
INTRO TO MATH ANALYSIS I

IAN TOBASCO

Topics for the Course. Functions of one variable. Limits and continuity. Deriva-
tives. Riemann integral. In�nite series and integrals. Absolute and uniform con-
vergence. Taylor series. In�nite series of functions. Fourier series.

Reference Texts.

• Advanced Calculus, Friedman
• An Introduction to Analysis, Wade
• Principles of Mathematical Analysis, Rudin
• Di�erential and Integral Calculus, Courant

Recitations.

(1) Number systems: N,Z,Q,R. Irrationality of
√

2. Rational roots theorem.
Induction. Examples included

1 + 2 + 3 + · · ·+ n =
n (n+ 1)

2

1 + z + z2 + · · ·+ zn =
zn+1 − 1
z − 1

.

Density of rationals via ∣∣∣θ − m

n

∣∣∣ ≤ 1
nN

.

(2) Review of Dedekind cuts. De�nition of
√

2 as
√

2 = sup
{
q ∈ Q

∣∣ q2 < 2
}
.

Countable and uncountable in�nity. Exercises:
(a) |N| = |evens| = |odds|
(b) |N| = |Q|
(c) |N| < |R| (diagonal argument)
(d) |X| = |X ×X| = |X × · · · ×X|
(e) |X| < |X ×X × · · ·|
(f) |X| < |2X | (diagonal argument)
Proof of Bolzano-Weierstrass by bisection and �nite intersection property.
Notions of open, closed sets. Homework: Let an ≥ 0 and prove

(0.1) lim inf
an
an−1

≤ lim inf (an)1/n ≤ lim sup (an)1/n ≤ lim sup
an
an−1

.

(3) Discussed homework 2. Example problem: Prove that

sup
{

sin
(
x−1

) ∣∣x ∈ Q\ {0}
}

= 1.

Solution: We can relabel and consider

E =
{

sin (x)
∣∣x ∈ Q\ {0}

}
.
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Since sin (x) ≤ 1 for all x we have sup E ≤ 1. Now for any n ∈ N we can
�nd x ∈ E with |x− π/2| ≤ n−1. Then

|1− sin (x)| ≤ |x− π/2| ≤ n−1

which proves sup E ≥ 1. The inequality used above follows from the in-
equality |sin (x)| ≤ |x| whose proof is self-evident from a picture of a right
triangle with angle x inside a circle. Hints for problem (0.1): taking the
log and relabeling as log an − log an−1 = bn the statement is equivalent to

lim inf bn ≤ lim inf
1
n

n∑
i=1

bi ≤ lim sup
1
n

n∑
i=1

bi ≤ lim sup bn.

(4) Discussed homework 3. Practice problems:
(a) Suppose E is continuous and satis�es

E (a)E (b) = E (a+ b)

for all a, b ∈ R. What is E?
(b) Let f be given by

f (x) =

{
1
n x = m/n, (m,n) = 1, x 6= 0
0 otherwise

.

What is the largest subset of R on which f is continuous?
Solutions:
(a) Claim:

E (x) = ax, a = E (1) .

Let m/n ∈ Q+ then

E
(m
n

)
= E

 1
n

+ · · ·+ 1
n︸ ︷︷ ︸

m terms

 = E

(
1
n

)m
.

We can take m = n here to �nd

E

(
1
n

)
= E (1)1/n ,

hence

E (m/n) = E (1)m/n .

Let mk/nk → x, then by continuity

E (x) = E (1)x

for x ∈ R+ ∪ {0}. Since

E (−x)E (x) = E (0) = 1

we have

E (−x) = E (x)−1 = E (1)−x

for x ∈ R+, hence

E (x) = E (1)x

for all x.
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(b) f is discontinuous on Q\ {0}, for the irrationals are dense in R. Claim:
f is continuous on Qc ∪ {0}. Let us prove it at x = 0, then it will be
clear how to do the rest. W.l.o.g. take a test sequence xk = mk/nk,
(mk, nk) = 1. If f (xk) 6→ 0 then |1/nk| ≥ 1/N for some N ∈ N and
in�nitely many k. Then |xk| ≥ 1/N for in�nitely many k, which proves
xk 6→ 0. The contrapositive is what we're after.

