) time interval
is proportional to the interval length and initial population size.

This means, for example, that if we double the initial population or if we double the interval,
the resulting population growth is doubled.

Obviously, (2.1) should not be expected to be true for large h, because of “compounding” effects.
It may or may not be true for large N, as we will discuss later.

We next explore the consequences of assuming Equation (2.1) holds for all small >0 and all N.

As usual in applied mathematics, the “proof is in the pudding’:

one makes such an assumption, explores mathematical consequences that follow from it,
and generates predictions to be validated experimentally.

If the predictions pan out, we might want to keep the model.

If they do not, it is back to the drawing board and a new model has to be developed!

2.1.2 Exponential Growth: Math

From our approximation
KN(t)h = N(t+h) — N(t)

we have that
KN({t) = %(N(t +h) = N(@®)

Taking the limit as & — 0, and remembering the definition of derivative, we conclude that the right-

dN
hand side converges to %(t) We conclude that NV satisfies the following differential equation:

dN
— =KN|. 2.2
i (2.2)

We may solve this equation by the method of separation of variables, as follows:

dN dN

Evaluating at ¢ = 0, we have In Ny = ¢, so that In(/N(t)/Ny) = K't. Taking exponentials, we have:

N(t) = NyeX? (exponential growth: Malthus, 1798)

Bacterial populations tend to growth exponentially, so long as enough nutrients are available.

2.1.3 Limits to Growth: Modeling

Suppose now there is some number B (the carrying capacity of the environment) so that
populations N > B are not sustainable, i.e.. dN/dt < 0 whenever N = N(t) > B:
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dN/dt

0 B N

It is reasonable to pick the simplest function that satisfies the stated requirement;
in this case, a parabola:

dN N
- = rN (1 — E) (for some constant 7 > 0) (2.3)

But there is a different way to obtain the same equation, as follows.
Suppose that the growth rate “/”” in Equation (2.2) depends on availability of a nutrient:

K = K(C) = K(0)+kC+0(C) ~ kC (using that K(0) = 0)

where C' = C'(t) denotes the amount of the nutrient, which is depleted in proportion to the population
change: !

ac' dN
— = —a— = —aKN
dt “a T
(“20 new individuals formed = o x 20 less nutrient”). It follows that
d dC dN

and therefore C'(¢) + aN (t) must be constant, which we call “C?
(we use this notation because C'(0) + aN(0) ~ C(0), if the population starts as N (0) ~ 0).

So K = kC = k(Cy — aN), and Equation (2.2) becomes the same equation as (2.3), just with
different names of constants:

dN

E = /ﬁ?(Co-CKN)N

2.1.4 Logistic Equation: Math

dN N N(B—-N
We solve T riN (1 — —) = rg using again the method of separation of variables:

B B
BdN _/ »
NB-Ny) )"

We compute the integral using a partial fractions expansion:

1 1 N N cB
— dN = dt 1 = rt = ce" N(t) = ————
/(N+B—N> /T = n(B—N) rtte = p—% =" = (1) =

Lf N (t) counts the number of individuals, this is somewhat unrealistic, as it the ignores depletion of nutrient due to
the growth or individuals once they are born; it is sometimes better to think of N (t) as the total biomass at time t
2this is an example of a “conservation law”, as we’ll discuss later
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NoB
NO =+ (B — No)e*’“t

= T=Ny/(B-N,) = |N(t) =

We can see that there is a B asymptote as ¢ — oco. Let’s graph with Maple:

with (plots) :

f(t):=t—>(0.2)/(0.2+0.8xexp(-t)) :

pl:=plot (f£(t),0..8,0..1.3,tickmarks=[0,2],thickness=3,color=black):
g:=t->1:
p2:=plot(g(t),0..8,tickmarks=[0,2],thickness=2,1linestyle=2,color=black):
display (pl,p2);

Gause’s 1934 Experiments

G.F. Gause carried out experiments in 1934, involving Paramecium caudatum and Paramecium aure-
lia, which show clearly logistic growth:

i

f7

Husbar o fndividurty
iz ¥

(# individuals and volume of P. caudatum and P. aurelia, cultivated separately, medium changed daily,
25 days.)

2.1.5 Changing Variables, Rescaling Time

We had this equation for growth under nutrient limitations:

dN

E = H(CO—OZN>N

which we solved explicitly (and graphed for some special values of the parameters Cy, x, ).
But how do we know that “qualitatively” the solution “looks the same” for other parameter values?
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Can the qualitative behavior of solutions depend upon the actual numbers Cy, x, a?

First of all, we notice that we could collect terms as
dN
dt

(where 50 = k(Cp and o = k), so that we might as well suppose that x = 1 (but change «, Cy).

— ((kCo) = (k)N)N = (Co—aN) N

But we can do even better and use changes of variables in /N and ¢ in order to eliminate the two
remaining parameters!

The idea is as follows. Suppose that N (¢) is any solution of the differential equation

dN

— = f(t,N(t
(we allow an explicit dependence of f on ¢ in order to make the explanation more general, even though
most examples given below do not show an explicit ¢). Let us now introduce a new function, called

N*, that depends on a new time variable, called ¢*, by means of the following definition:

1 .
N*(t") := —N(t't
(#) = N
where N and ¢ are two constants. These two constants will be specified later; we will pick them in
such a way that the equations will end up having fewer parameters. The chain rule says that:
dN* t dN . t s A
t*) = — —(t"t) = —= f(t't, N(t"1)).
o (t) = < ) = < S NED)
(The expression “dN/dt” above might be confusing, but it should not be. We are simply writing
“dN/dt(t*t)” instead of “N’(t*t)”. The “t” variable is a dummy variable in this expression.) In
summary, we may symbolically write:

N

.dN _ d(N*N)  NdN*
dt — dtt)  f de

and proceed formally. Our general strategy will be:

e Write each variable (in this example, N and ?) as a product of a new variable and a still-to-be-
determined constant.

e Substitute into the equations, simplify, and collect terms.

e Finally, pick values for the constants so that the equations (in this example, there is only one
differential equation, but in other examples there may be several) have as few remaining param-
eters as possible.

The procedure can be done in many ways (depending on how you collect terms, etc.), so different
people may get different solutions.

Let’s follow the above procedure with our example. We start by writing: N = N *N and t = ¢*,
where stars indicate new variables and the hats are constants to be chosen. Proceeding purely for-
mally, we substitute these into the differential equation:

a(NN)

N dN”
d (t+t)

dt*

t
d;;i = /{f@N(CQ —N*) N*

= /@(Co—aN*N) N*N = = ﬁ(CO—OéN*N> N*N

=
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Let us look at this last equation: we’d like to make 5—;\’[ = 1 and kfaN = 1.

. C - 1 - 1
But this can be done! Just pick: | N := 20| and f = —, thatis: |t := —
o kalN KCo
dN* dN
T (1 —N*)N* or, drop stars, and write just o (1-N)N

Thus, we can analyze the simpler system.

However, we should remember that the new “N” and “t” are rescaled versions of the old ones. In
order to understand how to bring everything back to the original coordinates, note that another way to
express the relation between N and N* is as follows:

- t
N(t) = NN* (;)
This formula allows us to recover the solution N (¢) to the original problem once that we have obtained
the solution to the problem in the N*,¢* coordinates. Concretely, in our example, as t/t =t/ %Co:
C
N(t) = Z2N* (kCot)
o

If we have a plotted solution of the equation déz{j = (1 — N*) N* then the plot in original variables is

obtained by stretching or contracting the plot in these new variables.

We may think of N* t* as quantity & time in some new units of measurement. This procedure is
related to “nondimensionalization” of equations, which we’ll mention later.

2.1.6 A More Interesting Example: the Chemostat

. V' = constant volume of solution in culture chamber
Co 1111140\51 F F = (constant and equal) flows in vol/sec, e.g. m?/s
N (t) = bacterial concentration in mass/vol, e.g. g/m?
Cy, C(t) = nutrient concentrations in mass/vol
(Cy assumed constant)

N(t),C(t) chamber is well-mixed
culture chamber’—‘ (“continuously stirred tank reactor (CSTR)” in chem engr)

Assumptions (same as in second derivation of logistic growth):

nutrient supply ! outflow I

e growth of biomass in each unit of volume proportional to population (and to interval length),
and depends on amount of nutrient in that volume (we think of density as the mass in a small
unit volume):

N(t+ At) — N(t) duetogrowth = K(C(t))N(t)At

(the choice of the function K (C) is discussed below)

e consumption of nutrient per unit volume proportional to increase of bacterial population:

C(t+ At) — C(t) dueto consumption = —a [N(t+ At) — N(t)]
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2.1.7 Chemostat: Mathematical Model

total biomass: N(¢)V and total nutrient in culture chamber: C'(¢t) V

biomass change in interval At due to growth:

N(t+AHV — N@)V = [N(t+At) — N@OV = K(C(#) N(t) AtV

so contribution to d(NV')/dt is “+K(C)NV”

bacterial mass in effluent:
. . . 3
in a small interval At, the volume out is: F' - At (=5 =)m

so, since the concentration is N (t) g/m?, the mass outis: N(t)- F-Atg
and so the contribution to d(NV')/dt is “—N (t)F”

for d(CV')/dt equation:
we have three terms: —a K (C)NV (depletion), —C(¢) F' (outflow), and +Cy F’ (inflow), ~»

3

dNV) _ k(C)NV = NF

d(gtv) — —aK(C)NV = CF + CyF .

Finally, divide by the constant V' to get this system of equations on NV, C"
dN
ac

il —aK(C)N —CF/V + CyF |V
2.1.8 Michaelis-Menten Kinetics

A reasonable choice for “K (C')” is as follows (later, we come back to this topic in much more detail)

K(C) = ZTTS or, in another very usual notation: [‘?Zai% :
K(C) ’,; slope Vipgy /Km
Vinax __’I'_ _______________________________________
(172) Ve ’-
o :

This gives linear growth for small nutrient concentrations:

K(C) ~ K(0) + K'(0)C' = Vr;gxc

but saturates at V., as C' — oo.
(More nutrient = more growth, but only up to certain limits — think of a buffet dinner!)
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Note that when C' = K,,, the growth rate is 1/2 (“m” for middle) of maximal, i.e. Vj,ax/2,

We thus have these equations for the chemostat with MM Kinetics:

AN kmaxC

e R CYA L

dC . kmaxc

- = ak:n+CN (F/V)C + (F/V)Cy

Our next goal is to study the behavior of this system of two ODE’s
for all possible values of the six parameters kmax, kn, F, V, Cy, .

2.1.9 Side Remark: “Lineweaver-Burk plot” to Estimate Parameters

Suppose we measured experimentally K (C;) for various values C;.
How does one estimate K, and V., ?

Solution: observe that
1 Kn+C 1 N Kn 1
KC)  VaxC Vi Viax C
therefore, 1/ K (C) is a linear function of 1/C'!

Thus, just plot 1/K(C') against 1/C' and fit a line (linear regression).

L/K(C) UCHKEG) -

(1/C,, 1/K(Cy) e
o

o

e (1 IK(C)
-7 e k)

1/ Vinax T R

K /c

2.1.10 Chemostat: Reducing Number of Parameters

Following the procedure outlined earlier, we write: C' = C*C’, N = N*N , t = t*t, and substitute:

A

A(N*N)  kmaxC*C N

— = _ F/V)N*N
d(t*1) k, + C*C (F/V)
d(C*C) kmaxC*C . - .

= XY NN — (F/V)CC + (F/V)C
d(t*f) ky 4+ C*C (F/V) (F/VICo

dN _ d(N*N) _ NdN* o dC _ d(C*C) _ ¢ dc*
at

dt T d(trd) i dt

N* ] ge 73
d thnaxCC o HF

dt* k, + C*C 4
dm - PhmaxC g e Co
dt* kn + C*C 4 v

or equivalently:
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dN* C* tF

= (tk - N*— —N*
dt* ( m“%mc+0* v
* { kmax N * 73 73
dC' _ at k’n}ax AC( N* _ t_0* + IE—C()
dt* C k,/C + C* 4 cv
£F Oé£ kmaxN

It would be nice, for example, to make k,,/ C = 1, i =1, and - = 1. This can indeed be

A .~V - C kn, k. F
done, provided that we define: C' :=k,,, ¢ := o and N := = =

af kmax OétA kmax B aV k?max

dN* V kmax C*
o ar < F )1+cC-
dc* C* Co
= — N*—C"+ —
T 1+ o "
. . Vi Co .
or, introducing two new constants oy = <%) and ay; = — we end up with:
dN* c*
dt* Y1y
dC* C*
- _ N* o *
dt* 1+ Cx "t a

We will study how the behavior of the chemostat depends on these two parameters, always remember-
ing to “translate back” into the original parameters and units.

