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1 Introduction
My research broadly focuses on dynamics and differential equations, and in particular bridging the
gap between what can be proven mathematically and what can be computed numerically.

For example, standard numerical methods can solve an initial value problem for an ODE and
provide local error bounds at each step. However a global error bound on the final solution requires
the cumulative error be quantified. This quickly becomes a nontrivial problem in chaotic systems,
where arbitrarily close initial conditions will inevitably diverge, and the difficulties compound in
partial differential equations where the phase space is infinite dimensional.

To that end, rigorous numerics have been developed to keep track of all the sources of error
inherent to numerical calculations. To bridge the gap between rigorous numerics and a computer
assisted proof, a problem must be translated into a list of the conditions that the computer can
check. Most famously used to solve the four color theorem [1], computer assisted proofs have been
employed to great effect in dynamics, proving results such as the universality of the Feigenbaum
constants [2] and Smale’s 14th problem on the nature of the Lorenz attractor [3].

I am particularly interested in developing constructive methods to study invariant sets and
their stability in infinite dimensional dynamical systems. Analytically, this involves proving theo-
rems with explicitly verifiable hypotheses (e.g. rather than assuming “there exists some ε > 0”,
concretely quantifying how small ε must be). Computationally, this involves variety of numerical
techniques from fields such as dynamical systems, partial differential equations, global optimization,
and applied algebraic topology.

2 Wright’s Conjecture on a Nonlinear Delay Differential Equation
In my thesis I proved two half-century old conjectures concerning the delay differential equation
known as Wright’s equation:

x′(t) = −α
(
ex(t−1) − 1

)
. (1)

First studied in 1955 as a heuristic model of the distribution of primes [4], Wright’s equation has
come to be known as a canonicial example of a nonlinear scalar delay differential equation (DDE).
As with partial differential equations, the initial data for DDEs are functions. In Wright’s seminal
work he showed that if α ≤ 3

2 then the equilibrium solution x ≡ 0 is the global attractor, and made
the following conjecture:

Theorem 1 (Wright’s Conjecture, 1955). For every 0 < α ≤ π
2 the equilibrium solution x ≡ 0

to (1) is globally attractive.

In 1962 Jones [5] proved that for α > π
2 there exists at least one slowly oscillating periodic

solution (SOPS) to Wright’s equation. That is, a periodic solution x : R → R such that it is
positive for at least the length of the time delay, and then negative for at least the length of the
time delay. Based on numerical simulations Jones made the following conjecture:

Theorem 2 (Jones’ Conjecture, 1962). For every α > π
2 there is a unique slowly oscillating periodic

solution to (1).

I proved both of these conjectures in a trio of papers [6–8]. Prior work had proved Wright’s
conjecture for α < π

2 − 2 × 10−4 via a computer assisted proof which took months of CPU time,
and as authors mention, “substantial improvement of the theoretical part of the present proof is
needed to prove Wright’s conjecture fully” [9]. Hopf bifurcations are canonically analyzed with the
method of normal forms, which transforms a given equation into a simpler expression having the
same qualitative behavior as the original equation. By an implicit-function-theorem type argument,
this transformation is valid in some neighborhood of the bifurcation. However, the proof does not
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offer any insight into the size of this neighborhood. In [6] with JB van den Berg (VU Amsterdam)
we develop an explicit description of a neighborhood wherein the only periodic solutions are those
originating from the Hopf bifurcation. The main result of this analysis is the resolution of Wright’s
conjecture.

In 1991 Xie [10] proved Jones’ conjecture for α ≥ 5.67. He accomplished this by first showing
that there is a unique SOPS to (1) if and only if every SOPS is asymptotically stable. By using
asymptotic estimates of SOPS for large α, Xie was able to estimate their Floquet multipliers and
prove that all SOPS had to be stable. However, at α = 5.67 these asymptotic estimates break
down.

In [7] with JP Lessard (McGill University) and K Mischaikow (Rutgers University) we used
the same basic method as Xie, however we replace the asymptotic estimates with rigorous nu-
merics. We use a branch and bound algorithm to develop pointwise estimates on all the possible
SOPS to Wright’s equation and then bound their Floquet multipliers. Using these two main steps,
we generate a computer assisted proof for α ∈ [1.9, 6.0] that all SOPS to Wright’s equation are
asymptotically stable, and thereby unique up to translation.