Extra exercise: Prove xn → x i� for every ε > 0 only �nitely many n have
|xn − x| ≥ ε. Conclude if xn → x then for every permutation π : N → N
we have xπ(n) → x. It is well-known that if

∑
n|xn| < ∞ and

∑
n xn = x

then
∑
n xπ(n) = x for every permutation π. Deduce this from the result

above. We'll see later that if
∑
n xn = x but

∑
n|xn| = ∞, then for every

y ∈ R ∪ {±∞} there exists a permutation π with
∑
n xπ(n) = y.

(5) Discussed homework 4.
(6) Discussed homework 5. Intro to convexity. A function is convex if for all

x, y ∈ R,
f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

whenever t ∈ [0, 1]. Examples: lines, |x|, x2. If f ′′ ≥ 0 then f is convex.
Pf: f ′′ ≥ 0 implies f ′ is non-decreasing, then by mean value theorem

f (y)− f (x) = f ′ (ξ) (y − x) ≥ f ′ (x) (y − x)

and hence

f (y) ≥ f (x) + f ′ (x) (y − x) ∀ x, y ∈ R.
Exercise: this is convexity. Now check − log (x) is convex, and deduce the
arithmetic-geometric inequality

(a1 · · · an)1/n ≤ 1
n

n∑
i=1

ai

whenver ai ≥ 0. As a result, the largest volume box with �xed total edge
length is a cube. If B = Πn

i=1 [xi, xi + li] then

(VolB)1/n ≤ 1
n

n∑
i=1

li

with equality i� l1 = · · · = ln. Exercise: deduce the claim about equality
from the fact that − log (x) is strictly convex, i.e.

log
(
x+ y

2

)
=

1
2

(log x+ log y) =⇒ x = y.

(7) The practice midterm is included at the end along with solutions.
(8) Suppose f is conditionally but not absolutely integrable on (0, 1], e.g. f =

sin (x) /x. Let f+ = f · 1f>0 and f− = f · 1f<0, and note f = f+ − f−.
Fact: Under the given assumptions, for every α ∈ R there exist sequences
an, bn ↓ 0 such that

lim
n

� 1

an

f+ −
� 1

bn

f− = α.

Interpretation: The notion of (signed) area under the graph of a non-
absolutely integrable f does not make sense. This is simply a restatement
of the following theorem. Hints are given for the proof.
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Theorem. (Riemann) Suppose
∑
n xn = x ∈ R but

∑
n|xn| = ∞. Then

for every y ∈ R there is a permutation π with
∑
n xπ(n) = y.

Proof. Suppose we want a rearragement whose partial sums SN =∑N
1 xπ(n) satisfy

α = lim inf Sn ≤ lim sup Sn = β

for given α, β ∈ R.
Exercise 1. Deduce

∑
n x

+
n =

∑
n x
−
n = ∞ from the hypotheses, so we

have in�nite positive and negative mass to play with.
W.l.o.g. suppose no xn = 0, and relabel the positive and negative parts

as their own sequences, pi > 0 and qi < 0. Now pick up just enough positive
mass to get

n1∑
1

pi > β, but

n1−1∑
1

pi ≤ β.

The positive terms p1, p2, . . . , pn1 form the �rst n1 terms in the rearranged
sum. Next �nd m1 such that

Sn1 +
m1∑
1

qi < α, but Sn1 +
m1−1∑

1

qi ≥ α.

The negative terms q1, . . . , qm1 form the n1 + 1 through n1 +m1 terms in
the rearranged sum. Continue in this way, repeatedly adding just enough
positive mass to get above β and then just enough negative mass to get
below α. You'll use up all the original xn in this process.