The old and new variables are related as follows:
- t k. F F A t F
N{t)=NN*|-]=—"2 N*(=¢ Ct)=CC* =) =k,C" | =t
) (t) oV kmax (V ) ’ ) (t) (V )

Remark on units

Since kmax is a rate (obtained at saturation), it has units time'; thus, «; is “dimensionless”.
Similarly, k,, has units of concentration (since it is being added to C', and in fact for C' = k,, we obtain
half of the max rate kmax), S0 also «y is dimensionless.

Dimensionless constants are a nice thing to have, since then we can talk about their being “small” or
“large”. (What does it mean to say that a person of height 2 is tall? 2 cm? 2in? 2 feet? 2 meters?) We
do not have time to cover the topic of units and non-dimensionalization in this course, however.
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2.1.11 Signs of interactions among variables

It is often convenient to classify systems according to the signs of the interactions between pairs of
variables. To keep matters simple, let us restrict ourselves here to systems consisting of two compo-
nents = and y. These components might represent the concentrations of certain intracellular chemicals
—for instance, of two proteins— in molecular biology, or, in the context of ecology, the numbers of in-
dividuals of a certain pair of species.

So we have a two-dimensional system of ODE’s with variables =(t) and y/(t):

dx
dy
i g(z,y).

We will suppose that the signs of the partial derivatives

of dg
a_y(xay) and %(xuy>

are either always > 0 or always < 0 when evaluated at all values (x, y) of interest (typically, z > 0
and y > 0). It is useful to associate a graph to a system as follows.

Introduce two nodes, called X and Y, and:

1. draw a positive arrow from X to Y “X — Y provided that g—g(x, y) >0,
2. draw a blunt arrow from X to Y “X - Y provided that %(1’, y) <0,

3. draw a positive arrow from Y to X “Y — X" provided that %(w, y) >0,
y

4. draw a blunt arrow from Y to X “Y - X provided that g—g(x, y) <0

(no arrow is drawn if a partial derivative is identically zero). When analyzing examples, there is often
no need to take derivatives. For instance, suppose that

fla.y) = i

(obviously a contrived mathematical example!). It is clear that an increasing y makes f decrease
(because the denominator in the exponent is an increasing function of y, and the exponential is an
increasing function), so Y 4 X.

Assuming that both partial derivatives are everywhere nonzero (and have constant sign), there are
three types of interactions, graphically shown here:

3We do not analyze what happens if a partial derivative is sometimes positive and sometimes negative. For example,
if g(x,y) = (x — 2?)y, then dy/dt > 0 when 0 < x < 1, but dy/dt > 0 when = > 1. For example,  might be a nutrient
that is needed for the growth of y, but which is toxic when overdosing.
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Mutualism
@ " ®
K/

This happens if the variables have positive (“activation”) effects on each other’s growth rates. A
positive change in A results in a positive change in the growth of B, and vice-versa. These interactions
create a positive feedback on both variables.

Configurations like these are associated to signal amplification and production of switch-like bio-
chemical responses.

Competition or mutual inhibition

@, ®

This happens if the variables have negative (“repression”) effects on each other’s growth rates. A
positive change in A results in repression of growth of B, and repression of B in turn enhances the
growth of A. These interactions also create a positive feedback on both variables.

Such configurations allow systems to exhibit multiple discrete, alternative stable steady-states, thus
providing a mechanism for memory. They also help in allowing sharp (‘“binary”) responses to inputs
and are important in cell decision-making (apoptosis, division, ...).

Activation-inhibition or predator-prey

©, ®
This happens if the variables have opposite effects on each other’s growth rates. A negative feed-
back is created. Activation-inhibition configurations of this type are necessary for the generation of

periodic behaviors such as circadian rhythms or cell cycle oscillations, as well as for tight regulation
(homeostasis) of physiological variables.

Monotone systems

The first two types of systems, mutualistic (or, as is said in mathematical biology, “cooperative”), and
mutually inhibiting (“‘competitive”) are examples of what are called “monotone systems,” for which
a rich theory (and not just for 2-d systems) exists*. Let us illustrate a simple result for the mutually
activating case. (A similar result holds true for mutual repression.)

4For instance, see an intuitive discussion of results in: E.D. Sontag. Monotone and near-monotone biochemical
networks. Systems and Synthetic Biology, 1:59-87, 2007.
http://www.springerlink.com/content/x447740838763062/fulltext.pdf
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Claim: there cannot be any periodic orbit in such a system.

Proof by contradiction: Suppose that there would be a periodic orbit in which the motion is counter-
clockwise, as shown in the left part of this figure:

 (x%,y°)

(x,y) (x%y)

(x,y)

We now pick two points in this orbit with identical x coordinates, as indicated by (z,y) and (x,¥/)
in the figure. These points correspond to the concentrations at two times ¢, t1, with z(ty) = z(t;)
and y(t9) < y(t1). Since y(t;) is larger than y(%y), x is at the same concentration, and the species are
mutually activating, it follows that the rate of change in the concentration x should be comparatively
larger at time ¢, than at time ¢, thatis, f(z,y") > f(x,y). However, this contradicts the fact that =(t)
is increasing at time ¢y (f(x,y) > 0) but is decreasing at time ¢; (f(z,y’) < 0). The contradiction
means that there cannot be any counterclockwise-oriented curve. To show that there cannot be any
clockwise-oriented curve, one may proceed by an entirely analogous argument, using two points
(x,y) and (2/,y) as in the figure.
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2.2 Steady States and Linearized Stability Analysis

2.2.1 Steady States

The key to the “geometric” analysis of systems of ODE’s is to write them in vector form:

dXx . . .

i F(X) (where F' is a vector function and X is a vector) .
The vector X = X (¢) has some number n of components, each of which is a function of time.
One writes the components as z; (¢ = 1,2,3,...,n),orwhenn =2orn =3asz,yorz,v, 2,

or one uses notations that are related to the problem being studied, like NV and C' for the concentration
(or the biomass) of a population and C' for the concentration of a nutrient.
For example, the chemostat

% = a11+CN—N
% = —HLCN—C—{—O!Q
may be written as dd_f =F(X)= ( g ((x: g)) ),provided that we define:
f(N,C) = o ¢ N-—-N
1+C
g(N,C) = —H%N—C+a2.

By definition, a steady state or equilibrium’ is any root of the algebraic equation
F(X) =0

that results when we set the right-hand side to zero.

For example, for the chemostat, a steady state is the same thing as a solution X = (N, C) of the two
simultaneous equations

C
N-N =
O[11+C O
C
——— _N- = 0.
1—|—C C+062 0

Let us find the equilibria for this example.

A trick which sometimes works for chemical and population problems, is as follows.

We factor the first equation:
C
—1)N = 0.
(al 1+C )

Sthe word “equilibrium” is used in mathematics as a synonym for steady state, but the term has a more restrictive
meaning for physicists and chemists
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So, for an equilibrium X = (N, C),

eitherr N = 0 or _ =1
“1re

We consider each of these two possibilities separately.
In the first case, N = 0. Since also it must hold that

Cc - _ _
——1+C’N—C+042 = —CHay =0,

we conclude that X = (0, ap) (no bacteria alive, and nutrient concentration ).

In the second case, C' = ﬁ, and therefore the second equation gives N=uo <a2 — all_l) (check!).

So we found two equilibria:

_ _ 1 1
1 ( ,042) an 2 (041 (CYQ a1—1)7a1—1>

However, observe that an equilibrium is physically meaningful only if C' > 0 and N > 0. Negative
populations or concentrations, while mathematically valid, do not represent physical solutions.®

The first steady state is always well-defined in this sense, but not the second.

This equilibrium X, is well-defined and makes physical sense only if

o1 > 1 and ag > 2.4)

a1 — 1
or equivalently:
a; >1 and ag(a; —1) > 1. (2.5)

Reducing the number of parameters to just two («; and «) allowed us to obtain this very elegant and
compact condition. But this is not a satisfactory way to explain our conclusions, because o, o were
only introduced for mathematical convenience, but were not part of the original problem.

: PV ¢ v LF C C i3 .
Since, t 1= 5, a1 = t kmax = Fkmax and ap = %Ca = EO = k—s, the conditions are:
F k
kmax > — and CO > V—n .

The first condition means roughly that the maximal possible bacterial reproductive rate is larger than
the tank emptying rate, which makes intuitive sense. As an exercise, you should similarly interpret
“in words” the various things that the second condition is saying.

Meaning of Equilibria: If a point X is an equilibrium, then the constant vector X (t) = X is asolu-
tion of the system of ODE’s, because a constant has zero derivative: d.X /dt = 0, and since F/(X) =0
by definition of equilibrium, we have that dX /dt = F(X).

Conversely, if a constant vector X (¢) = X is a solution of dX(t)/dt = F(X(t)), then, since
(d/dt)(X(t)) = 0, also then F(X) = 0 and therefore X is an equilibrium.

In other words, an equilibrium is a point where the solution stays forever.

As you studied in your ODE class, an equilibrium may be stable or unstable (think of a pencil perfectly

balanced on the upright position). We next review stability.

®Analogy: we are told that the length L of some object is a root of the equation L? — 4 = (0. We can then conclude
that the length must be L = 2, since the other root, L. = —2, cannot correspond to a length.
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2.2.2 Linearization

We wish to analyze the behavior of solutions of the ODE system d.X /dt = F'(X) near a given steady
state X. For this purpose, it is convenient to introduce the displacement (translation) relative to X:

X=X-X

and to write an equation for the variables X. We have:

dX dX dX dX dX . _ . R R
oo )= 28 - PIX+X) = FIX)HF (XX +o(X) ~ AX
dt ar  dt a VT a (X +X) \(,_ZJF (X) +$,.Z

=0 ~0

where A = F'(X) is the Jacobian of F evaluated at X . A
We dropped higher-order-than-linear terms in X' because we are only interested in X ~ 0
(small displacements X ~ X from X are the same as small Xs).

Recall that the Jacobian, or “derivative of a vector function,” is defined as the n X n matrix whose
(i, 7)thentry is Of;/Ox;, if f; is the ith coordinate of F" and x; is the jth coordinate of x.

One often drops the “hats” and writes the above linearization simply as d X /dt = AX,
but it is extremely important to remember that what this equation represents:

it is an equation for the displacement from a particular equilibrium X.

More precisely, it is an equation for small displacements from X .

(And, for any other equilibrium X, a different matrix A will, generally speaking, result).

For example, let us take the chemostat, after a reduction of the number of parameters:

d (NY\ _ _ a5 N—-N
il o) =roo - (—H%N—cwaz

so that, at any point (I, C') the Jacobian A = F” of F is:

(&) a1 N
Ozlrcc— 1 (]]\—}_10)2
T 1+C T a+oe 1

In particular, at the point X,, where C' =

e V= —al(alsf:larl) we have:
0 Bl —1)
_i _ﬁ o] — 1) + aq
(03] a1

where we used the shorthand: 5 = as(a; — 1) — 1. (Prove this as an exercise!)

Remark. An important result, the Hartman-Grobman Theorem, justifies the study of linearizations.

It states that solutions of the nonlinear system Cii—)f = F(X) in the vicinity of the steady state X look

“qualitatively” just like solutions of the linearized equation dX/dt = AX do in the vicinity of the
point X = 0.7

For linear systems, stability may be analyzed by looking at the eigenvalues of A, as we see next.

"The theorem assumes that none of the eigenvalues of A have zero real part (“hyperbolic fixed point™). “Looking like”
is defined in a mathematically precise way using the notion of “homeomorphism” which means that the trajectories look
the same after a continuous invertible transformation, that is, a sort of “nonlinear distortion” of the phase space.
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2.2.3 Review of (Local) Stability

For the purposes of this course, we’ll say that a linear system d.X/dt = AX, where A is n X n matrix,
is stable if all solutions X (¢) have the property that X (¢) — 0 as ¢ — oco. The main theorem is:

stability is equivalent to: the real parts of all the eigenvalues of A are negative

For nonlinear systems dX /dt = F(X), one applies this condition as follows:®

e For each steady state X, compute A, the Jacobian of F evaluated at X, and test its eigenvalues.

e If all the eigenvalues of A have negative real part, conclude local stability:
every solution of dX /dt = F(X) that starts near X = X converges to X ast — oc.

e If A has even one eigenvalue with positive real part, then the corresponding nonlinear system
dX/dt = F(X) is unstable around X, meaning that at least some solutions that start near X
will move away from X.

