WHAT IS THE DUAL OF C|0,1]?

1. ORIENTATION

The space C [0, 1] consists of the continuous real-valued functions defined on the
unit interval. It is a vector space under pointwise addition and scalar multiplication,
and is infinite dimensional since ™ € C'[0, 1] for every n € N. The uniform norm
is defined on C'[0, 1] as

Ifll= sup |f(2)], feC[0,1].
0<z<1

Exercise 1.1. Prove C' [0, 1] is complete as a metric space under the metric d (f, g) =
[|f — g||- That is, show that if f,, — f uniformly then f € C'[0, 1].

We summarize the facts above by saying C [0, 1] is a Banach space, i.e. a normed
linear space which is complete.

It turns out to be useful to consider elements of the dual space (C'[0,1])" which
consists of the continuous linear functionals [ : C'[0,1] — R. Linearity requires

L(f+g9)=1(f)+1(g9), VYf,geC][0,1]
L) =AM(f), VfeC[0,1], AeR

and by continuity we mean

o= [ = l(fn)%l(f)
The convergence on the left is uniform, i.e. ||f, — f|| = 0. The convergence on the
right is that of a sequence of real numbers.

If  is linear, continuity at any one f € C'[0, 1] implies continuity on all of C'[0, 1].
In particular, a linear functional I : C'[0,1] — R is in the dual space (C'[0,1])" if
and only if

fn—=0 = 1(fn) —0.
A sufficient condition for continuity is the existence of a positive constant M such
that

(1.1) LI < MI[fI] VfeCo1].

If a linear functional satisfies this condition we say it is norm-bounded and we define
its norm ||!|| to be the smallest such constant M for which (1.1) holds.

Suppose now [ is continuous at zero, then there is a ball about the origin such
that |l (f)| < e whenever ||f|| <. Given any f € C'[0,1] we find

/
67
”( ||f||)|§€

and hence [ is norm-bounded with ||I|| < e/§. We have proved the following

Proposition 1.2. A linear functional I : C'[0,1] — R belongs to the dual space
(C'[0,1])" if and only if it is norm-bounded.

Let’s see some examples.
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Example 1.3. Fix x¢ € [0, 1] and define the “Dirac mass” at xo,

Oao (f) = [ (o).
This is clearly in the dual space and has ||d,,|| = 1.

Example 1.4. Given a sequence of points z; € [0, 1], ¢ € N along with absolutely
summable weights a;, define

L(f) = Zaz‘f(ﬂfi)-
This is linear and has ||I|| < }".|a;| so it is in the dual space. In fact ||I|| = >, |a|
as can be seen by considering f™ with f" (x;) = sign (a;), i =1,...,n.

Example 1.5. The Riemann integral is in the dual space. That is, the mapping

1
1= [ sas

is linear and has ||I|| < 1 by the triangle inequality for integration

[ £l < [1f1ds

By choosing f =1 we see ||I|| = 1.

The next example is more complicated and involves defining a different type of
integral known as the Lebesgue-Stieljies integral. It is worth understanding well.

2. THE MAIN EXAMPLE: LEBESGUE-STIELJIES INTEGRATION

Given o € BV [0, 1] with « (0) = 0 we define an integral via the following recipe.
Let 0 =29 < 21 < --- < &, = 1 be a partition of [0, 1] and make the sum

S (@) (@ () — a (@)
k=0

If f € C'[0,1] then as we refine the partition and take the mesh size § | 0, the sum
converges to a number

1 n—1
/0 o =t 371 (reon) () = o).

Indeed if P;, P, are two partitions they have a common refinement P, and if the
mesh sizes 1, o are small enough then we can write

|Zf (Zr41) Aoy, — Zf (Tp+1) Aag| < 2eVar (a) .

Py P

Now from our definition it is clear that the map f +— Z (f) = fol fda is linear.
Moreover if we define the running total variation of « as

n—1
la] (z) = sup{zm(ka) —a(zp)], 0= <1 <+ < Tp = 1’},

k=0
we find

|/01fda|</01|f|d|a| < Var (a) |||
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so that ||Z|| < Var (a) and Z € (C'[0,1])". Again this inequality is actually equality,
and this is a good exercise to work out before moving on.

Exercise 2.1. Prove ||Z|| = Var («). (Hint: consider non-decreasing « first.)

Exercise 2.2. Each of the examples from the previous section can be written in
the form

l(f)=/01fda

for some o € BV, «(0) = 0. Work this out. Are the «o’s uniquely determined?

3. THE RIESZ THEOREM
A theorem due to Riesz asserts that this last example is generic.

Theorem 3.1 (Riesz). Given I € (C0,1]) there exists « € BV, a(0) = 0 so that
L) :/fda VfeC,1].
Exercise 3.2. Check that if a, 8 € BV, « (0) = 5 (0) = 0 satisfy

/fda:/fdﬁ VfeC[o,1]

then o = 8 except at most countably many points. In fact, if « is non-decreasing
prove
: +
a(x) szl?[g,z] /fdagoz(x )

For a general a € BV argue similarly to conclude « (z%) = limsjoa (x +6) is
determined uniquely by knowledge of all the integrals { [ fde, feC0,1] }

Discussion: If we assume « is right-continuous then it is uniquely determined,
and indeed we can assume this at x € (0, 1] without changing anything we’ve said
already. However, we may not simultaneously assume « is right-continuous at 0
and « (0) = 0 if we wish to reproduce the entire dual space. We chose a(0) = 0
simply to clean up the definition of the Lebesgue-Stiejies integral.

