Final Exam Review Problems

For details on exam coverage and a list of topics, please see the class website. Note that this is a set of review problems, and NOT a practice exam. Please also consult the review problems for Exams 1 and 2 , as these will be useful guides for material covered earlier in the course.

1. Consider the linear operator on \mathbb{R}^{2} defined by

$$
T\binom{x_{1}}{x_{2}}=\binom{-x_{2}}{x_{1}}
$$

(a) What is the matrix of T with respect to the standard ordered basis for \mathbb{R}^{2} ?
(b) What is the matrix of T with respect to the ordered basis

$$
\gamma=\left\{\binom{1}{2},\binom{1}{-1}\right\} ?
$$

(c) Prove that for any $c \in \mathbb{R}$, the linear operator $T-c I_{\mathbb{R}^{2}}$ is invertible. Here $I_{\mathbb{R}^{2}}$ denotes the identity operator on \mathbb{R}^{2}.
2. Suppose that A is a 2×2 symmetric matrix with real entries. Prove that A is similar (over \mathbb{R}) to a diagonal matrix.
3. Let $T=L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with

$$
A=\left(\begin{array}{cc}
1 & -2 \\
2 & 2
\end{array}\right)
$$

Prove that the only subspaces of \mathbb{R}^{2} that are invariant under T are \mathbb{R}^{2} itself and $\{0\}$.
4. Let $T=L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, with

$$
A=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)
$$

Let

$$
W_{1}=\operatorname{span}\left\{\binom{1}{0}\right\} .
$$

(a) Prove that W_{1} is invariant under T.
(b) Prove that there is no subspace W_{2} which is invariant under T and

$$
\mathbb{R}^{2}=W_{1} \bigoplus W_{2}
$$

5. Prove the Triangle Inequality in an inner product space V : for all $x, y \in V$,

$$
\|x+y\| \leq\|x\|+\|y\| .
$$

Here $\|\cdot\|$ is the associated norm. Hint: Use the Cauchy-Schwarz inequality.
6. Define the set of functions

$$
S=\{\sin t, \cos t, 1, t\}
$$

and define the subspace U of $C([0, \pi])$ by

$$
U=\operatorname{span}(S)
$$

U is thus an inner product space, with inner product

$$
\langle f, g\rangle=\int_{0}^{\pi} f(t) g(t) \mathrm{d} t
$$

(a) Find an orthonormal basis β for U.
(b) Using the orthonormal basis β, find the coordinates of h relative to β, where

$$
h(t)=2 t+1
$$

7. Let V be the vector space of all upper $n \times n$ triangular matrices with coefficients in a field F. Find two non-trvial subspaces U_{1} and U_{2} such that

$$
V=U_{1} \bigoplus U_{2}
$$

8. Give three different bases for $M_{2 \times 2}(F)$.
9. Let T be the linear operator defined on $P_{2}(\mathbb{R})$ defined by

$$
T(f(x))=2 f(x)-f^{\prime}(x)
$$

Find the Jordan canonical form, and Jordan canonical basis, of T.
10. Let V and W be n-dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Suppose that

$$
\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

is a basis for V. Prove that T is an isomorphism if and only if

$$
T(\beta):=\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}
$$

is a basis for W.
11. Does the Jordan form of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

exist? Why or why not?
12. Find the Jordan form and a Jordan canonical basis for

$$
B=\left(\begin{array}{cccc}
5 & -1 & 0 & 0 \\
9 & -1 & 0 & 0 \\
0 & 0 & 7 & -2 \\
0 & 0 & 12 & -3
\end{array}\right)
$$

13. True or False: the subset

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1} x_{2} x_{3}=0\right\}
$$

is a subspace of \mathbb{R}^{3}. Provide justification.
14. True or False: there exists a basis $\left\{p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)\right\}$ of $P_{3}(F)$ such that none of the polynomials $p_{1}(x), p_{2}(x), p_{3}(x), p_{4}(x)$ has degree 2. Provide justification.
15. Let V be an inner product space. Suppose that $T \in \mathcal{L}(V)$ is such that

$$
\langle T(x), y\rangle=\langle x, T(y)\rangle
$$

Show that every eigenvalue of T is real. Note: Such operators T are called self-adjoint (or Hermitian), and are extremely important in mathematics and science.
16. Let V be an inner product space, and U a finite-dimensional subspace. Recall that we can show that (you should be able to prove this!)

$$
\begin{equation*}
V=U \bigoplus U^{\perp} \tag{1}
\end{equation*}
$$

Define the projection onto U : for $v=u+w \in U \bigoplus U^{\perp}$, define $P: V \rightarrow V$ by

$$
P(v)=u
$$

Note that due to (1), this is a well-defined transformation, and as a projection is linear.
(a) Show that $P^{2}=P$ as linear operators. Recall that $P^{2}(v)=P(P(v))$.
(b) Show that for all $v \in V,\|P(v)\| \leq\|v\|$.
17. Is the map $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by

$$
T\binom{z_{1}}{z_{2}}=\binom{z_{1}+i z_{2}}{i z_{1}+z_{2}}
$$

diagonalizable? If so, find a basis β for \mathbb{C}^{2} such that $[T]_{\beta}$ is diagonal.
18. Let W be the subspace of \mathbb{R}^{5} spanned by

$$
v_{1}=\left(\begin{array}{c}
1 \\
2 \\
3 \\
-1 \\
2
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
2 \\
4 \\
7 \\
2 \\
-1
\end{array}\right)
$$

Find a basis for the orthogonal complement W^{\perp} of W.
19. Determine all possible Jordan canonical forms for a linear operator $T: V \rightarrow V$ who characteristic polynomial is

$$
f_{T}(t)=(t-2)^{3}(t-5)^{2}
$$

