
WHAT IS THE DUAL OF C [0, 1]?

1. Orientation

The space C [0, 1] consists of the continuous real-valued functions defined on the
unit interval. It is a vector space under pointwise addition and scalar multiplication,
and is infinite dimensional since xn ∈ C [0, 1] for every n ∈ N. The uniform norm
is defined on C [0, 1] as

||f || = sup
0≤x≤1

|f (x)|, f ∈ C [0, 1] .

Exercise 1.1. Prove C [0, 1] is complete as a metric space under the metric d (f, g) =
||f − g||. That is, show that if fn → f uniformly then f ∈ C [0, 1].

We summarize the facts above by saying C [0, 1] is a Banach space, i.e. a normed
linear space which is complete.

It turns out to be useful to consider elements of the dual space (C [0, 1])
′ which

consists of the continuous linear functionals l : C [0, 1]→ R. Linearity requires

l (f + g) = l (f) + l (g) , ∀f, g ∈ C [0, 1]

l (λf) = λl (f) , ∀f ∈ C [0, 1] , λ ∈ R
and by continuity we mean

fn → f =⇒ l (fn)→ l (f) .

The convergence on the left is uniform, i.e. ||fn − f || → 0. The convergence on the
right is that of a sequence of real numbers.

If l is linear, continuity at any one f ∈ C [0, 1] implies continuity on all of C [0, 1].
In particular, a linear functional l : C [0, 1] → R is in the dual space (C [0, 1])

′ if
and only if

fn → 0 =⇒ l (fn)→ 0.

A sufficient condition for continuity is the existence of a positive constant M such
that

(1.1) |l (f)| ≤M ||f || ∀f ∈ C [0, 1] .

If a linear functional satisfies this condition we say it is norm-bounded and we define
its norm ||l|| to be the smallest such constant M for which (1.1) holds.

Suppose now l is continuous at zero, then there is a ball about the origin such
that |l (f)| ≤ ε whenever ||f || ≤ δ. Given any f ∈ C [0, 1] we find

|l
(
δ
f

||f ||

)
| ≤ ε

and hence l is norm-bounded with ||l|| ≤ ε/δ. We have proved the following

Proposition 1.2. A linear functional l : C [0, 1] → R belongs to the dual space
(C [0, 1])

′ if and only if it is norm-bounded.

Let’s see some examples.
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Example 1.3. Fix x0 ∈ [0, 1] and define the “Dirac mass” at x0,

δx0
(f) = f (x0) .

This is clearly in the dual space and has ||δx0
|| = 1.

Example 1.4. Given a sequence of points xi ∈ [0, 1], i ∈ N along with absolutely
summable weights ai, define

l (f) =
∑
i

aif (xi) .

This is linear and has ||l|| ≤
∑
i|ai| so it is in the dual space. In fact ||l|| =

∑
i|ai|

as can be seen by considering fn with fn (xi) = sign (ai), i = 1, . . . , n.

Example 1.5. The Riemann integral is in the dual space. That is, the mapping

f 7→ I (f) =

ˆ 1

0

f dx

is linear and has ||I|| ≤ 1 by the triangle inequality for integration

|
ˆ
f dx| ≤

ˆ
|f | dx.

By choosing f = 1 we see ||I|| = 1.

The next example is more complicated and involves defining a different type of
integral known as the Lebesgue-Stieljies integral. It is worth understanding well.

2. The main example: Lebesgue-Stieljies integration

Given α ∈ BV [0, 1] with α (0) = 0 we define an integral via the following recipe.
Let 0 = x0 < x1 < · · · < xn = 1 be a partition of [0, 1] and make the sum

n−1∑
k=0

f (xk+1) (α (xk+1)− α (xk)) .

If f ∈ C [0, 1] then as we refine the partition and take the mesh size δ ↓ 0, the sum
converges to a number

ˆ 1

0

f dα = lim
δ↓0

n−1∑
k=0

f (xk+1) (α (xk+1)− α (xk)) .

Indeed if P1, P2 are two partitions they have a common refinement P , and if the
mesh sizes δ1, δ2 are small enough then we can write

|
∑
P1

f (xk+1) ∆αk −
∑
P2

f (xk+1) ∆αk| ≤ 2εVar (α) .