The linearization dX/dt = AX at a steady state X says nothing at all about global stability, that is
to say, about behaviors of dX /dt = F(X) that start at initial conditions that are far away from X.
For example, compare the two equations: dz/dt = —x — x® and dx/dt = —x + 2.

In both cases, the linearization at x = 0 is just dz/dt = —z, which is stable.

In the first case, it turns out that all the solutions of the nonlinear system also converge to zero.

(Just look at the phase line.)

However, in the second case, even though the linearization is the same, it is not true that all solutions
converge to zero. For example, starting at a state x(0) > 1, solutions diverge to +00 as t — oc.
(Again, this is clear from looking at the phase line.)

It is often confusing to students that from the fact that all solutions of dX /dt = AX converge to zero,
one concludes for the nonlinear system that all solutions converge to X.

The confusion is due simply to notations: we are really studying dX /dt = AX, where X = X — X,
but we usually drop the hats when looking at the linear equation d.X/dt = AX.

Regarding the eigenvalue test for linear systems, let us recall, informally, the basic ideas.

The general solution of dX /dt = AX, assuming’ distinct eigenvalues ); for A, can be written as:

n

X(t) = Z c; ety

i=1
where for each i, Av; = \;v; (an eigenvalue/eigenvector pair) and the ¢; are constants (that can be fit
to initial conditions).

It is not surprising that eigen-pairs appear: if X (t) = e*v is solution, then AeMv = dX/dt = Ae v,
which implies (divide by e*) that Av = \v.

8Things get very technical and difficult if A has eigenvalues with exactly zero real part. The field of mathematics
called Center Manifold Theory studies that problem.

%If there are repeated eigenvalues, one must fine-tune a bit: it is necessary to replace some terms c; e**v; by ¢; t eMitw;
(or higher powers of ¢) and to consider “generalized eigenvectors.”
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We also recall that everything works in the same way even if some eigenvalues are complex, though
it is more informative to express things in alternative real form (using Euler’s formula).

To summarize:

e Real eigenvalues \ correspond!® to terms in solutions that involve real exponentials e, which
can only approach zero as t — 400 if A < 0.

e Non-real complex eigenvalues A = a + ib are associated to oscillations. They correspond'! to
terms in solutions that involve complex exponentials . Since one has the general formula
eM = eattibt — ¢al(cos bt + 1 sin bt), solutions, when re-written in real-only form, contain terms
of the form e cos bt and e* sin bt, and therefore converge to zero (with decaying oscillations
of “period” 27 /b) provided that a < 0, that is to say, that the real part of \ is negative. Another
way to see this if to notice that asking that e** — 0 is the same as requiring that the magnitude
€| — 0. Since |e*| = e**y/(cosbt)? + (sinbt)> = e, we see once again that a < 0 is the
condition needed in order to insure that e’ — (

Special Case: 2 by 2 Matrices

In the case n = 2, it is easy to check directly if d.X/dt = AX is stable, without having to actually
compute the eigenvalues. Suppose that
A= ( aip Q12 )
Q21 Q22

trace A = aj; + a9, det A = aj1a99 — ajaa97 .

and remember that

Then:

’ stability is equivalent to: trace A < 0 and det A > 0.

(Proof: the characteristic polynomial is A? + b\ + ¢ where ¢ = det A and b = —trace A. Both roots
have negative real part if
(complex case) b* —4c <0 and b >0

or
(real case) b> —4c¢ >0 and —b+ Vb2 —4c< 0
and the last condition is equivalent to v/b2 — 4c < b,i.e. b > 0 and b> > b*> —4c,i.e. b > 0 and ¢ > 0.)

Moreover, solutions are oscillatory (complex eigenvalues) if (trace A)? < 4 det A, and exponential
(real eigenvalues) otherwise. We come back to this later (trace/determinant plane).

(If you are interested: for higher dimensions (n>>2), one can also check stability without computing
eigenvalues, although the conditions are more complicated; google Routh-Hurwitz Theorem.)

10T be precise, if there are repeated eigenvalues, one may need to also consider terms of the slightly more complicated
form “t*e**” but the reasoning is exactly the same in that case.
For complex repeated eigenvalues, one may need to consider terms tFet,
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2.2.4 Chemostat: Local Stability

Let us assume that the positive equilibrium X, exists, that is:
a;>1and B =as(a; —1)—1>0.

In that case, the Jacobian is:

651 (651

where we used the shorthand: 5 = as(ay — 1) — 1.

The trace of this matrix A is negative (because 5 > 0, a3 — 1 > 0, a; > 0), and the determinant is
positive:
B (CYl - 1)

aq

ap—1>0 and >0 = > 0.

So we conclude (local) stability of the positive equilibrium.

So, at least, if the initial the concentration X (0) is close to X», then X (t) — X, as t — oo.
(We later see that global convergence holds as well.)

What about the other equilibrium, X; = (0, a)? We compute the Jacobian:

o C 1 OélN Qo 0
1 - 71 . o aq —
o 14+C 14+ C)?

1+C (1402 N=0,C—az T+ a

and thus see that its determinant is:

%) _ 1+ a9 —ajan _ 1+OZ2(1—O[1) _ ﬂ <0

1— _
EETIP 1+ 1+ ay 1+

and therefore the steady state X, is unstable.

It turns out that the point X, is a saddle: small perturbations, where N(0) > 0, will tend away from
X1. (Intuitively, if even a small amount of bacteria is initially present, growth will occur. As it turns
out, the growth is so that the other equilibrium X is approached.)
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2.3 More Modeling Examples

2.3.1 Effect of Drug on Cells in an Organ

A modification of the chemostat model can be used as a simple model of how
a drug in the blood (e.g. a chemotherapy agent) affects a cells in a certain organ
(or more specifically, a subset of cells, such as cancer cells).

Now, “Cy” represents the concentration of the drug in the blood flowing in,
and V is the volume of blood in the organ, or, more precisely,
the volume of blood in the region where the cells being treated (e.g., a tumor).

Co inflow Fip V' = volume of blood
I F = Fy,, Fout are the blood flows
drug in blood outflow Fou{V (t) = num‘tzlei ocf1 cells (assumed equal in mass)
N, () — exposed to drug .
’ Cy, C(t) = drug concentrations
organ

In drug infusion models, if a pump delivers the drug at a certain concentration,
the actual Cy would account for the dilution rate when injected into the blood.

We assume that things are “well-mixed” although more realistic models use the fact
that drugs may only affect e.g. the outside layers of a tumor.

The flow F' represents blood brought into the organ through an artery, and the blood coming out.

The key differences with the chemostat are:

e the cells in question reproduce at a rate that is, in principle, independent of the drug,

e but the drug has a negative effect on the growth, a “kill rate” that we model by some function
K(C), and

e the outflow contains only (unused) drug, and not any cells.

If we assume that cells reproduce exponentially and the drug is consumed at a rate proportional to the
kill rate K (C')N, we are led to:

N

dC CFout , Colip
T _aK(C)N — .
d aK(C) v v
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2.3.2 Compartmental Models

th U2
Y Y
I:| ”””””””””””” ""’Flg
FQI‘ """"""""""""
1 2
y i
dq dy

Compartmental models are very common in pharmacology and many other biochemical applications.
They are used to account for different behaviors in different tissues.

In the simplest case, there are two compartments, such as an organ and the blood in circulation.

We model the two-compartment case now (the general case is similar).

We use two variables x1, x5, for the concentrations (mass/vol) of a substance

(such as a drug, a hormone, a metabolite, a protein, or some other chemical) in each compartment,
and my, msy for the respective masses.

The flow (vol/sec) from compartment ¢ to compartment j is denoted by F;;.

When the substance happens to be in compartment ¢, a fraction d; At of its mass, degrades, or is
consumed, in any small interval of time At,

Sometimes, there may also be an external source of the substance, being externally injected; in that
case, we let u; denote the inflow (mass/sec) into compartment .

On a small interval At, the increase (or decrease, if the number is negative) of the mass in the first
compartment is:

ml(t + At) - m1<t) == —Flgxlﬁt + Fgll’gAt — dlmlAt + U1At .

(For example, the mass flowing in from compartment 1 to compartment 2 is computed as:

. : vol mass
flow x concentration in 1 X time = —— X
time vol

Similarly, we have an equation of m,. We divide by At and take limits as 7 — 0, leading to the
following system of two linear differential equations:

X time .)

dm
d_tl = —Fiomy/Vi + Famy/Va — dimy + w4
dm
ﬁ Fiomy Vi — Foymg/Va — dams + us
(we used that z; = m;/V}). So, for the concentrations x; = m;/V;, we have:
dx; Fio Fy Uy
e o —d it
di Vll’l—Fleg 1$1+V,1
d F F.
2 = ﬁl'l — ifﬁg — d2$2 + %

At V1, Vs
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2.4 Geometric Analysis: Vector Fields, Phase Planes

2.4.1 Review: Vector Fields

One interprets “X=F(X) as a “flow” in R": at each position X, F'(X) is a vector that indicates in
which direction to move (and its magnitude says at what speed).

- [ y
X(1,4) = (1,-1)
X(-3.4,4) = (0,3)/ 4 0\

- 1/

\\ 175

X(=3-4) = (-2,2)

(“go with the flow” or “follow directions”).
We draw pictures in two dimensions, but this geometric interpretation is valid in any dimension.

“Zooming in” at steady states'> X amounts to looking at the linearization F'(X) ~ AX,

where A = Jacobian F’(X) evaluated at this equilibrium.

You should work-out some phase planes using JOde or some other package.

2.4.2 Review: Linear Phase Planes

Cases of distinct real and nonzero'? eigenvalues \; # \y:

1. both A\, A\, are negative: sink (stable node)

all trajectories approach the origin, tangent to the direction of eigenvectors corresponding to the
eigenvalue which is closer to zero.

2. both Ay, A\, are positive: source (unstable node)

all trajectories go away from the origin, tangent to the direction of eigenvectors corresponding
to the eigenvalue which is closer to zero.

3. A1, A have opposite signs: saddle

Cases of complex eigenvalues A\, Ao, i.e. = a £ ib (b # 0):

1. a = 0: center

12Zooming into points that are not equilibria is not interesting; a theorem called the “flow box theorem” says (for a
vector field defined by differentiable funcions) that the flow picture near a point X that is not an equilibrium is quite
“boring” as it consists essentially of a bundle of parallel lines.

13The cases when one or both eigenvalues are zero, or are both nonzero but equal, can be also analyzed, but they are a
little more complicated.
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solutions'* look like ellipses (or circles);

to decide if they more clockwise or counterclockwise, just pick one point in the plane and see

which direction Az points to;

the plots of x(¢) and y(¢) vs. time look roughly like a graph of sine or cosine.

2. a < 0O: spiral sink (stable spiral)

trajectories go toward the origin while spiraling around it, and direction can be figured out as

above;

the plots of x(t) and y(t) vs. time look roughly like the graph of a sine or cosine that is dying

out (damped oscillation).

3. a > 0O: spiral source (unstable spiral)

trajectories go away from the origin while spiraling around it, and direction can be figured out

as above;

the plots of x(¢) and y(t) vs. time look roughly like the graph of a sine or cosine that that is

exploding (increasing oscillation).

det(A) Tr(A)’=4 det(A)
Tr(A) <4det(A)

Stable spiral
Unstable spiral

ndronov-Hopf

o
=
~
I
L
S >
% % £ Tr(A) > 4det(A}
Stable nod (1) Unstable node
able node | = Tr(A)

),

Trace/Determinant Plane

We next compute the type of the local equilibria for the chemostat example,
assuming that c; > 1 and ap(ag — 1) — 1 > 0 (so X3 is positive).

Recall that the we had computed the Jacobian at the positive equilibrium X, = <a1 <a2 - > L

B 0 ﬁ(Oél—l)
A= F'(Xy) = 1 Blag — 1)+ ay

aq aq

where we used the shorthand: § = as(ag — 1) — 1.
We already saw that the trace is negative. Note that:

Blan — 1)

aq

tr(A) = —1 — A, where A =det(A) =

ar—1 )7 a1—1

>0

and therefore tr? — 4det = 1 + 2A + A2 — 4A = (1 — A)2 > 0, so the point Xy, is a stable node."

