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Supplementary notes on matrix exponentials

This document is an addendum to [1], the notes Introduction to Matrix Exponentials

posted on the Math 252 web page. The topics we discuss here are implicitly contained in
those notes, but with a different emphasis.

Here is a brief guide to integrating the two documents. One should read [1] carefully
up through the middle of page six; this will cover (i) the definition of matrix exponentials
via power series, including several nice examples of how this definition works in practice,
and (ii) the idea, whose treatment begins on the bottom of page six, of computing matrix
exponentials using similarity to a matrix whose exponential may be easily computed:

A = SΛS−1
⇒ eAt = SeΛtS−1. (1)

Then one can profitably read the current document in parallel with portion of [1] from
the middle of page six up to the bottom of page eleven (that is, up to the section labeled
“Forcing Terms”) as a brief summary of an alternative approach to applying (1) when A

is either a diagonalizable matrix or a 2 × 2 non-diagonalizable matrix.
We consider then an n×n matrix A; we want to calculate the matrix exponential eA or

rather, since our purpose is the application to solutions of ordinary differential equations,
the matrix eAt. We will write λ1, . . . , λn for the n roots of the nth order characteristic

polynomial det(A − λI) = 0; if this polynomial has repeated roots the any particular root
will appear in the list λ1, . . . , λn a number of times equal to its multiplicity as a root of
the polynomial. Of course, the λk are the eigenvalues of A.

Case I. The first case we consider is that in which there exists a set of n linearly indepen-
dent eigenvectors of A, say v(1), . . . ,v(n) with Av(k) = λkv

(k); these will then automati-
cally form a basis of the vector space R

n. One can always find such a basis of eigenvectors
when the eigenvalues λ1, . . . , λn are all distinct; in that case there is an eigenvector v(k)

for each eigenvalue λk and these eigenvectors are automatically linearly independent.

Note: When there are repeated eigenvalues there may or may not be a basis of eigen-
vectors; the only way to find out is, for each eigenvalue λ, to solve for v in the equation
(A − λI)v and to see whether or not one finds m linearly independent solutions when
λ is a root of the characteristic polynomial of multiplicitly m (that is, whether or not
rank(A − λI) = n − m).

Now given the eigenvectors v(1), . . . ,v(n) we form the matrices S = (v(1) . . . v(n)),
whose columns are these eigenvectors, and Λ, the diagonal matrix with the eigenvalues
λ1, . . . , λk on the diagonal:

S = (v(1) . . . v(n)) =


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

v
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Since one can form a matrix product AB by applying A to each of the columns of B one
has then that

AS = (Av(1) . . . Av(n)) = (λ1v
(1) . . . λ1v

(n)). (2)

On the other hand, if we introduce the vectors u1, . . . ,un which form the columns of the
n × n identity matrix:

u1 =
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, u2 =
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, . . . , un =













0
0
0
...
1













,

and use the fact that for any n × n matrix B, Buk is the kth column of B, we have

SΛ = S(λ1u1 . . . λnun) = (λ1Su1 . . . λnSun) = (λ1v
(1)
1 . . . λnv(n)). (3)

Comparing (2) and (3) we finally have

AS = SΛ ⇒ A = SΛS−1. (4)

This says that A is diagonalizable, that is, similar to a diagonal matrix. (One also sees
easily that if a is diagonalizable then the columns of the diagonalizing matrix S must be
eigenvectors of A, so that digonalizability of A is equivalent to the existence of a

basis consisting of of eigenvectors of A.)
Once we have diagonalized A as in (4) we may calculate eAt easily. For as shown in

[1] (see equation (9) there) we have from (4) that eAt = SeΛtS−1. On the other hand,
from the series definition of the matrix exponential we find that the exponential of any
diagonal matrix D is just the diagonal matrix whose diagonal entries are the exponentials
of the entries on the diagonal of D. Thus we have

eAt = SeΛtS−1 = S











eλ1t

eλ2t 0

0
. . .

eλnt











S−1.

Case II. When A is not diagonalizable one needs other methods to compute eAt. One
may, for example, use the fact that every matrix A is similar to an upper triangular matrix:
A = SUS−1, with U upper triangular. This is the approach taken in [1]. Alternatively one
may use that fact that every A is similar to a matrix in Jordan canonical form: A = SKS−1

with K in Jordan form. Computation of the Jordan form can be rather complicated, but
its exponentiation is easy.

When A is a 2× 2 matrix the two methods are essentially equivalent; we will explain
how they work, using notation similar to that we introduced in class. Suppose then that

2



640:252:04 SUPPLEMENTARY NOTES ON MATRIX EXPONENTIALS SPRING 2014

A is a 2 × 2 matrix whose characteristic polynomial has λ0 as a double root: det(A −

λI) = (λ − λ0)
2. Suppose further that A − λ0I has rank one, so that when we solve

det(A − λ0I) = v for the eigenvector v we find only a one parameter family of solutions,
all scalar multiples of some nonzero eigenvector v. As we have discussed in class, one may
then find a vector w such that (A − λ0I)w = v, i.e., Aw = λ0w + v; w is a generalized

eigenvector. Using the two vectors v and w we may now show that A is similar to a matrix
K in Jordan form and thus construct eAt.

Let us introduce the matrix S = (vw) whose columns are the vectors v and w. Then,
just as in (2), we have

AS = (AvAw) =
(

(λ0v) (λ0w + v)
)

. (5)

On the other hand, let K =

(

λ0 1
0 λ0

)

; then as in (3) we have

SK = S
(

(λ0u1) (u1 + λ0u2)
)

=
(

(λ0Su1) (Su1 + λ0Su2)
)

=
(

(λ0v) (v + λ0w)
)

. (6)

Comparing (5) and (6) we find that

AS = SK ⇒ A = SKS−1. (7)

On the other hand, from the definition of matrix exponentiation we find that eKt =
(

eλ0t teλ0t

0 eλ0t

)

(see the derivation of equation (12) on page nine of [1], taking c = 1

there). Thus from (7) we have

eAt = SeKtS−1 = S

(

eλ0t teλ0t

0 eλ0t

)

S−1.

This is the desired formula.
Note that the solution of the initial value problem y′ = Ay, y(0) = y0, is y(t) = eAty0.

But then if we write c = S−1y0 with c =

(

c1

c2

)

we have

eAty0 = SeKtS−1y0 = S

(

eλ0t teλ0t

0 eλ0t

) (

c1

c2

)

= (vw)

(

c1e
λ0t + c2te

λ0t

c2e
λ0t

)

= (c1 + c2t)e
λ0tv + c2e

λ0tw.

This is the form of the solution that we have used earlier.
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