Exam 1 Review Problems

For details on exam coverage and a list of topics, please see the class website. Note that this is a set of review problems, and NOT a practice exam.

- 1. Let V be a vector space, and W_1, \ldots, W_m be subspaces of V. Show that $W := W_1 \cap W_2 \cap \cdots \cap W_m$ is a subspace of V.
- 2. Prove that if (v_1, \ldots, v_n) spans V, then so does the list

$$(v_1 - v_2, v_2 - v_3, \dots, v_{n-1} - v_n, v_n).$$

3. True or False: The mapping $T : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$T(x,y) = xy$$

is linear. Provide justification.

4. Let $F : \mathbb{R}^4 \to \mathbb{R}^3$ be the map defined by

$$F(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 + x_4, x_1 + 2x_3 - x_4, x_1 + x_2 + 3x_3 - 3x_4).$$

- (i) Show that F is linear.
- (ii) Find a basis for the null space N(F) in \mathbb{R}^4 and the image R(T) in \mathbb{R}^3 .
- (iii) Find the rank and the nullity of F.
- 5. Consider the vector space of polynomials with coefficients in \mathbb{R} of degree at most n, $P_n(\mathbb{R})$. Let $\{p_0(x), p_1(x), \ldots, p_n(x)\}$ be a set of polynomials such that $\deg(p_k(x)) = k$. Show that $\{p_0(x), p_1(x), \ldots, p_n(x)\}$ forms a basis for $P_n(\mathbb{R})$.
- 6. Fix

$$M = \left(\begin{array}{cc} 1 & 2\\ 0 & 3 \end{array}\right)$$

in $M_{2\times 2}(\mathbb{R})$. Let $T_M: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be the map defined by

$$T_M(A) = AM - MA.$$

- (i) Show that T_M is linear.
- (ii) Find a basis and the dimension of the kernel $N(T_M)$.
- 7. Fix a vector $v = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ in \mathbb{R}^2 .
 - (i) Find the coordinates of v, $[v]_{\beta}$, with respect to the standard ordered basis $\beta = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ of \mathbb{R}^2 .
 - (ii) Let $\tilde{\beta} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$. Clearly $\tilde{\beta}$ is a basis for \mathbb{R}^2 (why?). Find $[v]_{\tilde{\beta}}$.
 - (iii) Show that $\gamma = \left\{ \left(\begin{array}{c} 1\\1 \end{array} \right), \left(\begin{array}{c} 2\\3 \end{array} \right) \right\}$ is a basis of \mathbb{R}^2 .
 - (iv) Find the coordinates of v with respect to γ , $[v]_{\gamma}$.
- 8. Let V be a vector space such that $\dim(V) = 1$. If $T: V \to V$ is a linear map from V into V, show that there exists an $a \in F$ such that

$$T(v) = av$$

for all $v \in V$. *Hint*: What does T do to the basis $\{v_1\}$ of V?

- 9. True or False: If V is a vector space other than the zero vector space, then V contains a subspace W such that $W \neq V$. Provide justification.
- 10. Give an example of three linearly dependent vectors in \mathbb{R}^3 such that none of the three is a multiple of another.
- 11. (i) Prove that if W_1 is any subspace of a finite-dimensional vector space V, then there exists a subspace W_2 of V such that

$$V = W_1 \bigoplus W_2.$$

(ii) Let $V = \mathbb{R}^2$ and $W_1 = \{(a, 0) | a \in \mathbb{R}\}$. Give examples of **two different subspaces** W_2 and W'_2 such that

$$V = W_1 \bigoplus W_{,2}$$
$$V = W_1 \bigoplus W_2'.$$

12. Suppose U and W are subspaces of \mathbb{R}^8 such that

$$\dim(U) = 3,$$

$$\dim(W) = 5,$$

$$U + W = \mathbb{R}^{8}$$

Show that $\mathbb{R}^8 = U \bigoplus W$. *Hint:* First find $U \cap W$.

13. Find the dimension of \mathbb{C}^3 over \mathbb{R} . Recall that

$$\mathbb{C}^3 = \{(z_1, z_2, z_3) \,|\, z_1, z_2, z_3 \in \mathbb{C}\}.$$

Hint: Find a basis.

14. For a field F, define F^{∞} as the set of all sequences of elements of F:

$$F^{\infty} = \{(x_1, x_2, \ldots) \mid x_i \in F \text{ for } i = 1, 2, \ldots\}.$$

Vector addition and scalar multiplication is defined componentwise as usual. Show that F^{∞} is a vector space over F. Do not forgot to find the zero vector.

15. Define

$$T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$$

by

$$T\begin{pmatrix} a & b\\ c & d \end{pmatrix} = (a+d) + (2d)x + bx^2.$$

Let β and γ be the following ordered bases for $M_{2\times 2}(\mathbb{R})$ and $P_2(\mathbb{R})$, respectively:

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
$$\gamma = \left\{ 1, x, x^2 \right\}.$$

Compute the matrix of T with respect to β and γ , $[T]^{\gamma}_{\beta}$.