Now from our definition it is clear that the map f 7→ I (f) =
´ 1
0
f dα is linear.

Moreover if we define the running total variation of α as

|α| (x) = sup

{
n−1∑
k=0

|α (xk+1)− α (xk)|, 0 = x0 < x1 < · · · < xn = x

}
,

we find

|
ˆ 1

0

f dα| ≤
ˆ 1

0

|f | d|α| ≤ Var (α) ||f ||
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so that ||I|| ≤ Var (α) and I ∈ (C [0, 1])
′. Again this inequality is actually equality,

and this is a good exercise to work out before moving on.

Exercise 2.1. Prove ||I|| = Var (α). (Hint: consider non-decreasing α first.)

Exercise 2.2. Each of the examples from the previous section can be written in
the form

l (f) =

ˆ 1

0

f dα

for some α ∈ BV , α (0) = 0. Work this out. Are the α’s uniquely determined?

3. The Riesz theorem

A theorem due to Riesz asserts that this last example is generic.

Theorem 3.1 (Riesz). Given l ∈ (C [0, 1])
′ there exists α ∈ BV , α (0) = 0 so that

l (f) =

ˆ
f dα ∀f ∈ C [0, 1] .

Exercise 3.2. Check that if α, β ∈ BV , α (0) = β (0) = 0 satisfyˆ
f dα =

ˆ
f dβ ∀f ∈ C [0, 1]

then α = β except at most countably many points. In fact, if α is non-decreasing
prove

α (x) ≤ inf
f≥1[0,x]

ˆ
f dα ≤ α

(
x+
)
.

For a general α ∈ BV argue similarly to conclude α (x+) = limδ↓0 α (x+ δ) is
determined uniquely by knowledge of all the integrals

{´
f dα, f ∈ C [0, 1]

}
.

Discussion: If we assume α is right-continuous then it is uniquely determined,
and indeed we can assume this at x ∈ (0, 1] without changing anything we’ve said
already. However, we may not simultaneously assume α is right-continuous at 0
and α (0) = 0 if we wish to reproduce the entire dual space. We chose α (0) = 0
simply to clean up the definition of the Lebesgue-Stiejies integral.

We begin the proof of the theorem by discussing the positive linear functionals,
i.e. those linear functionals l with the property that l (f) ≥ 0 if f ≥ 0.

Exercise 3.3. Show every positive linear functional l : C [0, 1]→ R is automatically
continuous.

Given a positive linear functional l define

α (x) = inf
{
l (f)

∣∣ 1[0,x] ≤ f, f ∈ C [0, 1]
}
, 0 < x ≤ 1

and set α (0) = 0. Then α is non-decreasing and it defines a Lebesgue-Stiejies
integral. We will prove

l (f) =

ˆ 1

0

f dα ∀f ∈ C [0, 1] .

Pick a partition 0 = x0 < x1 < · · · < xn = 1 on which f is almost constant,
so |f (x) − f (xk)| ≤ ε whenever xk−1 ≤ x ≤ xk+1, k = 1, . . . , n − 1. Using the
definition of α find functions

1[0,xi] ≤ ψi ≤ 1[0,xi+1], i = 1, . . . , n− 1
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satisfying
α (xi) ≤ l (ψi) ≤ α (xi) +

ε

n
.

If we take ψ0 = 0, ψn = 1 we may define a partition of unity

φi = ψi − ψi−1, i = 1, . . . , n

well-suited for approximation of f on the mesh. Then

|l (f)−
n∑
i=1

f (xi) l (φi)| ≤ ||l||ε

and ||l|| < ∞ since every positive linear functional on C [0, 1] is automatically
continuous. Also

n∑
i=1

f (xi) l (φi) =

n−1∑
i=0

f (xi+1) (α (xi+1)− α (xi)) + e (n)

where
|e (n)| ≤ ||f ||ε,

so that

|l (f)−
ˆ 1

0

f dα| ≤ (||l||+ ||f ||) ε.