Exercise 2. Check that the estimates

α+ qmk
≤ SPk

i=1 ni+mi
< α

β < Snk+1+
Pk

i=1 ni+mi
≤ β + pnk+1

hold for k ∈ N. Observe xn → 0 as n→∞ and deduce the result.
Exercise 3. Strengthen the result to allow α = −∞, β = +∞.
Exercise 4. On the other hand, if

∑
|xn| <∞ then every rearrangement

gives the same sum.
Likewise, if f is absolutely integrable then the signed area of its graph

can be properly de�ned via limits of integrals. The point is that now it
doesn't matter what limits you take.

The next result gives a complete characterization of Riemann integrabil-
ity. Follow the exercises to discover a proof.

Theorem. (Lebesgue) A bounded function f on [0, 1] is Riemann inte-
grable i�

∣∣{x ∣∣ f is discontinuous at x
}∣∣ = 0.

Exercise 5. (warmup to measure zero) Recall A ⊂ R is said to be measure

zero, written |A| = 0, if for every ε > 0 there is a collection of open intervals
{(ti, ti+1)} with lengths li = ti+1 − ti such that

∑
i li < ε. Check that

(a) points, �nite collections of points, and countable collections of points
are all measure zero

(b) countable unions of measure zero sets are measure zero
(c) subsets of measure zero sets are measure zero
(d) the set of discontinuities of a monotone function is measure zero
(e) the set of discontinuities of a BV function is measure zero
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Proof of the theorem. De�ne the oscillation on a set [a, b] by

osc
[a,b]

f = sup
[a,b]

f − inf
[a,b]

f,

and the oscillation at a point as

Of (x) = lim
ε↓0

osc
[x−ε,x+ε]

f.

Exercise 6. Prove Of (x) = 0 i� f is continuous at x.
Now suppose |{Of 6= 0}| = 0 then by exercise 5c, |{Of ≥ 1/n}| = 0 for

each n. The next step is to exhibit a partition t0 = 0 < t1 < · · · < tn = 1
such that ∑

i

osc
[ti,ti+1]

f ·∆ti ≤ 2|f |∞
1
n

+
1
n
.

This is possible because
Exercise 7. {Of ≥ 1/n} is compact. Hint: On R compact = closed +

bounded. Check {Of < 1/n} is open.
So �rst cover the compact set {Of ≥ 1/n} with open intervals with total

length ≤ 1/n, and then pass to a �nite sub-cover. Disjointize the cover and
make a partition out of it, and the above inequality follows immediately.
Finish by taking n→∞.

On the other hand, by exercise 5b if |{Of 6= 0}| ≥ α > 0 then {Of ≥ 1/n} ≥
α > 0 for some n ∈ N. Then given any partition t0 = 0 < t1 < · · · < tn = 1
we have ∑

i

osc
[ti,ti+1]

f ·∆ti ≥
α

n
> 0

so that f is not Riemann integrable.
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Practice Midterm

Problem 1. Prove

lim
n→∞

(
1 +

x

n

)n
= ex.

Problem 2. Let {an} be a non-negative sequence satisfying

am+n ≤ am + an ∀m,n ∈ N.
Prove

lim
n→∞

an
n

= inf
n∈N

{an
n

}
.

(Hint: m = pn+ r.)

Problem 3. Consider the circle S1 =
{

(x, y)
∣∣x2 + y2 = 1, x, y ∈ R

}
along with

the distance

d ((x1, y1) , (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2.

We call f : S1 → R continuous if

∀ε > 0 ∃δ > 0 s.t. d ((x1, y1) , (x2, y2)) < δ =⇒ |f (x1, y1)− f (x2, y2)| < ε.

We call g : R→ S1 continuous if

∀ε > 0 ∃δ > 0 s.t. |x− y| < δ =⇒ d (g (x) , g (y)) < ε.

a) Let f : S1 → R and g : R → S1 be continuous. Prove f ◦ g : R → R is
continuous.

b) We can write g : R→ S1 as

g (x) = (g1 (x) , g2 (x))

where g1, g2 : R→ R and g2
1 +g2

2 = 1. Prove g is continuous i� g1, g2 are continuous.
c) Let f : S1 → R be continuous. Prove there exists (x, y) ∈ S1 such that

f (x, y) = f (−x,−y) .