Show as an exercise that X, is a saddle.

14Centers are highly “non-robust” in a way that we will discuss later, so they rarely appear in realistic biological models.
STf A # 1; otherwise there are repeated real eigenvalues; we still have stability, but we’ll ignore that very special case.

):
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2.4.3 Nullclines

Linearization helps understand the “local” picture of flows.!®

It is much harder to get global information, telling us how these local pictures fit together
(“connecting the dots” so to speak).

One useful technique when drawing global pictures is that of nullclines.

The x;-nullcline (if the variables are called z1, 29, . . .) is the set where dfti =

This set may be the union of several components (curves and lines), or just one such componen

t.”

The intersections between the nullclines are the steady states. This is because each nullcline is the set
where dxq/dt = 0,dxs/dt = 0, .. ., so intersecting gives points at which all dx;/dt = 0, that is to say
F(X) = 0 which is the definition of steady states.

As an example, let us take the chemostat, for which the vector field is F/(X) = ( g E]]\\;’ g; > , Where:
C
N,C) = N—-N
(N,C) ¢ N—-C+
= —— N — oy .
g ) 1 + C 2

The N-nullcline is the set where dN/dt = 0, that is, where a; HLC N—N=0.

Since we can factor this as N (ay HLC — 1) = 0, we see that:

1

a1 —

the N-nullcline is the union of a horizontal and a vertical line: C = and N =0.

On this set, the arrows are vertical, because dN/dt = 0 (no movement in N direction).

The C-nullcline is obtained by setting — = N — C' + ay = 0.
We can describe a curve in any way we want; in this case, it is a little simpler to solve N = N(C)

than C' = C'(N):

1+C
the C-nullcline is the curve: N = (g — C)+T =—-1-C+ % +as.

On this set, the arrows are parallel to the N-axis, because dC'/dt = 0 (no movement in C' direction).

To plot, note that N (ay) = 0 and N(C) is a decreasing function of C' and goes to +o0o as C' \ 0,
and then obtain C' = C'(N) by flipping along the main diagonal (dotted and dashed curves in the
graph, respectively):

16 Actually, linearization is sometimes not sufficient even for local analysis. Think of dz/dt = x* and dx/dt = —2?,

which have the same linearization (dx/dt = 0) but very different local pictures at zero. The area of mathematics called
“Center manifold theory” deals with such very special situations, where eigenvalues may be zero or more generally have
zero real part.

'7Some authors like to call each component a “nullcline” but I prefer to say that the nullcline is one object, which may
have more than one component. It is just a question of semantics.
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In summary, the nullclines look as follows:
|

o ! C nullcline

N N nullcline

N nullcline

“1
i
i
I
i
~
I Sse (NG
i ~
i
i
i
i
i

Assuming that v; > 1 and ay > 1/(ay — 1), so that a positive steady-state exists, we have the two
intersections: (0, a3) (saddle) and (al (az — #) ! > (stable node).

ar—1 /)7 a;—1

To decide whether the arrows point up or down on the N-nullcline, we need to look at dC'/dt.

On the line N = 0 we have:

dC C >0 ifC<OéQ
@ ixol T Cte=—Ura { <0 ifC > ay
so the arrows point up if C' < a, and down otherwise. On the line C' = a1171'
dc C 1 N | >0 if N<ay(ap— £
— =———N-CH+ay =0y — - — o
dt 1+C =1 a1 | <0 if N>ay(ay— 2

_1
a1—1

so the arrow points up if N < oy <Oég — ) and down otherwise.
To decide whether the arrows point right or left (sign of dN/dt) on the C-nullcline, we look at:
1

N >0 ifC >

d—:N(Oél ¢ _1> 0411—1

dt 1+C <0 ifC <
051—1

(since NV > 0, the sign of the expression is the same as the sign of o HLC —1).

A shortcut for determining directions on nullclines

Observe that directions cannot change in any segment (in-between intersections with the other null-
cline), since a change of direction would means that the other derivative is zero (and theerfore that we
must cross the other nullcline).

So, we may simply pick any point in such a segment to determine the direction.
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For example, for the two components of the N-nullcline, we have:
(1) on the line N = 0: % =—CHay,so0>0atC =0and < 0as C — +oo;

SO _ 1 N
ar—1°" dt 2 a1—1 a1’

so > 0at N = 0 (because oy — —— > 0) and < 0 as

a1—1

(2) on line C' =
N — +o0

On the C-nullcline, &¥ = N (oq H% — 1) is > 0as C — g (because o —1>0)and < 0O at

Tt
C=0.

@2
14+a2

This information is enough to determine the signs on each segment.

We have, therefore, this picture:

C nullcline 1

N nullcline

N nullcline

—_

O —

What about the direction of the vector field elsewhere, not just on nullclines?

The key observation is that the only way that arrows can “reverse direction” is by crossing a nullcline.

For example, if dz; /dt is positive at some point A, and it is negative at some other point B, then A and
B must be on opposite sides of the x; nullcline. The reason is that, were we to trace a path between
A and B (any path, not necessarily a solution of the system), the derivative dx;/dt at the points in
the path varies continuously'® and therefore (intermediate value theorem) there must be a point in this
path where dz; /dt = 0.

In summary: if we look at regions demarcated by the nullclines' then the orientations of arrows
remain the same in each such region.

For example, for the chemostat, we have 4 regions, as shown in the figure.

In region 1, dN/dt > 0 and dC'/dt < 0, since these are the values in the boundaries of the region.
Therefore the flow is “Southeast” () in that region. Similarly for the other three regions.

We indicate this information in the phase plane:

18assuming that the vector field is continuous

Pthe “connected components” of the complement of the nullclines, think of them as the “territories” separated by the
nullclines
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1 (NCyp) \ \
H C nullcline \
Y

H N

N
: N /

~
i / e \ \ N nullcline
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N nullcline
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~
.......................... [y TR R Y AP R -

1
o (0 " )

Note that the arrows are just “icons” intended to indicate if the flow is
generally “SE” (dN/dt > 0 and dC'/dt < 0), “NE,” etc, but the actual numerical slopes will vary
(for example, near the nullclines, the arrows must become either horizontal or vertical).

2.4.4 Global Behavior

We already know that trajectories that start near the positive steady state X, converge to it (local
stability)

and that most trajectories that start near X, go away from it (instability).

(Still assuming, obviously, that the parameters have been chosen in such a way that the positive steady
state exists.)

Let us now sketch a proof that, in fact, every trajectory converges to X,
(with the exception only of those trajectories that start with N (0) = 0).

The practical consequences of this “global attraction” result are that,
no matter what the initial conditions, the chemostat will settle into the steady state X5.

It is helpful to consider the following line:

(L) N + (1/10 — 10y = 0

which passes through the points X; = (0, a) and X, = (a1 (ag — a11_1> , a11_1>.

Note that («ja, 0) is also in this line.
The picture is as follows?® where the arrows are obtained from the flow direction, as shown earlier.

2you may try as an exercise to show that the C-nullcline is concave up, so it must intersect L at just two points, as
shown
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We claim that this line is invariant, that is, solutions that start in L must remain in L. Even more
interesting, all trajectories (except those that start with N (0) = 0) converge to L.

For any trajectory, consider the following function:
2(t) = N(t) + a1 C(t) — aras

and observe that

=N +a0,0'=m

N—-N—qo (LN—C+CM2) = —z

1+C 1+C

which implies that z(¢) = z(0)e~*. Therefore, z(t) = 0 for all t > 0, if z(0) = 0 (invariance), and in
general z(t) — 0 as t — 400 (solutions approach L).
Moreover, points in the line N + ayC — a9 = m are close to points in L if m is near zero.

Since L is invariant and there are no steady states in L except X; and X5, the open segment from X
to X, is a trajectory that “connects” the unstable state X to the stable state X5. Such a trajectory is
called a heteroclinic connection.?!

Now, we know that all trajectories approach L, and cannot cross L (no trajectories can ever cross, by
uniqueness of solutions, as seen in your ODE class).

Suppose that a trajectory starts, and hence remains, on top of L (the argument is similar if remains
under L), and with N (0) > 0.

Since the trajectory gets closer and closer to L, and must stay in the first quadrant (why?), it will either
converge to X, “from the NW” or it will eventually enter the region with the “NW arrow” — at which
point it must have turned and start moving towards X,. In summary, every trajectory converges.

2IExercise: check eigenvectors at X, and X5 to see that L matches the linearized eigen-directions.
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2.5 Epidemiology: SIRS Model

The modeling of infectious diseases and their spread is an important part of mathematical biology,
part of the field of mathematical epidemiology.

Modeling is an important tool for gauging the impact of different vaccination programs on the control
or eradication of diseases.

We will only study here a simple ODE model, which does not take into account age structure nor
geographical distribution. More sophisticated models can be based on compartmental systems, with
compartments corresponding to different age groups, partial differential equations, where independent
variables specify location, and so on, but the simple ODE model already brings up many of the
fundamental ideas.

The classical work on epidemics dates back to Kermack and McKendrick, in 1927. We will study
their SIR and SIRS models without “vital dynamics” (births and deaths).

To explain the model, let us think of a flu epidemic, but the ideas are very general.

In the population, there will be a group of people who are Susceptible to being passed on the virus by
the Infected individuals.

At some point, the infected individuals get so sick that they have to stay home, and become part of
the Removed group. Once that they recover, they still cannot infect others, nor can they be infected
since they developed immunity.

The numbers of individuals in the three classes will be denoted by S, I, and R respectively, and hence
the name “S7R” model.

Depending on the time-scale of interest for analysis, one may also allow for the fact that individuals
in the Removed group may eventually return to the Susceptible population, which would happen if
immunity is only temporary. This is the “STRS” model (the last S to indicate flow from R to 5),
which we will study next.

We assume that these numbers are all functions of time ¢, and that the numbers can be modeled as
real numbers. (Non-integers make no sense for populations, but it is a mathematical convenience. Or,
if one studies probabilistic instead of deterministic models, these numbers represent expected values
of random variables, which can easily be non-integers.)

The basic modeling assumption is that the number of new infectives I(t+At)—1(t) in a small interval
of time [t,t + At] is proportional to the product S(t)1(t) At.

Let us try to justify intuitively why it makes sense. (As usual, experimentation and fitting to data
should determine if this is a good assumption. In fact, alternative models have been proposed as
well.)

Suppose that transmission of the disease can happen only if a susceptible and infective are very close
to each other, for instance by direct contact, sneezing, etc.

We suppose that there is some region around a given susceptible individual, so that he can only get

infected if an infective enters that region:

We assume that, for each infective individual, there is a probability p = SAt that this infective will
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happen to pass through this region in the time interval [¢,¢ + At], where J is some positive constant
that depends on the size of the region, how fast the infectives are moving, etc. (Think of the infective
traveling at a fixed speed: in twice the length of time, there is twice the chance that it will pass by this
region.) We take At < 0, so also p < 0.

The probability that this particular infective will not enter the region is 1 — p, and, assuming indepen-
dence, the probability than no infective enters is (1 — p)~.

So the probability that some infective comes close to our susceptible is, using a binomial expansion:
1—-(1-p)fa~1—(1—pl+ ()p*+...)~plsincep < 1.

Thus, we can say that a particular susceptible has a probability p/ of being infected. Since there are
S of them, we may assume, if .S is large, that the total number infected will be S x pI.

We conclude that the number of new infections is:

I(t+ At) — I(t) = pSI = BSI At

and dividing by At and taking limits, we have a term 557 in %, and similarly a term —(5S7 in

ds
dt *

This is called a mass action kinetics assumption, and is also used when writing elementary chemical
reactions. In chemical reaction theory, one derives this mass action formula using “collision theory”
among particles (for instance, molecules), taking into account temperature (which affects how fast
particles are moving), shapes, etc.

We also have to model infectives being removed: it is reasonable to assume that a certain fraction of
them is removed per unit of time, giving terms v/, for some constant v.

Similarly, there are terms R for the “flow” of removeds back into the susceptible population.

