Exam 2 Review Problems

For details on exam coverage and a list of topics, please see the class website. Note that this is a set of review problems, and NOT a practice exam.

1. Suppose that V is finite dimensional vector space over a field F, and $T: V \rightarrow V$ is linear. Prove that

$$
T(x)=a I_{v}(x)
$$

for some $a \in F$, i.e. T is a scalar multiple of the identity if and only if $S T=T S$ for all $S \in \mathcal{L}(V)$.
2. Recall that definition of the eigenspace corresponding to λ of a linear operator T :

$$
E_{\lambda}=\{v \in V \mid T(v)=\lambda v\} .
$$

That is, E_{λ} is the union of $\{0\}$ and the set of eigenvectors of T corresponding to λ. Show that E_{λ} is invariant subspace with respect to T.
3. Let $A \in M_{n \times n}(F)$. Recall that the trace of A, denoted $\operatorname{tr}(A)$, is the sum of the main diagonal of A :

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}
$$

(i) Show that if $A \in M_{n \times m}(F), B \in M_{m \times n}(F)$, then

$$
\operatorname{tr}(A B)=\operatorname{tr}(B A)
$$

(ii) Use the result of (a) to show that if $A, B \in M_{n \times n}(F)$ are similar, then

$$
\operatorname{tr}(A)=\operatorname{tr}(B)
$$

Thus, the trace of a matrix is invariant under similarity (i.e. change of coordinates).
4. As a matrix over \mathbb{R}, find the rank and nullity of

$$
\left(\begin{array}{ccccc}
2 & 0 & 1 & -3 & 4 \\
-1 & 2 & 4 & 0 & 3 \\
3 & -2 & -3 & -3 & 1
\end{array}\right)
$$

4. Consider the vector space of "traceless" 2×2 matrices over \mathbb{R} :

$$
V=\left\{A \in M_{2 \times 2}(\mathbb{R}) \mid \operatorname{tr}(A)=0\right\}
$$

Is V isomorphic to \mathbb{R}^{4} ? Prove it is or why it is not.
5. Let $A \in M_{n \times n}(F)$ such that $A^{2}=0$, where 0 denotes the $n \times n$ zero-matrix:

$$
0=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

Show that A is not invertible.
6. Consider the two ordered bases for \mathbb{R}^{2} :

$$
\begin{aligned}
\beta & =\left\{\binom{-1}{3},\binom{2}{-1}\right\}, \\
\beta^{\prime} & =\left\{\binom{0}{10},\binom{5}{0}\right\} .
\end{aligned}
$$

Find the change of coordinate matrix Q that changes β^{\prime}-coordinates into β-coordinates.
7. Define the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ by

$$
T(f(x))=\left(\begin{array}{c}
f(-1) \\
f(0) \\
f(1)
\end{array}\right)
$$

Is T invertible? If so, find T^{-1}. Note that T^{-1} will be (if it exists) a map from \mathbb{R}^{3} to $P_{2}(\mathbb{R}) ;$ I am not looking just for a matrix representation (although it may be useful to compute as an intermediate step).
8. Let

$$
E=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and define $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ by

$$
T(A)=\left(\begin{array}{c}
\operatorname{tr}(A) \\
\operatorname{tr}\left(A^{T}\right) \\
\operatorname{tr}(E A) \\
\operatorname{tr}(A E)
\end{array}\right) .
$$

Repeat Problem 7 for this transformation.
9. Show that $\lambda=0$ is an eigenvalue of A if and only if A is not invertible.
10. Prove that

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

is not diagonalizable.
11. Let $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be the linear operator defined by

$$
T(f(x))=f(x)+f(2) x
$$

Find the eigenvalues of T and an ordered basis for $P_{3}(\mathbb{R})$ such that $[T]_{\beta}$ is diagonal. Write $P_{3}(\mathbb{R})$ as the direct sum of T-invariant subspaces.
12. For the linear operator defined in Problem 11, find the matrix $[T]_{\gamma}$, where γ is the standard order basis of $P_{3}(\mathbb{R})$. Find a matrix Q such that

$$
[T]_{\beta}=Q^{-1}[T]_{\gamma} Q
$$

where again $[T]_{\beta}$ is as in Problem 11.
13. Let T be an invertible linear transformation on a finite-dimensional vector space V. Show that if T is diagonalizable, then so is T^{-1}.
14. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the line $y=4 x$. Find the matrix representation of T with respect to the standard ordered basis β of \mathbb{R}^{2}. Is T diagonalizable? Hint: Find the matrix with respect to a more convenient basis $\gamma\left([T]_{\gamma}\right)$, and then use a change of coordinates matrix Q to find $[T]_{\beta}$.
15. True or False: For $A \in M_{n \times n}(F), A^{2}=I$ implies that $A=I$ or $A=-I$. Provide justification (i.e. a proof if true, or a counterexample if false).
16. Let $T \in \mathcal{L}(V, W)$ be an isomorphism between two vector spaces over F. Prove that if U is a subspace of V, then $\operatorname{dim}(T(U))=\operatorname{dim}(U)$. Recall that

$$
T(U):=\{T(u) \mid u \in U\}
$$

is the image of U in W under T.