Since this holds for all ε > 0 we have the result.
Given a general l ∈ (C [0, 1])

′ we have to be more sly. First we define an auxiliary
linear functional |l| with the property that the linear functionals |l|± l are positive.
Then since 2l = (|l|+ l)− (|l| − l) we finish by applying the proof above twice and
superimposing the results.

Now if we expect l =
´
· dα then it is natural to go after |l| =

´
· d|α|. (Remember

|α| does not signify the usual absolute value but rather the running total variation.)
Therefore we define

|α| (x) = inf
y>x

sup
{∑

|l (ψi)|
∣∣ 1[0,x] ≤∑ψi ≤ 1[0,y), 0 ≤ ψi ≤ 1, ψi ∈ C [0, 1]

}
, 0 < x ≤ 1

along with |α| (0) = 0. Note |α| is non-decreasing and finite since∑
|l (ψi)| = l

(∑
±ψi

)
≤ ||l||

whenever ψi are admissable. Thus |α| defines a Lebesgue-Stieljies integral

|l| (f) =

ˆ
f d|α| f ∈ C [0, 1] ,

and we claim
|l (f)| ≤ |l| (f) ∀f ∈ C [0, 1] , f ≥ 0.

As before, the heart of the proof is in setting up a useful partition of unity.
Given f ∈ C [0, 1], begin by finding a partition 0 = x0 < x1 < · · · < xn = 1 such
that |f (x) − f (xk)| ≤ ε whenever xk−1 ≤ x ≤ xk+1, k = 1, . . . , n − 1. Then find
yk ∈ (xk, xk+1) and admissable ψk,i with

1[0,xk] ≤
∑
i

ψk,i ≤ 1[0,yk), k = 1, . . . , n− 1

so that
|α| (xk)− ε

n+ 1
≤
∑
i

|l (ψk,i)| ≤ |α| (xk) +
ε

n+ 1
.
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From the definition of |α| it is clear we can pick the ψk,i inductively to include
the previously chosen ψk−1,i along with new admissable functions supported on
[xk−1, yk). Indeed if we have ψk−1,i already and ψk,i are proposed, and if we call
Ψk−1 =

∑
i ψk−1,i, we can break up each proposed function into two pieces

ψk,i = ψk,i
(
1[0,yk) −Ψk−1

)
+ ψk,iΨk−1

and make a new proposed family consisting of the individual pieces. This new family
is still admissable and gets a larger value in the supremum part of the definition of
|α|. So we may assume the ψk,i come to us already with support either on [0, yk−1)
or on [xk−1, yk), and then we clearly get a better approximation to the supremum
by replacing those ψk,i supported on [0, yk−1) by the already chosen ψk−1,i.

Having built up ψk,i as described above we are ready to build the partition of
unity. Take Ψ0 = 0, Ψn = 1, and Ψk =

∑
i ψk,i for k = 1, . . . , n, then the relevant

partition of unity is given by

Φk = Ψk −Ψk−1, k = 1, . . . , n.

Note for fixed k = 1, . . . , n we have

l (Ψk −Ψk−1) =
∑

supp(ψk,i)⊂[xk−1,yk)

l (ψk,i)

so that
|l (Φk)| ≤ |α| (xk)− |α| (xk−1) +

2ε

n+ 1
.

Then since

|l (f)−
n∑
i=1

f (xi) l (Φi)| ≤ ||l||ε,

we conclude for f ≥ 0 that

|l (f)| ≤
n−1∑
i=0

f (xi+1) |l (Φi+1)|+ ||l||ε

≤
n−1∑
i=0

f (xi+1) (|α| (xi+1)− |α| (xi)) + (||l||+ 2) ε.

Refining the partition and taking ε ↓ 0 we conclude

|l (f)| ≤ |l| (f)

whenever f ≥ 0, f ∈ C [0, 1].
Now we know the linear functionals |l| ± l are positive, hence we may apply the

first half of the proof to find α+, α− ∈ BV with
1

2
(|l|+ l) (f) =

ˆ
f dα+

1

2
(|l| − l) (f) =

ˆ
f dα−.

Finally we have

l (f) =

ˆ
f d (α+ − α−) , ∀f ∈ C [0, 1]

and we’re done.