Y

The figure is a little misleading: this is not a compartmental system, in which the flow from S to [ is
just proportional to S. For example, when I = 0, no one gets infected; hence the product term in the
equations:

as
dt

dl
dt

dR
dt

= —pBSI +7R

= pBSI—vl

= vl —vR

(There are many variations possible; here are some. In a model with vital dynamics, one also adds
birth and death rates to this model. Another one: a vaccine is given to a certain percentage of the

susceptibles, at a given rate, causing the vaccinated individuals to become “removed”. Yet another
one: there is a type of mosquito that makes people infected.)
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2.5.1 Analysis of Equations

Let N = S(t) + I(t) + R(t). Since dN/dt = 0, N is constant, the total size of the population.

Therefore, even though we are interested in a system of three equations, this conservation law allows
us to eliminate one equation, for example, using R = N — 5 — I.

We are led to the study of the following two dimensional system:

% = —pBSI+~y(N—-S-1)
dI

— = I —v]

i BS v

I-nullcline: union of lines / = 0 and S = v/f.

o _ Y (N=9)
S-nullcline: curve [ = R e
The steady states are
_ _ YN =%
X, =(N,0) and X,= Z,M ,
B vty

where X, only makes physical sense if the following condition is satisfied:

“0_” or “RO” — N/B/V > 1

some estimated values of R are as follows (Wikipedia Oct 2014):

Disease Transmission | Ry
Measles Airborne 12-18
Pertussis Airborne droplet| 12-17
Diphtheria Saliva 6—7
Smallpox Airborne droplet| 5-7

Polio Fecal-oral route| 5-7
Rubella Airborne droplet| 5-7
Mumps Airborne droplet| 4-7

HIV/AIDS Sexual contact | 2-5
SARS Airborne droplet| 2—5[2]
Influenza

Airborne droplet 2-3[°]
(1918 pandemic strain)

Ebola

Bodily fluids | 1-2 [4]
(2014 Ebola outbreak)
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For example, if N = 2, § =1, v = 1, and v = 1, the I-nullcline is the union of /=0 and S=1,
the S-nullcline is given by / = (éﬁ), and the equilibria are at (2,0) and (1,1/2)

24

The Jacobian is, at any point:
—If—y —S58—~
15 Sp—v

so the trace and determinant at X; = (NN, 0) are, respectively:
—y+ Nf—v and —~(NB—v)

and thus, provided Ry = N(3/v > 1, we have det< 0 and hence a saddle.
At X, we have: trace = —I3 — v < 0 and det= I3(v + 7) > 0, and hence this steady state is stable.

Therefore, at least for close enough initial conditions (since the analysis is local, we cannot say more),
and assuming Ry > 1, the number of infected individuals will approach

YN = %)
Isteady state — :
v+

2.5.2 Interpreting R,

Let us give an intuitive interpretation of R.

We make the following “thought experiment’:
suppose that we isolate a group of P infected individuals, and allow them to recover.

Since there are no susceptibles in our imagined experiment, S(¢) = 0,s0 4 = —vy 1, s0 I(t) = Pe "

Suppose that the sth individual is infected for a total of d; days, and look at the following table:

cal. days—

Ind. 1 X X X | X | X | X = d; days

Ind. 2 X X X X = dy days

Ind. 3 X X X | X | X = d3 days

Ind. P X | X | X | X = dp days
Itisclearthatdy +do+...=Ig+ 11 + I+ ...

(supposing that we count on integer days, or hours, or some other discrete time unit).
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Therefore, the average number of days that individuals are infected is:
1 1 1 [ o 1
—NMd = => L = = [ It)dt = At ==~
Pt = phm [ rwa = [Tt =

On the other hand, back to the original model, what is the meaning of the term “4S1” in dI /dt?
It means that I(At) — I(0) ~ 5S5(0)I(0)At.

Therefore, if we start with 7(0) infectives, and we look at an interval of time of length At = 1/v,
which we agreed represents the average time of an infection, we end up with the following number of
new infectives:

BN = 1(0))1(0)/v

if I(0) < N, which means that each individual, on the average, infected (5NI1(0)/v)/I(0) = Ry
new individuals.

Q

BNI(0)/v

We conclude, from this admittedly hand-waving argument®?, that R, represents the expected number
infected by a single individual (in epidemiology, the intrinsic reproductive rate of the disease).

2.5.3 Nullcline Analysis

For the previous example, N =2, 5 =1,v =1,and v = 1:

ds

= = _S[+2-8-1
dt *

dl

= = SI-1

dt

with equilibria at (2, 0) and (1, 1/2), the /-nullcline is the union of /=0 and S=1.

When [ =0, dS/dt =2 — S, )
andon S = 1,dS/dt =1 — 21,
so we can find if arrows are right or left pointing. e

On the S-nullcline I = %jj) we have -1

Il (S—1)2-28) . AN
dt S+1

and therefore arrows point down if S < 1, and up \ \
if S € (1,2). This in turn allows us to know the I .

general orientation (NE, etc) of the vector field. ! 2

Here are computer-generated phase-planes? for this example as well as for a modification in which
we took v = 3 (so Ry < 1).

22among other things, we’d need to know that v is large, so that At is small
Z3Physically, only initial conditions with I + S < 2 make sense; why?
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In the first case, the system settles to the positive steady state, no matter where started,

as long as 1(0) > 0.

3/1 = 3, which does not intersect the other nullcline. The disease will disappear in this case.

In the second case, there is only one equilibrium, since the vertical component of the /-nullcline is at

S

=.003, v =1,v=0.5):

Example simulation (3

SIRS Model

0

solution tends to $-333, 1-222, R-445

and stays there

=1,8=

3

999,R:

Another example simulation (same parameters, different initial):

SIRS Model
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2.5.4 Immunizations

The effect of immunizations is to reduce the “threshold” /N needed for a disease to take hold.

In other words, for NV small, the condition Ry = N /v > 1 will fail, and no positive steady state will

exist.

Vaccinations have the effect to permanently remove a certain proportion p of individuals from the
population, so that, in effect, /V is replaced by p/N. Vaccinating just p > 1 — RLO individuals gives
(1 — p)Ry < 1, and hence suffices to eradicate a disease!

2.5.5 A Variation: STD’s

Suppose that we wish to study a virus that can only be passed on by heterosexual sex. Then we should
consider two separate populations, male and female. We use S to indicate the susceptible males and

S for the females, and similarly for / and R.

The equations analogous to the SIRS model are:

ds
dt
dl
dt
ﬁ
dt
ﬁ
dt
dl
dt
ﬁ
dt

—BSI + 3R
BSI — ol
vl — R
—BST +9R
BST —vI
vl —vR.

This model is a little difficult to study, but in many STD’s (especially asymptomatic), there is no
“removed” class, but instead the infecteds get back into the susceptible population. This gives:

dS
at
dl
dt
d_S
dt
dl
dt

—BSI + vl
BSI — vl

—BSI +uvl
BSIT — vl .

Writing N = S(t) + I(t) and N = S(t) + I(t) for the total numbers of males and females, and using
these two conservation laws, we can just study the following set of two ODE’s:

dI
dt
dl
dt

B(N — DI — ol

B(N —DI—uvl.
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2.5.6 A Variation, “SIR”

Now assume no recovery from Removed to Susceptibles:

s
dt
dI
dt
dR
dt

= —pSI
= pBSI—vl

= vl

a simulation (8 = .003, v = 1) is shown below:

start with =1,5=999,R=0

so0f— solution tends to S~60, 1=0, R~940 -
note peak infection

why is S nonzero asymptotically?

Note the interesting behavior: — analyze it as a homework problem!

In particular, think of these: why does I(t) peak and go down? Why is there a residual S?

2.5.7 Another variation: “SEIR”

The SIR model has no latent stage, so it is inappropriate for certain diseases.

Thus we may add an “incubation period” as an intermediate stage between Susceptibles and Infect-
eds; this leads to the “SEIR” model with subpopulations: “Susceptible”, “Exposed”, “Infected”, and
“Removed”. A natural set of differential equations for the SEIR model is as follows:

dS/dt = —BI(t)S(t)

dE/dt =  BI)S(t) — cE(t)

dIjdt = cE(t) — vI(t)
dR/dt = vI(t)

where we may interpret v and € as inverses of infection and incubation periods.
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As an example of SEIR models, consider the 2009-2010 flu pandemic in Istanbul (in June 2009, the

World Health Organization declared A/HINT1 a pandemic).

In the paper “A susceptible-exposed-infected-removed (SEIR) model for the 2009-2010 A/HIN1 epi-
demic in Istanbul” by Funda Samanlioglu, Ayse Humeyra Bilge, Onder Ergonul (arXiv 1205.2497),
this model is used to fit data on medical reports, dates of hospitalization, and recovery or death, from

major Istanbul hospitals. The following best-fit was obtained there:

4 T
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This is fairly good, qualitatively at least.

The parameters in the model are [y, v, £ and (3, where I, is the percentage of people infected ini-
tially. The authors assumed for fitting that the number of fatalities was proportional to the number of

removed individuals, and the number of hospitalizations proportional to the number of infections.
The parameters that they found for the best fit to the model were: v = 0.09, [, = 10774, ¢ =
0.32, B = 0.585 and this gave a mean-squared error of 10% and 2.6% to infections and fatalities

respectively.
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2.6 Chemical Kinetics

Elementary reactions (in a gas or liquid) are due to collisions of particles (molecules, atoms).
Particles move at a velocity that depends on temperature (higher temperature = faster).

The law of mass action is:
reaction rates (at constant temperature) are proportional to products of concentrations.

This law may be justified intuitively in various ways, for instance, using an argument like the one that
we presented for disease transmission.

In chemistry, collision theory studies this question and justifies mass-action kinetics.

To be precise, it isn’t enough for collisions to happen - the collisions have to happen in the “right
way” and with enough energy for bonds to break.

For example?* consider the following simple reaction involving a collision between two molecules:
ethene (CH2=CH?2) and hydrogen chloride (HCI), which results om chloroethane.

As a result of the collision between the two molecules, the double bond between the two carbons is
converted into a single bond, a hydrogen atom gets attached to one of the carbons, and a chlorine atom
to the other.

But the reaction can only work if the hydrogen end of the H-CI bond approaches the carbon-carbon
double bond; any other collision between the two molecules doesn’t produce the product, since the
two simply bounce off each other.

collision 1 colision 2

w

The proportionality factor (the rate constant) in the law of mass action accounts for temperature,
probabilities of the right collision happening if the molecules are near each other, etc.

We will derive ordinary differential equations based on mass action kinetics. However, it is important
to remember several points:

e If the medium is not “well mixed” then mass-action kinetics might not be valid.

e If the number of molecules is small, a probabilistic model should be used. Mass-action ODE models
are only valid as averages when dealing with large numbers of particles in a small volume.

e If a catalyst is required for a reaction to take place, then doubling the concentration of a reactants
does not mean that the reaction will proceed twice as fast.”> We later study some catalytic reactions.

24 discussion borrowed from http://www.chemguide.co.uk/physical/basicrates/introduction.html

B As an example, consider the following analog of a chemical reaction, happening in a cafeteria: A + B — C, where
A is the number of students, B is the food on the counters, and C represents students with a full tray walking away from
the counter. If each student would be allowed to, at random times, pick food from the counters, then twice the number of
students, twice the number walking away per unit of time. But if there is a person who must hand out food (our “catalyst”),
then there is a maximal rate at which students will leave the counter, a rate determined by how fast the cafeteria worker
can serve each student. In this case, doubling the number of students does not mean that twice the number will walking
away with their food per unit of time.
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2.6.1 Equations

We will use capital letters A, B, ... for names of chemical substances (molecules, ions, etc), and
lower-case a, b, . . . for their corresponding concentrations.

There is a systematic way to write down equations for chemical reactions, using a graph description
of the reactions and formulas for the different kinetic terms. We discuss this systematic approach
later, but for now we consider some very simple reactions, for which we can write equations directly.
We simply use the mass-action principle for each separate reaction, and add up all the effects.

The simplest “reaction” is one where there is only one reactant, that can degrade®® or decay (as in
radioactive decay), or be transformed into another species, or split into several constituents.

In either case, the rate of the reaction is proportional to the concentration:

if we have twice the amount of substance X in a certain volume, then, per (small) unit of time, a
certain % of the substance in this volume will disappear, which means that the concentration will
diminish by that fraction.

A corresponding number of the new substances is then produced, per unit of time.