We begin the proof of the theorem by discussing the positive linear functionals,
i.e. those linear functionals [ with the property that I (f) > 0 if f > 0.

Exercise 3.3. Show every positive linear functional I : C'[0, 1] — R is automatically
continuous.

Given a positive linear functional ! define
a(@)=mf{I(f) [l <[, f€C0,1]}, 0<z<1

and set «(0) = 0. Then « is non-decreasing and it defines a Lebesgue-Stiejies
integral. We will prove

l(f):/o fda YfeC[,1].

Pick a partition 0 = g < 1 < -+ < x, = 1 on which f is almost constant,
so |f (x) — f(zx)| < € whenever 21 < © < xp41, Kk = 1,...,n — 1. Using the
definition of « find functions

1[07%] §¢i§1[0,xi+1]a i=1,....n—1
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satisfying
€
a(x;) <1U(Yi) < alz) + o
If we take ¢y = 0, ¥,, = 1 we may define a partition of unity
(bi:wi_wifh i:]-w"an

well-suited for approximation of f on the mesh. Then
n
() =D (@) L) < [[1]]e
i=1

and ||l|]] < oo since every positive linear functional on C'[0,1] is automatically
continuous. Also

> F@i)l(e) = z_: f(@ig1) (a(ziv1) — a (@) +e(n)
i=1 =0
where
le (n)] < || flle,
so that

1
|Z<f>—/0 fdal < (011 + 1711 e

Since this holds for all € > 0 we have the result.

Given a general I € (C'[0,1])" we have to be more sly. First we define an auxiliary
linear functional || with the property that the linear functionals |I| £ are positive.
Then since 21 = (|I| +1) — (|I| — 1) we finish by applying the proof above twice and
superimposing the results.

Now if we expect | = [ - do then it is natural to go after |I| = [ -d|a|. (Remember
|| does not signify the usual absolute value but rather the running total variation.)
Therefore we define

laf (z) = ;gfm SUP{Z“(%’N | 10,41 < Zi/fi <y, 05 <1, 9 € CO, 1]}7 0<z<1

along with |a| (0) = 0. Note || is non-decreasing and finite since

Sl =1 (3 %) <

whenever 1; are admissable. Thus || defines a Lebesgue-Stieljies integral

\ll(f)=/fd|a| fecp,

and we claim
[LHI<U(f) VYfec[o1], f=0.

As before, the heart of the proof is in setting up a useful partition of unity.
Given f € C[0,1], begin by finding a partition 0 = 2o < 21 < -+ < &, = 1 such
that |f (x) — f (zx)| < € whenever 1 < x < zy11, k=1,...,n — 1. Then find
Yi € (Tk, Tp+1) and admissable vy, ; with

Lio,zy) < Zﬂ}lm <oy, k=1,...,n—1

so that
€

n+1’

ol (20) = =5 < DI (W] < o () +
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From the definition of |a| it is clear we can pick the i ; inductively to include
the previously chosen x_1; along with new admissable functions supported on
[Tk—1,Yk). Indeed if we have ¢,_1; already and )y ; are proposed, and if we call
Uyp_1 =), %k_1,, we can break up each proposed function into two pieces

ki = Ui (Lo,g0) — Pro1) + UkiVr1

and make a new proposed family consisting of the individual pieces. This new family
is still admissable and gets a larger value in the supremum part of the definition of
||. So we may assume the 1 ; come to us already with support either on [0, yx—1)
or on [xk_1,yx), and then we clearly get a better approximation to the supremum
by replacing those ¢, ; supported on [0, y;—1) by the already chosen ¥x_1 ;.

Having built up )y ; as described above we are ready to build the partition of
unity. Take Ug =0, ¥,, =1, and ¥}, = >, ¢y ; for k = 1,...,n, then the relevant
partition of unity is given by

(I)k:\lfk—\llk_l, k:l,...,n.

Note for fixed £k = 1,...,n we have
(W —Wpq) = > L (k)
supp(Yk,i) C[Tr—1,Yk)

so that

2e
[1(@0)] < lof (k) — laf (@r-1) + =

Then since
n

() =D f (@) L@ < llle,
i=1
we conclude for f > 0 that

LIS D0 (i) [1(@iga)] + [E]]e
=0

n—1
<D fl@) (laf (@) = laf () + (1] +2) e,

i=0

Refining the partition and taking € | 0 we conclude
O < U (f)
whenever f >0, f € C[0,1].
Now we know the linear functionals |/| £ [ are positive, hence we may apply the

first half of the proof to find a4,a_ € BV with

S U+0() = [ fda

1

-0 = [ fda_.
Finally we have

1= [ fdlar—an), vrecl)

and we’re done.