Problem 4. If f : R→ R satis�es

|f (x)− f (y)| ≤ α|x− y| ∀x, y ∈ R
for some α ∈ (0, 1), then we call f a contraction. Let f be a contraction and prove
there exists a unique �xed point

f (x) = x

by completing the outline below.
a) Let x0 ∈ R and de�ne the recursive sequence

xn+1 = f (xn) , ∀n ∈ N.
Prove

|xn+1 − xn| ≤ α|xn − xn−1|.
b) Let m > n and prove

|xm − xn| ≤
m−1∑
k=n

αk|x1 − x0|.

c) Deduce {xn} is Cauchy and conclude the result.
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Solutions

Problem 1. Taking logs the general term is

n log
(

1 +
x

n

)
= x ·

log
(
1 + x

n

)
− log (1)

x
n

→ x
d

dt
log t

∣∣∣∣
t=1

= x.

Problem 2. For m > n write m = pn+ r with 0 ≤ r < n, then

am
m
≤ p

m
an +

ar
m
≤ an

n
+
M

m

where M = max0≤r<n {ar}. Thus

lim sup
am
m
≤ an

n
∀n

and

lim sup
am
m
≤ inf

an
n
≤ lim inf

an
n
.

Problem 3. a) Fix ε > 0, and �nd δ1 > 0 so that

d ((x1, y1) , (x2, y2)) < δ1 =⇒ |f (x1, y1)− f (x2, y2)| < ε.

Find δ2 > 0 so that

|x− y| < δ2 =⇒ d (g (x) , g (y)) < δ1.

Then

|x− y| < δ2 =⇒ |f (g (x))− f (g (y))| < ε.

b) De�ne πx (x, y) = x and πy (x, y) = y. These are continuous as maps πx, πy :
S1 → R. Since

g1 = πx ◦ g and g2 = πy ◦ g

part (a) gives the result. Similarly the equation

g (x) = (g1 (x) , 0) + (0, g2 (x))

shows us how to prove the converse.
c) De�ne φ : [0, π]→ S1 by

φ (θ) = (cos θ, sin θ)

and check it is continuous. Then the composition f ◦ φ : [0, π] → R is continuous
and therefore so is f ◦ φ (θ)− f ◦ φ (θ + π). If

0 = f ◦ φ (0)− f ◦ φ (0 + π)

then we are done. If not, then either

0 < f ◦ φ (0)− f ◦ φ (π) and 0 > f ◦ φ (π)− f ◦ φ (0)

or

0 > f ◦ φ (0)− f ◦ φ (π) and 0 < f ◦ φ (π)− f ◦ φ (0) .

In either case intermediate value theorem gives the result.
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Problem 4. a) Compute

|xn+1 − xn| = |f (xn)− f (xn−1)| ≤ α|xn − xn−1|.
b) Repeated application of (a) gives

|xn+1 − xn| ≤ αn|x1 − x0|.
Therefore by triangle inequality

|xm − xn| ≤
m−1∑
k=n

|xk+1 − xk| ≤
m−1∑
k=n

αk|x1 − x0|.

c) We have

m−1∑
k=n

αk = αn
m−n−1∑
k=0

αk = αn
1− αm−n

1− α
=
αn − αm

1− α
.

Therefore

|xm − xn| ≤
αn − αm

1− α
|x1 − x0| → 0

as n,m→∞ which proves {xn} is Cauchy. Hence xn → x ∈ R and then since f is
continuous

f (x) = f
(

lim
n
xn

)
= lim

n
f (xn) = lim

n
xn+1 = x.

This proves the existence of a �xed point. For uniqueness, if x, y are two �xed
points then since f is a contraction,

|x− y| ≤ α|x− y|
with α < 1. This can only happen if x = y.