So, decay X i) - gives the ODE:

dx/dt = —kx ,
a transformation X i) Y gives:

de/dt = —kx

dy/dt = kx,

and a dissociation reaction 7 — X + Y gives:

de/dt = kz
dy/dt = kz
dz/dt = —kz.

k
A bimolecular reaction X +Y —= Z gives:

de/dt = —k,xy
dy/dt = —k,xy
dz/dt = k,zy

k
and if the reverse reaction Z — X + Y also takes place:

de/dt = —k.axy+k_z
dy/dt = —k,xy+k_z
dy/dt = k.xy—Fk_z.

260f course, “degrade” is a relative concept, because the separate parts of the decaying substance should be taken
account of. However, if these parts are not active in any further reactions, one ignores them and simply thinks of the
reactant as disappearing!
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Note the subscripts being used to distinguish between the “forward” and “backward” rate constants.

k k_ .
Incidentally, another way to symbolize the two reactions X + Y N Zand Z — X + Y is as
follows:
k

N
X+Y§Z.

/
Here is one last example: X + Y L Z and Z L X give:

de/dt = —kxy+ Kz
dy/dt = —kxy
dz/dt = kxy—Kz.

Conservation laws are often very useful in simplifying the study of chemical reactions.

For example, take the reversible bimolecular reaction that we just saw:

de/dt = —k,oy+k_z
dy/dt = —k, xy+k_z
dz/dt = k.xy—Fk_z.
Since, clearly, d(z + z)/dt = 0 and d(y + z)/dt = 0, then, for every solution, there are constants

and y such that x 4+ 2z = 2y and y 4+ 2z = y,. Therefore, once that these constants are known, we only
need to study the following scalar first-order ODE:

dz/dt = k (vo— 2)(yo—2) — k_z.
in order to understand the time-dependence of solutions. Once that z(¢) is solved for, we can find z(t)
by the formula z(t) = xy — 2(t) and y(t) by the formula y(t) = yo — 2().

Note that one is only interested in non-negative values of the concentrations, which translates into the
constraint that 0 < z < min{xg, yo}.”’

The equation dz/dt = k,(xy — 2)(yo — z) — k_z is easily shown to have a unique, and globally
asymptotically stable, positive steady state, subject to the constraint that 0 < z < min{zy, yo}.

(Simply intersect the line u = k_z with the parabola u = k,(z¢ — z)(yo — z), and use a phase-line
argument: degradation is larger than production when to the right of this point, and viceversa.)

We’ll see an example of the use of conservation laws when modeling enzymatic reactions.

2.6.2 Chemical Networks

We next discuss a formalism that allows one to easily write up differential equations associated with
chemical reactions given by diagrams like

2H + O + H,0. (2.6)

2"This is a good place for class discussion of necessary and sufficient conditions for forward-invariance of the non-
negative orthant. To be added to notes.
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In general, we consider a collection of chemical reactions that involves a set of n, “species’:
Si, 1€ {1,2,...’)7,5}.

These “species” may be ions, atoms, or molecules (even large molecules, such as proteins). We’ll just
say “molecules”, for simplicity. For example, (2.6) represents a set of two reactions that involve the
following ny = 3 species (hydrogen, oxygen, water):

Si=H, Sy=0, S3=H0,

one going forward and one going backward. In general, a chemical reaction network (“CRN”, for

short) is a set of chemical reactions R, j € {1,2,...,n,}:
Rj : Z OlijSi — Z 61]51 (27)
i=1 i=1

where the a;; and (3;; are some nonnegative integers, called the stoichiometry coefficients.

The species with nonzero coefficients on the left-hand side are usually referred to as the reactants, and
the ones on the right-hand side are called the products, of the respective reaction. (Zero coefficients are
not shown in diagrams.) The interpretation is that, in reaction 1, a1; molecules of species S; combine
with aip; molecules of species Ss, etc., to produce (1; molecules of species S, 21 molecules of
species Sy, etc., and similarly for each of the other n,, — 1 reactions.

The forward arrow means that the transformation of reactants into products only happens in the di-
rection of the arrow. For example, the reversible reaction (2.6) is represented by the following CRN,
with n, = 2 reactions:

Ri: 2H+ 0O — HyO

R : HQO — 2H+O.
So, in this example,

ann =2, an=1 a3=0 pnu=0 pB=0 PBu=1

and
a2 =0, ap=0 ap=1 (=2 [n=1 PB=0.

It is convenient to arrange the stoichiometry coefficients into an n, X n, matrix, called the stoichiom-
etry matrix I' = I';;, defined as follows:

Fij:ﬂij_aija izl,...,ns7 j:1,...,nr. (28)

The matrix [" has as many columns as there are reactions. Each column shows, for all species (ordered
according to their index %), the net “produced—consumed”. For example, for the reaction (2.6), I' is
the following matrix:

Notice that we allow degradation reactions like A — 0 (all 5’s are zero for this reaction).
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We now describe how the state of the network evolves over time, for a given CRN. We need to find a
rule for the evolution of the vector:
[S1(2)]

[S2(t)]

1S, ()]

where the notation [S;(¢)] means the concentration of the species S; at time ¢. For simplicity, we drop
the brackets and write S; also for the concentration of S; (sometimes, to avoid confusion, we use
instead lower-case letters like s; to denote concentrations). As usual with differential equations, we
also drop the argument *“¢” if it is clear from the context. Observe that only nonnegative concentrations
make physical sense (a zero concentration means that a species is not present at all).

The graphical information given by reaction diagrams is summarized by the matrix I'. Another ingre-
dient that we require is a formula for the actual rate at which the individual reactions take place.

We denote by R;(S) be algebraic form of the jth reaction. The most common assumption is that of
mass-action kinetics, where:

R;(S) =k; [[ 7 forall j =1,...,m,.
=1

This says simply that the reaction rate is proportional to the products of concentrations of the reactants,
with higher exponents when more than one molecule is needed. The coefficients k; are “reaction
constants” which usually label the arrows in diagrams. Let us write the vector of reactions as R(.5):

Ry(S)

Ro(S)
R(S) = :
R, (S)

With these conventions, the system of differential equations associated to the CRN is given as follows:

ds
— = TR(S). (2.9)

Example

As an illustrative example, let us consider the following set of chemical reactions:

LN S LN
E+Pg_0—+E+@ F+Q — D% F+P (2.10)
-1 -3

which may be thought of as a model of the activation (for instance, by phosphorylation) of a protein
substrate P by an enzyme FE; C' is an intermediate complex, which dissociates either back into the
original components or into a product (activated protein) () and the enzyme. The second reaction
transforms () back into P, and is catalyzed by another enzyme F' (for instance, a phosphatase that
removes the phosphorylation). A system of reactions of this type is sometimes called a “futile cycle”,
and reactions of this type are ubiquitous in cell biology. The mass-action kinetics model is then
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obtained as follows. Denoting concentrations with the same letters (P, etc) as the species themselves,
we have the following vector of species, stoichiometry matrix " and vector of reaction rates R(.S):

P -1 1 0 0 0 1 ki EP

Q 0o 0 1 -1 1 0 k_,C

| E |-t 1 1 0 0 O - kyC
5= EFo|7 I= o 0 o0 -1 1 1 R(8) = k3sFQ

C 1 -1 -1 0 0 O k_sD

D o 0 o0 1 -1 -1 kyD

From here, we can write the equations (2.9). For example,
dP
e (=) (k1 EP) + (1)(k_1C) + (1)(k4D) = k4D — kiEP 4+ k_,C.

Conservation Laws

Let us consider the set of row vectors ¢ such that cI' = 0. Any such vector is a conservation law,

because d( s) "
c

for all ¢, in other words,
c¢S(t) = constant

along all solutions (a “first integral” of the motion). The set of such vectors forms a linear subspace
(of the vector space consisting of all row vectors of size ng).

For instance, in the previous example, we have that, along all solutions, one has that
P(t) + Q(t) + C(t) + D(t) = constant

because (1,1,0,0,1,1)I" = 0. Similarly, we have two more linearly independent conservation laws,
namely (0,0,1,0,1,0) and (0,0,0,1,0,1), so also

E(t)+C(t) and F(t)+ D(t)

are constant along trajectories. Since ' has rank 3 (easy to check) and has 6 rows, its left-nullspace
has dimension three. Thus, a basis of the set of conservation laws is given by the three that we have
found.

2.6.3 Introduction to Enzymatic Reactions

Catalysts facilitate reactions, converting substrates into products, while remaining basically unchanged.

Catalysts may act as “pliers” that place an appropriate stress to help break a bond,
they may bring substrates together, or they may help place a chemical group on a substrate.

———————————————————————————————————————————————————

substrate product
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In molecular biology, certain types of proteins, called enzymes, act as catalysts.

Enzymatic reactions are one of the main ways in which information flows in cells.

One important type of enzymatic reaction is phosphorylation, when an enzyme X (called a ¢ kinase
kinase when playing this role) transfers a phosphate group (PO,) from a “donor” molecule et_, .

: : 113 . 9 : : € ‘;. '?‘
such as ATP to another protein Y, which becomes “activated” in the sense that its energy is ** (Y
increased. é phosphatase

(Adenosine triphosphate (ATP) is a nucleotide that is the major energy currency of the cell:
phosphoanhydride bonds

L 408 48 %
“0— »‘J—()—r‘i—()—lll—()—( H,
AR

energy available
energy from for cellular work
sunlight or

from food and for chemical

synthesis
7 oo o)
“0-t-0- + -0-p-0-p-O-CH,
] A
inorganic
phosphate (P;)

Figure from Essential Cell Biology, Second Edition, published by Garland Science in 2004; (©by Alberts et al

Once activated, protein Y may then influence other cellular components, including other proteins,
acting itself as a kinase.

Normally, proteins do not stay activated forever; another type of enzyme, called a phosphatase, even-
tually takes away the phosphate group.

In this manner, signaling is “turned off” after a while, so that the system is ready to detect new signals.
Chemical and electrical signals from the outside of the cell are sensed by receptors.

Receptors are proteins that act as the cell’s sensors of outside conditions, relaying information to the
inside of the cell.

In some ways, receptors may be viewed as enzymes: the “substrate” is an extracellular ligand (a
molecule, usually small, outside the cell, for instance a hormone or a growth factor), and the “prod-
uct’ might be, for example, a small molecule (a second messenger) that is released in response to
the binding of ligand to the receptor. (Or, we may view a new conformation of the receptor as the
“product” of the reaction.)

This release, in turn, may trigger signaling through a series of chemical reactions inside the cell.

Cascades and feedbacks involving enzymatic (and other) reactions, as well as the action of proteins
on DNA (directing transcription of genes) are “life”.

Below we show one signaling pathway, extracted from a recent paper by Hananan and Weinberg
on cancer research. It describes the top-level schematics of the wiring diagram of the circuitry (in
mammalian cells) responsible for growth, differentiation, and apoptosis (commands which instruct
the cell to die). Highlighted in red are some of the genes known to be functionally altered in cancer
cells. Almost all the main species shown are proteins, acting many of them as enzymes in catalyzing
“downstream” reactions.
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Some More on Receptors

As shown in the above diagram, most receptors are designed to recognize a specific type of ligand.
Receptors are usually made up of several parts.

e An extracellular domain (““domains” are parts of a protein) is exposed to the exterior of the cell, and
this is where ligands bind.

e A transmembrane domain serves to “anchor” the receptor to the cell membrane.

e A cytoplasmic domain helps initiate reactions inside the cell in response to exterior signals, by
interacting with other proteins.

As an example, a special class of receptors which constitute a common target of pharmaceutical drugs
are G-protein-coupled receptors (GPCR’s).

The name of these receptors arises from the fact that, when their conformation changes in response to
a ligand binding event, they activate G-proteins, so called because they employ guanine triphosphate
(GTP) and guanine diphosphate (GDP) in their operation.

GPCR’s are made up of several subunits (G, G5, G) and are involved in the detection of metabolites,
odorants, hormones, neurotransmitters, and even light (rhodopsin, a visual pigment).

'
signal % G-protein
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2.6.4 Differential Equations

The basic elementary reaction is:

LIRS
S+E<—C—2>P+E

—1

and therefore the equations that relate the concentrations of substrate, (free) enzyme, complex (en-
zyme with substrate together), and product are:

% = k_,c—kse

% = (k_,+ky)c—kse
2—; = kise— (k_, + k,)c
d

d_}t) = kyc

which is a 4-dimensional system.
Since the last equation, for product formation, does not feed back into the first three,
we can simply ignore it at first, and later, after solving for ¢(), just integrate so as to get p(t).

de _

: de
Moreover, since Tt a=

0, we also know that e + c is constant. We will write “e,” for this sum:
e(t) +c(t) = e,.

