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1. An Introduction to Differential Geometry

First we discuss manifolds, and the properties they inherit from Rn. A manifold
looks locally like Rn, in that it is locally homeomorphic to Rn. One ex is the two-
sphere, which is locally like R2. We want to perform calculus on manifolds, so we
linearize. One can think of this as attaching a linear space to each point of the
manifold. The inhabitants of these linear spaces are vectors. Given a vector field
(smooth choice of vector at each point) we can associate a flow field. This will
lead to the notion of Lie Derivative. Following this, we will introduce an additional
structure to manifolds: connections. This will allow us to compare vectors in
different tangent spaces. A connection gives rise to the notion of parallel transport
from point to point. As we’ll see, a connection will also lead to the notions of
geodesic flow, curvature, and torsion.

1.1. Manifolds and Tangent Spaces.

1.1.1. Manifolds.

Definition 1.1. An n-dimensional smooth manifold M is a topological space
(Hausdorff1) together with a collection of open sets Uα ⊂M and homeomorphisms
φα : Uα → φα (Uα) ⊂ Rn such that the following holds:

(1) Uα cover M , i.e., M = ∪αUα
(2) For p ∈ Uα∩Uβ the map φβ ◦φ−1

α : φα (Uα ∩ Uβ)→ φβ (Uα ∩ Uβ) is smooth
as a map from Rn to Rn

(3) The collection (Uα, φα) is maximal with respect to (1) and (2).

Definition 1.2. The maps φα in the previous definition are called transition maps.
A pair (Uα, φα) is called a coordinate chart for M . A collection (Uα, φα) satisfying
(1) and (2) is called an atlas for M .

Example 1.3. A first ex is stereographic projection of the two-sphere. There is
another way to generate charts for the two-sphere. Using six charts we can cover
the sphere by projecting hemispheres.

Now we can talk about differentiable maps between manifolds.

Definition 1.4. A map f : M → N between two manifolds is called differentiable
at p ∈ M if given a chart (V, ψ) around f (p) ∈ N there exists a chart (U, φ)

around p with f (U) ⊂ V and so that the map f̃ = ψ ◦ f ◦ φ−1 : φ (U) → ψ (V ) is
differentiable at φ (p).

Exercise 1.5. Show that this definition does not depend on choice of V .

1.1.2. Tangent Spaces. Consider a curve γ (t) : I → Rn, γ (t) =
(
x1 (t) , . . . , xn (t)

)
.

We already have a notion of tangent vector to the curve at a point, say γ (0) = p.

1We’ll usually assume paracompactness as well.
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But now we’ll think of the tangent vector as a directional derivative. Consider

d

dt
(f ◦ γ)

∣∣∣∣
t=0

=
d

dt
f
(
x1 (t) , . . . , xn (t)

)∣∣∣∣
t=0

=

n∑
i=1

∂f

∂xi

∣∣∣∣
p

· dx
i

dt
(0)

=

[
n∑
i=1

dxi

dt
(0)

∂

∂xi

]
f.

In this way we can think of the tangent vector as operating on f in the form of a
derivative. The next definition generalizes this to manifolds.

Definition 1.6. Given a differentiable curve γ through p and f ∈ Fp (M) (the
space of functions differentiable at p) we define the tangent vector to the curve γ
at p (denoted γ′p) to be the map γ′p : Fp (M)→ R, f 7→ d

dt (f ◦ γ)
∣∣
t=0

.

Definition 1.7. The set of tangent vectors (obtained from curves via the previous
definition) is called the tangent space at p and is denoted TpM .

Let’s explore this definition in a coordinate chart. Pick a chart φ around p and
call the coordinates x1, . . . , xn. So write f ◦φ−1 = f

(
x1, . . . , xn

)
. Given a curve γ,

we can represent in coordinates as φ ◦ γ =
(
x1 (t) , . . . , xn (t)

)
. Then the definition

becomes

d

dt
(f ◦ γ)

∣∣∣∣
t=0

=

n∑
i=1

∂
(
f ◦ φ−1

)
∂xi

∣∣∣∣∣
φ(p)

d (φ ◦ γ)
i

dt

∣∣∣∣∣
t=0

=

n∑
i=1

(
xi
)′

(0)

[
∂

∂xi

]
p

f

where [
∂

∂xi

]
p

f =
∂
(
f ◦ φ−1

)
∂xi

∣∣∣∣∣
φ(p)

.

In particular, if γk is the curve such that φ ◦ γk is the kth coordinate axis in Rn,
then

(γ′k)p f =

[
∂

∂xk

]
p

f.

