Exam 1 Review Problems

For details on exam coverage and a list of topics, please see the class website. Note that this is a set of review problems, and NOT a practice exam.

1. Let V be a vector space, and W_{1}, \ldots, W_{m} be subspaces of V. Show that $W:=W_{1} \cap W_{2} \cap \cdots \cap$ W_{m} is a subspace of V.
2. Prove that if $\left(v_{1}, \ldots, v_{n}\right)$ spans V, then so does the list

$$
\left(v_{1}-v_{2}, v_{2}-v_{3}, \ldots, v_{n-1}-v_{n}, v_{n}\right)
$$

3. True or False: The mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
T(x, y)=x y
$$

is linear. Provide justification.
4. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the map defined by

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}+x_{3}+x_{4}, x_{1}+2 x_{3}-x_{4}, x_{1}+x_{2}+3 x_{3}-3 x_{4}\right)
$$

(i) Show that F is linear.
(ii) Find a basis for the null space $N(F)$ in \mathbb{R}^{4} and the image $R(T)$ in \mathbb{R}^{3}.
(iii) Find the rank and the nullity of F.
5. Consider the vector space of polynomials with coefficients in \mathbb{R} of degree at most $n, P_{n}(\mathbb{R})$. Let $\left\{p_{0}(x), p_{1}(x), \ldots, p_{n}(x)\right\}$ be a set of polynomials such that $\operatorname{deg}\left(p_{k}(x)\right)=k$. Show that $\left\{p_{0}(x), p_{1}(x), \ldots, p_{n}(x)\right\}$ forms a basis for $P_{n}(\mathbb{R})$.
6. Fix

$$
M=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

in $M_{2 \times 2}(\mathbb{R})$. Let $T_{M}: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be the map defined by

$$
T_{M}(A)=A M-M A
$$

(i) Show that T_{M} is linear.
(ii) Find a basis and the dimension of the kernel $N\left(T_{M}\right)$.
7. Fix a vector $v=\binom{2}{5}$ in \mathbb{R}^{2}.
(i) Find the coordinates of $v,[v]_{\beta}$, with respect to the standard ordered basis $\beta=\left\{\binom{1}{0},\binom{0}{1}\right\}$ of \mathbb{R}^{2}.
(ii) Let $\tilde{\beta}=\left\{\binom{0}{1},\binom{1}{0}\right\}$. Clearly $\tilde{\beta}$ is a basis for \mathbb{R}^{2} (why?). Find $[v]_{\tilde{\beta}}$.
(iii) Show that $\gamma=\left\{\binom{1}{1},\binom{2}{3}\right\}$ is a basis of \mathbb{R}^{2}.
(iv) Find the coordinates of v with respect to $\gamma,[v]_{\gamma}$.
8. Let V be a vector space such that $\operatorname{dim}(V)=1$. If $T: V \rightarrow V$ is a linear map from V into V, show that there exists an $a \in F$ such that

$$
T(v)=a v
$$

for all $v \in V$. Hint: What does T do to the basis $\left\{v_{1}\right\}$ of V ?
9. True or False: If V is a vector space other than the zero vector space, then V contains a subspace W such that $W \neq V$. Provide justification.
10. Give an example of three linearly dependent vectors in \mathbb{R}^{3} such that none of the three is a multiple of another.
11. (i) Prove that if W_{1} is any subspace of a finite-dimensional vector space V, then there exists a subspace W_{2} of V such that

$$
V=W_{1} \bigoplus W_{2}
$$

(ii) Let $V=\mathbb{R}^{2}$ and $W_{1}=\{(a, 0) \mid a \in \mathbb{R}\}$. Give examples of two different subspaces W_{2} and W_{2}^{\prime} such that

$$
\begin{aligned}
& V=W_{1} \bigoplus W_{, 2} \\
& V=W_{1} \bigoplus W_{2}^{\prime}
\end{aligned}
$$

12. Suppose U and W are subspaces of \mathbb{R}^{8} such that

$$
\begin{aligned}
\operatorname{dim}(U) & =3 \\
\operatorname{dim}(W) & =5 \\
U+W & =\mathbb{R}^{8}
\end{aligned}
$$

Show that $\mathbb{R}^{8}=U \bigoplus W$. Hint: First find $U \cap W$.
13. Find the dimension of \mathbb{C}^{3} over \mathbb{R}. Recall that

$$
\mathbb{C}^{3}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \mid z_{1}, z_{2}, z_{3} \in \mathbb{C}\right\}
$$

Hint: Find a basis.
14. For a field F, define F^{∞} as the set of all sequences of elements of F :

$$
F^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid x_{i} \in F \text { for } i=1,2, \ldots\right\}
$$

Vector addition and scalar multiplication is defined componentwise as usual. Show that F^{∞} is a vector space over F. Do not forgot to find the zero vector.
15. Define

$$
T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})
$$

by

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a+d)+(2 d) x+b x^{2}
$$

Let β and γ be the following ordered bases for $M_{2 \times 2}(\mathbb{R})$ and $P_{2}(\mathbb{R})$, respectively:

$$
\begin{aligned}
& \beta=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \\
& \gamma=\left\{1, x, x^{2}\right\} .
\end{aligned}
$$

Compute the matrix of T with respect to β and $\gamma,[T]_{\beta}^{\gamma}$.