I finished the proof to Jones’ conjecture in [8], proving there is a unique SOPS for α ∈ (π2 , 1.9].
While previous work [6] showed that there are no folds in the principal branch of periodic orbits
this did not rule out the possibility of isolas, that is SOPS far away from the principal branch. To
rule out the existence of these isolas, we recast the problem of studying periodic solutions to (1)
as the problem of finding zeros of a functional defined on a space of Fourier coefficients, and again
employed an infinite dimensional branch and bound algorithm. In future work, I plan extend these
Fourier-spectral techniques to produce computer-assisted-proofs for an exact count of the number
of equilibria to nonlinear parabolic PDEs (e.g. Swift-Hohenberg) on finite intervals, and eventually
multidimensional domains.

A corollary to Jones’ conjecture is that all periodic solutions to Wright’s equation, even the
rapidly oscillating ones, originate from Hopf bifurcations; there are no isolas of periodic solutions.
A conjecture I pose in [8] is the following:

Conjecture 3. The period length of the SOPS to Wright’s equation increases monotonically in α.

This conjecture is of particular interest, because it would imply that the only bifurcations of periodic
solutions to Wright’s equation are Hopf bifurcations. Furthermore, it would imply the so called
generalized Wright’s conjecture [9], that the global attractor in Wright’s equation is the closure of
the (finite dimensional) global unstable manifold of the zero solution.

3 Patterns and Stability in Partial Differential Equations
Connecting orbits provide a road map for how a dynamical system transitions between its various
fixed points and periodic orbits. Certain kinds of connecting orbits, such as homoclinics from a
periodic orbit to itself, can be used to prove the existence of mathematical chaos. In the spatial
dynamics of a PDE, a connecting orbit corresponding to a standing wave describes how two ho-
mogeneous steady states can coexist with a transition zone in between. In the temporal dynamics
of a PDE, a connecting orbit between two nonhomogeneous equilibria describes how perturbations
to an unstable equilibrium unfold, and to which stable equilibrium the perturbed state will be
attracted. A long term goal of my research program is studying connecting orbits in the temporal
dynamics of PDEs and DDEs.

In general, connecting orbits are calculated by solving a boundary value problem between an
unstable manifold and a stable manifold. In forthcoming work [11] with JB van den Berg (VU
Amsterdam) and J Mireles James (Florida Atlantic University), we present a rigorous compu-
tational method for approximating infinite dimensional stable manifolds of non-trivial equilibria
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for parabolic PDEs. Our approach combines the parameterization method – which can provide
high order approximations of finite dimensional manifolds with validated error bounds – together
with the Lyapunov-Perron method – which is a powerful technique for proving the existence of
(potentially infinite dimensional) invariant and inertial manifolds. As an example, we apply this
technique to approximate the stable manifold associated with unstable nonhomogeneous equilib-
ria for the Swift-Hohenberg equation on a finite interval. In future work we plan to rigorously
compute saddle to saddle connecting orbits in the Swift-Hohenberg equation, and additionally to
develop methods to rigorously approximate stable manifolds of periodic orbits in parabolic PDEs
(e.g. Kuromoto Shivashinski). Longer term goals include constructing a computer assisted proof
of chaos in a PDE/DDE via a homoclinic tangle, and computing connecting orbits in strongly
indefinite problems motivated from Floer homology.

In submitted work [12] with A Takayasu (University of Tsukuba), JP Lessard (McGill Univer-
sity), and H Okamoto (Kyoto University), we prove the existence of finite time blow-up in the PDE
ut = uxx + u2 for x ∈ [0, 1] and periodic boundary conditions. We accomplish this by developing
a numerical method to rigorously compute solutions of Cauchy problems. By solving the equation
along a contour in the complex plane of time we are able to prove the existence of a branching
singularity. Namely, for a contour defined as Γθ = {z ∈ C : z = teiθ t ≥ 0} with θ ∈ (−π

2 ,
π
2 ) this

PDE can be written as
ut = eiθ(uxx + u2), (2)

a PDE analogous to the complex Ginzburg-Landau equation with a quadratic nonlinearity. Further-
more, using an approach based on the Lyapunov-Perron method we calculate part of a codimension-
0 center-stable manifold of the zero equilibrium. This allows us to prove that our same initial
condition which blows up in real time will converge to zero along fixed contours Γθ, yielding the
global existence of the solution. In current work with JP Lessard and A Takayasu we are working
to prove the existence of an infinite family of saddle to center-stable connecting orbits for (2).

Additional difficulties arise when developing rigorous numerics for PDEs on unbounded domains.
Recent work on the Maslov index has extended classical results from Sturm-Liouville theory to a
much more general setting, thus allowing for spectral stability of nonlinear waves in a variety of
contexts to be determined by counting conjugate points. With M Beck (Boston University) we
are developing a framework for the computation of conjugate points using rigorous numerics [13].
We apply our method to a parameter-dependent system of bistable equations and show that there
exist both stable and unstable standing fronts. In comparison with rigorous numerical methods
to compute stability using the Evans function [14], our preliminary results suggest that counting
conjugate points is much more efficient.