(Often ¢(0) = 0 (no substrate), so that ¢, = ¢(0), the initial concentration of free enzyme.)

So, we can eliminate e from the equations:

ds

i k_ic—kys(e, —¢)

dc

7 kis(eq —c¢) — (k_y + ky)c.

We are down to two dimensions, and could proceed using the methods that we have been discussing.

However, Leonor Michaelis and Maud Leonora Menten formulated in 1913 an approach that allows
one to reduce the problem even further, by doing an approximation. Next, we review this approach,
as reformulated by Briggs and Haldane in 19258, and interpret it in the more modern language of
singular perturbation theory.

Although a two-dimensional system is not hard to study, the reduction to one dimension is very useful:
e When “connecting” many enzymatic reactions, one can make a similar reduction for each one of
the reactions, which provides a great overall reduction in complexity.

e It is often not possible, or it is very hard, to measure the kinetic constants (k,, etc), but it may be
easier to measure the parameters in the reduced model.

28Michaelis and Menten originally made an the “equilibrium approximation” k_,c(t) — k,s(t)e(t) = 0 in which one
assumes that the first reaction is in equilibrium. This approximation is very hard to justify. The Briggs and Haldane
approach makes a different approximation. The final form of the production rate (see later) turns out to be algebraically
the same as in the original Michaelis and Menten work, but the parameters have different physical interpretations in terms
of the elementary reactions.
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2.6.5 Quasi-Steady State Approximations and Michaelis-Menten Reactions

Let us write

ds

a — kflc — kls(eo - C)

y k k

d_;‘ = kis(ey—c) — (k. + k)e = k [3 e — (K, + s)c] , where K, = 1k+ 2
1

The MM approximation amounts to setting dc/dt = 0. The biochemical justification is that, after a
transient period during which the free enzymes “fill up,” the amount complexed stays more or less
constant.

This allows us, by solving the algebraic equation:
se,— (Ky+s)c =0

to express c in terms of s:

S €
= . 2.11
= K s (2.11)
We then have, for the production rate:
dp VS
Lo ke = 2.12
dt 2 € K,+s ( )
Also, substituting into the s equation we have:
ds S 60 S e() VmaxS
— =k,— — k — = — 2.13
dt K,o+s (60 K, + 5) K, +s (13)

where we denote V., = k,e,. If we prefer to explicitly show the role of the enzyme as an “input”,
we can write these two equations as follows:

ds B k,s
dt _eOKm + s
dp k, s
dt eoKm + s

showing the rate at which substrate gets transformed into product with the help of the enzyme.

This is all very nice, and works out well in practice, but the mathematical justification is flaky: setting
de/dt = 0 means that ¢ is constant. But then, the equation ¢ = 7 implies that s must be constant,
too. Therefore, also ds/dt = 0.

But then % = —ds/dt = 0, which means that s = 0. In other words, our derivation can only be

right if there is no substrate, so no reaction is taking place at all!

One way to justify these derivations is as follows. Under appropriate conditions, s changes much
more slowly than c.

So, as far as ¢ is concerned, we may assume that s(t) is constant, let us say s(t) = s.

Then, the equation for ¢ becomes a linear equation, which converges to its steady state, which is given
by formula (2.11) (with s = 5) obtained by setting dc/dt = 0.

Now, as s changes, ¢ “catches up” very fast, so that this formula is always (approximately) valid.
From the “point of view” of s, the variable c is always catching up with its expression given by
formula (2.11), so, as far as its slow movement is concerned, s evolves according to formula (2.13).
(An exception is at the start of the whole process, when ¢(0) is initially far from its steady state value.
This is the “boundary layer behavior™.)
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2.6.6 A quick intuition with nullclines

Let us introduce the following rescaled variables:

and write also € = ¢,/5s,, where we think of s, as the initial concentration s(0) of substrate.
We will make the assumption that the initial concentration e, of enzyme e is small compared to that of
substrate, i.e. that the ratio < is small*®. Note that x, y, € are “non-dimensional” variables.

It is clear from the equations that, if we start with ¢(0) = 0, then s(t) is always < s,, and ¢(t) is
always < e,. Therefore, 0 < z(t) < land 0 < y(t) < 1.

Using these new variables, the equations become:

dx
At = clkyy — kisor (1 —y)]
d
d—i = kl[sox — (Km—i—sox)y}.

The y nullcline is the graph of:

So T
= —2 2.14

y K,+syx ( )

(which is the same as saying that the ¢ nullcline is the graph of ¢ = Sej_ ) and the x nullcline is the
mt S
graph of:
So X
T + Sox

Now, since kk;ll < % = K, it follows that the y-nullcline lies under the z-nullcline.

In addition, using that < is small, we can say that the vector field should be quite “vertical” (small x
component compared to y component), at least if we are far from the y-nullcline.

(The x component is small because ¢ is small, since x and y are both bounded by one. The y compo-
nent will be ~ 0 when we are near the y-nullcline.)

It is easy to see then that the phase plane looks as follows, qualitatively (two typical trajectories are
shown):

2Tt would not make sense to just say that the amount of enzyme is “small,” since the meaning of “small” depends on
units. On the other hand, the ratio makes sense, assuming of course that we quantified concentrations of enzyme and
substrate in the same units. Typical values for £ may be in the range 10~2 to 10~ 7.
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y x \

In fact, with s, = ¢, = k_ = k_, = k, = 1, this is the actual phase plane (nullclines and vector field
shown).

phase plane
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It was generated using the following MATLAB code:

eps =0.1;50 =1;

[X,Y]=meshgrid(0:0.1:1, 0:0.1:1);

zl=eps.*(Y - s0.#X.*#(1-Y));z2= s0.*X-((2+s0.*X).*Y);
quiver(X,Y,z1,z2, LineWidth’,2)

title(’phase plane’)

hold;

x=0:0.1:1;

plot(x,x./(2.+x), LineWidth’,2, color’,’r’)
plot(x,x./(1.+x), LineWidth’,2, color’,’r’)

The key point is that (in these coordinates) trajectories initially move almost “vertically” toward the
y-nullcline, and subsequently stay very close to this nullcline, for large times t. This means that, for

t
large t, c(t) ~ s(t) e

~ m, which is what the MM approximation (2.11) claims.
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S(t) e

Using “c(t) = Rt s
“de/dt = 0,” which would be like saying that the ¢ component is at the value that it would be if the
system were at steady state (which it really isn’t).

is called a “quasi-steady state approximation,” because it formally looks like

To make all this more precise mathematically, one needs to do a “time scale analysis” which studies
the dynamics from c’s point of view (slow time scale) and s’s (fast time scale) separately. The next
few sections provide some more details. The reader may wish to skip to subsection 2.6.9.

2.6.7 Fast and Slow Behavior

Let us start again from the equations

dz
yr = elky — kispx (1 —y)]
d
di - k’l[sox - (Km_‘_‘gox)y}'

in the coordinates z = % Yy = é

Since € ~ 0, we make the approximation “c = (0" and substitute € = 0 into these equations. (Note that

x and y are bounded by 1, so they remain bounded.)

So dz/dt = 0, which means that z(¢) equals a constant Z, and hence the second equation becomes:
dc
dt

(substituting s,z = s and e,y = c to express in terms of the original variables, and letting 5 = 5,%).

In this differential equation, c(t) converges as t — oo to the steady state

= klens — (K, +35)]

€y S
K,+5
which is also obtained by setting dc/dt = 0 in the original equations if s(¢) = s is assumed constant.

(Observe that the speed of convergence is determined by k, (K, + 5), which does not get small as
e —0.)

In this way, we again obtain formula (2.12) for dp/dt (s is the “present” value of s).

This procedure is called a “quasi-steady state approximation” (QSS), reflecting the fact that one re-

places c by its “steady state” value 72> obtained by pretending that s would be constant. This is not

a true steady state of the original equations, of course.

In summary, assuming ¢ ~ 0, we made the approximation “c = 0” leading to dz/dt = 0 and z(t) = .
However, “c ~ 0” is not the same as “c =07, so we cannot really say that dz/dt = 0. Eventually,
x(t) changes!

Yet, the idea still works, but we need to make a more careful argument using time-scale separation:
the key point is that ¢ approaches its steady state value fast relative to the movement of s, which may,
therefore, supposed to be constant while this convergence happens.

So we “iterate” the reasoning: s moves a bit, using c’s steady state value. Then, ¢ “reacts” to this new
value of s, converging to a new steady state value (corresponding to the new 5), and the process is
iterated in this fashion.

The main problem with saying things in this manner is that, of course, it is not true that c and s take
turns moving, but both move simultaneously (although at very different speeds).
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Long-time behavior (fast time scale)

In order to be more precise, it is convenient to make a change of time scale, using:

€o
T=—Fkt.
So

We may think of 7 as a fast time scale, because 7 = ¢k, t, and therefore 7 is small for any given ¢.

For example, if ek, = 1/3600 and ¢ is measured in seconds, then 7 = 10 implies that t = 36000; thus,
“r = 10” means that ten hours have elapsed, while “¢ = 10” means that only ten seconds elapsed.

Substituting s = s,z, ¢ = e,y, and

dx 1 ds dy s, dc

& akdl dr ahdl

we have:
dz k_,
R e 1 —
d
S Sox — (Kn+S02)y.
dr

Still assuming that ¢ < 1, we make an approximation by setting £ = 0 in the second equation:

dy
8_

7. = So¥ = (K, + SoT)y

Sox

leading to the algebraic equation s,z — (K, + s, z)y = 0 which we solve for y = y(z) =

. Kn+sox?
or equivalently
Cod (2.16)
c= .
K,+s’
and finally we substitute into the first equation:
dZE k‘*l (1 ) (_k‘,I + Kmkl) Sox kQ Sox
i~ kR Y k(K + 507) ko (KK + 507)

(recall that K, = "=1%2),

ds x
In terms of the original variable s=s,x, using i eoky—

I and recalling that V. = k,e,, we have
-
re-derived (2.13):

ds Vo S

dt ~  K,+s’

The important point to realize is that, after an initial convergence of ¢ (or y) to its steady state, once
that ¢ has “locked into” its steady state (2.16), it quickly “catches up” with any (slow!) changes in s,
and this catch-up is not “visible” at the time scale 7, so ¢ appears to track the expression (2.16).
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Short initial-time behavior (slow time scale)

One special case is that of small initial times ¢, when c (or ) has not yet converged to a steady state.
For t ~ 0, we may assume that 5 = s,, and therefore the equation for c is approximated by:

de

= =k [eo sy — (Ku+ so)c] - (2.17)

One calls this the boundary layer equation, because it describes what happens near initial times
(boundary of the time interval).

Putting it all Together

Let’s suppose that s(0) = so and ¢(0) = .
(1) As we remarked earlier, for ¢t ~ 0 we have equation (2.17) (with initial condition ¢(0) = ¢o).
(2) For t large , we have the approximations given by (2.16) for ¢, and (2.13) for s.

The “Method of Matched Asymptotic Expansions” (not covered here) is used to patch the inner or
boundary-layer solution with the outer or fast time scale solution in order to obtain a globally valid
solution.

The approximation is best if € is very small, but it works quite well even for moderate c.
Here is a numerical example.

Letustake k, =k, =k, =¢, = 1and s, = 10, sothate = 0.1. Note that K, =2and V,,, = 1.
We show below, together, the following plots:

e in black, the component ¢(t) of the true solution of the system

ds dc
= s(1—c¢), =5 (2+s)c

with initial conditions s(0) = s,, ¢(0) = 0,

einred, c = s/(2 + s), where s(t) solves & = —s/(2 + s) (slow system) with 5(0) = s,

e in blue, the solution of the fast system at the initial time, % = s, — (2 + s, )¢, with ¢(0) = 0.

Since it is difficult to see the curves for small ¢, we show plots both for ¢ € [0, 25] and for t € [0,0.5]:

o,a; o.e.;
o.eg o.ag
Co,4§ So4
0.25 0.2;
O S A L e ] e L o B e e e B
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As expected, the blue curve approximates well for small ¢ and the red one for larger .