4 Computational Algebraic Topology
Partial differential equations can be extremely useful in describing patterns in biological and phys-
ical systems. However, these patterns can be quite complicated, exhibiting distinct structures at
different spatial/temporal scales, and it is usually impossible to completely understand them using
analytical methods. Often a coarser but computationally tractable description is needed. In recent
years computational topology has become widely recognized as an important tool for quantifying
complex structures.

Persistent homology is an algebraic tool that provides a mathematical framework for analyz-
ing the multi-scale structures frequently observed in nature. More specifically, it tracks how the
homology groups of a filtration of topological spaces X1 ⊆ X2 ⊆ . . . ⊆ XN are mapped as one
space is included into the next. Similar to classical Morse theory, a filtration can be generated
from the sublevel sets of a continuous function f : X → R by defining Xt = f−1((−∞, t]). For
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example, the sublevel set filtration of the distance function to a point cloud in {xi} ⊆ Rn corre-
sponds to growing ε-balls about each point. The 0-dimensional persistent homology tracks when
connected components first appear in the filtration, and later merge together; the 1-dimensional
persistent homology tracks when loops in the space appear and disappear. Namely, if a specific
homology generator first appears in Hj(Xb), and is first mapped to zero by the inclusion induced
map i∗ : Hj(Xb)→ Hj(Xd), then [b, d] is referred to as the corresponding j-dimensional persistence
interval. Long persistence intervals are generally considered to correspond to important topological
features, whereas short intervals are considered to be noise.

If a point cloud is sampled from a d-dimensional Lebesgue measure, the important persistence
intervals will stabilize as the number of points n increases, and the average length of the noisy
intervals will decrease. However, the summed-length of all 0-dimensional persistence intervals will

grow in proportion with n
d−1
d . In fact, a fractional dimension can be defined for a measure in terms

of the asymptotic growth of the totaled persistence intervals of point samples [15].
In submitted work [16] with B Schweinhart (Ohio State University) we implement an algorithm

to estimate the i-dimensional persistent homology dimension (i = 0, 1, 2) to study self-similar frac-
tals, chaotic attractors, and an empirical dataset of earthquake hypocenters. We compare the
performance of these persistent homology dimensions to classical methods to compute the correla-
tion and box-counting dimensions. In summary, the performance of the 0-dimensional persistent
homology dimension is comparable to that of the correlation dimension, and generally better than
box-counting, whereas the higher persistent homology dimensions are worse.

When studying multiscale behavior a suitable discretization needs to be chosen. Fine structures
may require a fine discretization to accurately describe, whereas a coarser discretization may be
sufficient for large regions of space. With M Kramar (University of Oklahoma) we developed a
theoretical framework for the algorithmic computation of an arbitrarily good approximation of
sublevel-set persistent homology [17]. We implement a rigorous numerical method to compute the
persistent homology in the case f : [0, 1]2 → R and provide a posteriori bounds of the approximation
error introduced.

5 Chaos in Fast-Slow Systems
In ongoing work, I am studying routes to chaos in fast-slow systems. One particular example is
the 2D Rulkov map, a phenomenological model of a bursting neuron akin to a logistic map with a
slowly varying parameter. Using the recent method of weighted Birkhoff averages [18], we are able
to detect the onset of chaos well before the system has a decidedly positive Lyapunov exponent.
For a significant region of parameter space, the attractor is technically chaotic, however the slow
variable just appears to be noisily following a periodic cycle. In contrast, for larger nonlinearities
both the fast and slow variables are markedly chaotic. Standard tools such as Lyapunov exponents
are unable to distinguish between these two types of chaos. Together with E Sander (George Mason
University) and J Touboul (Brandeis University) we are developing a methodology to distinguish
these two types of chaos.

The 2D FitzHugh-Nagumo PDE is often used as a phenomenological model for cardiac dy-
namics. This model exhibits spiral waves (corresponding to ventricular tachycardia) and complex
spatio-temporal behavior (corresponding to ventricular fibrillation). With À Jorba (University of
Barcelona) and À Haro (University of Barcelona) we are beginning to study spiral core breakup
along a quasiperiodic route to chaos, whereby the core of the spiral wave first begins to meander,
which is to say that the center of the spiral wave periodically moves around with a second fre-
quency. We aim to develop a numerical method to compute meandering spiral waves and their
stable/unstable bundles, similar to methods used to compute invariant tori in fluid flows [19]. In
future work, we hope to give a computer assisted proof of chaos in the 2D FitzHugh-Nagumo PDE.
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