FYT, here is the Maple code that was used (for Tmax = 0.5 and 25):

restart:with(plots):with(DEtools):

$0:=10:Tmax:=0.5:N:=500: )
sys:=diff(s(t),t)=c(t)-s(t)*(1-c(t)),diff(c(t),t)=s(t)-(2+s(t)) *c(t):
sol:=dsolve(sys,s(0)=s0,c(0)=0,type=numeric):

plotl:=odeplot(sol,[[t,c(t)]],0.. Tmax,numpoints=N,color=black,thickness=3):
sysslow:= diff(s(t),t) = - s(t)/(2+s(t)):
solslow:=dsolve(sysslow,s(0)=s0,type=numeric):

solns:=t — op(2,0p(2,solslow(t))):

plot2:=plot(solns/(2+solns),0.. Tmax,numpoints=N,color=red,thickness=3):
sysfast:=diff(c(t),t)=s0-(2+s0)*c(t):
solfast:=dsolve(sysfast,c(0)=0,type=numeric):
plot3:=odeplot(solfast,[[t,c(t)]],0.. Tmax,numpoints=N,color=blue,thickness=3):
display(plot1,plot2,plot3);

2.6.8 Singular Perturbation Analysis

The advantage of deriving things in this careful fashion is that we have a better understanding of what
went into the approximations. Even more importantly, there are methods in mathematics that help to
quantify the errors made in the approximation. The area of mathematics that deals with this type of
argument is singular perturbation theory.

The theory applies, in general, to equations like this:

dz
dy
8% - g(xay)

with 0 < ¢ < 1. The components of the vector x are called slow variables, and those of y fast
variables.

The terminology is easy to understand: dy/dt = (1/¢)(...) means that dy/dt is large, i.e., that y(t) is
“fast,” and by comparison x(t) is slow.*

The singular perturbation approach starts by setting € = 0,
then solving (if possible) g(z,y) = 0 for y = h(x) (that is, g(x, h(z)) = 0),
and then substituting back into the first equation.

Thus, one studies the reduced system:

on the “slow manifold” defined by g(x,y) = 0.

30The theory covers also multiple, not just two, time scales, as well partial differential equations where the domain is
subject to small deformations, and many other situations as well.
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, Slow manifold g(x,y)=0. If starting on this manifold, the equations are
/ dx/dt = f(x,h(x)) and y = h(x)

-~ true trajectory

\ Jfast motion approximation dy/dt = g(x 3 )

There is a rich theory that allows one to mathematically justify the approximations.

A particularly useful point of view us that of “geometric singular perturbation theory.” We will not
cover any of that in this course, though.

2.6.9 Inhibition

Let us discuss next inhibition, as a further example involving enzymes.

In competitive inhibition, a second substrate, called an inhibitor, is capable of binding to an enzyme,
thus block binding of the primary substrate.

enzyme

AR

mpetiti
competitive substrate

inhibitor bound
to enzyme

If the primary substrate cannot bind, no “product” (such as the release of signaling molecules by a
receptor) can be created.

For example, the enzyme may be a cell surface receptor, and the primary substrate might be a growth
factor, hormone, or histamine (a protein released by the immune system in response to pollen, dust, etc).

Competitive inhibition is one mechanism by which drugs act. For example, an inhibitor drug will
attempt to block the binding of the substrate to receptors in cells that can react to that substrate, such
as for example histamines to lung cells. Many antihistamines work in this fashion, e.g. Allegra.’!

A simple chemical model is as follows:

ko ok LY
S+FEZC, =3 P+F I+E;€—CQ
—1 -3

31In pharmacology, an agonist is a ligand which, when bound to a receptor, triggers a cellular response. An antagonist
is a competitive inhibitor of an agonist. when we view the receptor as an enzyme and the agonist as a substrate.
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where (] is the substrate/enzyme complex, C'5 the inhibitor/enzyme complex, and / the inhibitor.

In terms of ODE’s, we have:

d

d—j = k_,cq — k;se

de ,
E — (k,l _'_ k2)61 + k‘fch - klse - k326
d.

d_:; = k,362 - k32€

dCl
% fr— klse —_— (k71 + k2)01

d
% - kgle — k,BCQ

d

d—lt? = ]{?201 .

It is easy to see that c; + c2 + e is constant (it represents the total amount of free or bound enzyme,
which we’ll denote as e,). This allows us to eliminate e from the equations. Furthermore, as before,
we may first ignore the equation for p. We are left with a set of four ODE’s:

ds

E — k—lcl — kls(eo —C1 — 02)

di .

E _= k_ch - k3le
@ = kis(e,—c1—ca) — (ks + ky)ey
dt
de .
d_; = ksl(eo —C1 — CQ) - k_ch .

(We could also use a conservation law ¢ + ¢y = ¢, = total amount of inhibitor, free or bound to
enzyme, to reduce to just three equations, but it is better for time-scale separation purposes not to do
so.) One may now do a quasi-steady-state approximation, assuming that the enzyme concentrations
are small relative to substrate, amounting formally to setting dc; /dt = 0 and dcy/dt = 0. Doing so

gives:
- | K;eys K. — k., +k,
K. i+ Kis -+ KmKi k,

K eyt k_,
Cy = - Kl = — .
K.i+ Kis + K, K; ks,
The product formation rate is dp/dt = k,c;, so, again with V,,, = k,e,, one has the approximate
formula:
dp Vi 8
dt s+ K,(1+i/K;)
The formula reduces to the previous one if there is no inhibitor (¢ = 0).

We see that the rate of product formation is smaller than if there had been no inhibition, given the
same amount of substrate s(¢) (at least if i>>1, k;>1, k_;<1).

But for s very large, the rate saturates at dp/dt = V,,,, just as if there was no inhibitor (intuitively, there
is so much s that ¢ doesn’t get chance to bind and block). Thus, to affect the amount of product being
formed when the substrate amounts are large, potentially a huge amount of drug (inhibitor) would
have to be administered! Allosteric inhibition, described next, does not have the same disadvantage.
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2.6.10 Allosteric Inhibition

In allosteric inhibition®, an inhibitor does not bind in the same place where the catalytic activity
occurs, but instead binds at a different effector site (other names are regulatory or allosteric site),
with the result that the shape of the enzyme is modified. In the new shape, it is harder for the enzyme
to bind to the substrate.

allosteric inhibitor
enzyme

$ enzyme

substrate substrate

A slightly different situation is if binding of substrate can always occur, but product can only be
formed (and released) if I is not bound. We model this last situation, which is a little simpler.

Also, for simplicity, we will assume that binding of S or I to E are independent of each other.

(If we don’t assume this, the equations are still the same, but we need to introduce some more kinetic
constants £’s.)

A reasonable chemical model is, then:
ks, k,
EF+S - FES—=P+F

—1

!
El+sl§> EIS

ks
ES+1— EIS

-3
where “EI” denotes the complex of enzyme and inhibitor, etc.

It is possible to show that there results under quasi-steady state approximation a rate

dp V. s>+as+b

At~ 1+4i/K; $>+cr+d

for some suitable numbers a = (i), . .. and a suitably defined K.
Notice that the maximal possible rate, for large s, is lower than in the case of competitive inhibition.

One intuition is that, no matter what is the amount of substrate, the inhibitor can still bind, so maximal
throughput is affected.

32 Merriam-Webster: allosteric: “all+steric”; and steric means “relating to or involving the arrangement of atoms in
space” and originates with the word “solid” in Greek
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2.6.11 A digression on gene expression

A very simple model of gene expression is as follows.

We let D, M, and P denote respectively the concentration of active promoter sites (“concentration”
in the sense of proportion of active sites in a population of cells), mRNA transcript, and protein.

The network of reactions is:

p-%pinm, mo, mbmir, P9

which represent, respectively, transcription and degradation of mRNA, translation, and degradation
(or dilution due to cell growth) in protein concentrations.

Remark: This model ignores a huge amount of biochemistry and biophysics, such as the dynamics of

mRNA polymerase’s transcriptional process.
Transcription bubble

Nontemplate
strand RNA
polymerase

Rewinding

Unwinding

X Template
strand

RNA RNA-DNA P:Cti"e site
5" hybrid, 8 bp

Direction of transcription
Nonetheless, it is a very useful model, and the one most often employed.

Using mass-action kinetics, we have the following rates:
R1:O./D, RQZ/BM, R3:9M, R4:(5P

for some positive constants «, (3, 6, . The stoichiometry matrix is:
0
0

Note that, since D is not being changed, we could equally well, in this model, replace the first two

reactions by O&M £>O, and drop D from the description. However, we include D because we will
consider repression below.

A promoter region is a part of the DNA sequence of a chromosome that is recognized by RNA poly-
merase. In prokaryotes, the promoter region consists of two short sequences placed respectively 35
and 10 nucleotides before the start of the gene. Eukaryotes require a far more sophisticated transcrip-
tional control mechanism, because different genes may be only active in particular cells or tissues at
particular times in an organism’s life; promoters act in concert with enhancers, silencers, and other
regulatory elements
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Now let’s add repression to the chemical network model.

Suppose that a molecule (transcription factor) R can repress transcription by binding to DNA, hence
affecting the activity of the promoter.

The model then will add an equation:
k.
D+RZC

—1

representing complex formation between promoter and repressor.

This is closely analogous to enzyme inhibition. There is an exercise that asks for an analysis of this
model.

2.6.12 Cooperativity

Let’s take a situation where n molecules of substrate must first get together with the enzyme in order
for the reaction to take place:

K
nS 4 E k:l’ o opip
1

This is not a very realistic model, since it is unlikely that 7+ 1 molecules may “meet” simultaneously.

It is, nonetheless, a simplification of a more realistic model in which the bindings may occur in
sequence.

One says that the cooperativity degree of the reaction is n, because 7 molecules of .S must be present
for the reaction to take place.

Highly cooperative reactions are extremely common in biology, for instance, in ligand binding to cell
surface receptors, or in binding of transcription factors to DNA to control gene expression.

We only look at this simple model in this course. We have these equations:

ds
dt
de
dt
de
dt
dp
dt

= nk_,c—nk,s"e
= (k_,+k)c—ks"e
= ks"e— (k_,+ky)c

= ko
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Doing a quasi-steady state approximation, under the assumption that enzyme concentration is small
compared to substrate, we may repeat the previous arguments and look at the c-nullcline, which leads
to the same expression as earlier for product formation, except that a different exponent appears:

dp ‘/max Sn

dt K, + s"
The integer n is called the Hill coefficient.

One may determine V., n, and K, experimentally, from knowledge of the rate of product formation
dp/dt as a function of current substrate concentration (under the quasi-steady state approximation
assumption).

First, V. may be estimated from the rate dp/dt corresponding to s — co. This allows the computa-
tion of the quantity - dp/dt__ Then, one observes that the following equality holds (solve for s and

ax—dp/dt*
take logs):
dp/dt
Ins = InK In{ ———) .
nins nn, + n(‘/:mx—dp/dt>

dp/dt

W) versus In s, and looking at slope and intersects, n and

Thus, by a linear regression of In <
K, can be estimated.

Since the cooperative mechanism may include many unknown and complicated reactions, including
very complicated allosteric effects, it is not uncommon for fractional powers to be appear (even if the
above model makes no sense in a fractional situation) when fitting parameters.

One often writes the product formation rate, redefining the constant K, as % = I‘f‘f—fsn
m

This has the advantage that, just as earlier, K, has an interpretation as the value of substrate s for
which the rate of formation of product is half of V.

For our subsequent studies, the main fact that we observe is that, for n > 1, one obtains a “sigmoidal”
shape for the formation rate, instead of a “hyperbolic” shape.

This is because, if f(s) = %, then f'(0) > 0 whenn = 1, but f'(0) =0ifn > 1.

In other words, for n > 1, and as the function is clearly increasing, the graph must start with
concavity-up. But, since the function is bounded, the concavity must change to negative at some
point.

Here are graphs of two formation rates, one with n = 1 (hyperbolic) and one with n = 3 (sigmoidal):
Vmax

Vmax/z"/

Km

Cooperativity plays a central role in allowing for multi-stable systems, memory, and development, as
we’ll see soon.

Here is a more or less random example from the literature®? which shows fits of V.. and n (“ng” for
“Hill”) to various data sets corresponding to an allosteric reaction.

3Tan J. MacRae et al., “Induction of positive cooperativity by amino acid replacements within the C-terminal domain
of Penicillium chrysogenum ATP sulfurylase,” J. Biol. Chem., Vol. 275, 36303-36310, 2000
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(Since you asked: the paper has to do with an intracellular reaction having to do with the incorporation
of inorganic sulfate into organic molecules by sulfate assimilating organisms; the allosteric effector is
PAPS, 3’