Exercise 1.8. Show that TpM is a vector space of dimension n. Hints:

• v, w ∈ TpM −→ γ1, γ2

• v + w, natural candidate curve φ ◦ γ̃ = φ ◦ γ1 + φ ◦ γ2 − φ (p)
• Show that

[
∂
∂xk

]
p

is a basis.

Proposition 1.9. Let f : M → N be a differentiable map between manifolds of
dimension m and n. For every p ∈M and every v ∈ TpM we choose a differentiable
curve through p, γ : (−ε, ε)→M , γ (0) = p, and γ′p = v. Define a curve β = f ◦ γ
which is a differentiable curve through f (p) with tangent β′f(p). Then the map

dfp : TpM → Tf(p)N , γ′p 7→ β′f(p) is linear and does not depend on the choice of γ.
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Proof. Expressed in coordinates x and y, we can write

ψ ◦ f ◦ φ−1 =
(
y1
(
x1, . . . , xm

)
, . . . , yn

(
x1, . . . , xm

))
.

Also φ ◦ γ =
(
x1 (t) , . . . , xm (t)

)
. Then

d

dt
(ψ ◦ β)

∣∣∣∣
t=0

=
d

dt

(
ψ ◦ f ◦ φ−1 ◦ φ ◦ γ

)∣∣∣∣
t=0

=

(
m∑
i=1

∂y1

∂xi
(
xi
)′

(0) , . . . ,

m∑
i=1

∂yn

∂xi
(
xi
)′

(0)

)
and so

d

dt
(ψ ◦ β)

k

∣∣∣∣
t=0

=
∂yk

∂xi
(
xi
)′

(0)︸ ︷︷ ︸
γ′p

.

This is a linear transformation written in bases
[
∂
∂xi

]
and

[
∂
∂yi

]
. And the expression

does not depend on the choice of β. �

Exercise 1.10. Given smooth f : M → N , v ∈ TpM , and a function g : N → R
differentiable at f (p), show that

(dfpv) g|f(p) = v (g ◦ f)|p .

Definition 1.11. If f : M → N is differentiable, bijective, and has differentiable
inverse, then we say that f is a diffeomorphism between the manifolds M and N .

Sometimes it is useful to speak of local diffeomorphisms, which is a diffeomor-
phism in a neighborhood.

Theorem 1.12. (Inverse Function Theorem) If f : M → N is a differentiable map
whose differential at p is an isomorphism, then M and N are locally diffeomorphic.

1.2. Tensors on Manifolds. Recall to a vector space V we can associate a dual
space V ∗, the space of linear functionals on V .

Definition 1.13. The dual space T ∗pM of TpM is the vector space of linear maps
g : TpM → R. Its elements are called one-forms or covectors.

Choosing N = R and g = id in the result of exercise 1.10 yields

Proposition 1.14. The differential of f : M → R lives in the dual space T ∗pM
and acts on a vector Xp ∈ Tp via the rule

dfp (Xp) = Xp (f) .

In particular, taking f to be the ith coordinate function xi yields

dxi
[
∂

∂xk

]
p

= δik,

so the dxi form a basis (the dual basis) of T ∗pM .

What happens if we change charts? Write λ = λ
([

∂
∂xk

]
p

)
dxk.2 If we choose λ

to be yi (x), then we see

dyi =
∂yi

∂xk
dxk = Aikdx

k.

2We’ll use Einstein notation (implied summation) from here on.



THE GEOMETRY OF GENERAL RELATIVITY 5

Using the property of the dual basis, we find[
∂

∂xi

]
p

=
∂xk

∂yi

[
∂

∂xk

]
p

=
(
A−1

)k
i

[
∂

∂xk

]
p

.

For a general basis e1, . . . , en of TpM and its dual basis ω1, . . . , ωn of T ∗pM (ωi (ej) =

δij) we have

ω̂i = Aikω
k,

êi =
(
A−1

)k
i
ek.

To see the transformation law for the components note that

λ = λ̂iω̂
i

= λ̂iA
i
jω

j

= λiω
i.

Definition 1.15. A (1, 2)-tensor S on TpM is a map S : TpM ×TpM ×T ∗pM → R
which is linear in each argument.

The general (p, q)-tensor is defined similarly. A tensor is determined by its action
on a basis:

T (X,Y, λ) = T
(
Xaea, Y

beb, λcω
c
)

= XaY bλcT (ea, eb, ω
c)

= XaY bλcT
c
ab.

From this one can derive the transformation law for components:

T (êa, êb, ω̂
c) = T

((
A−1

)d
a
ed,
(
A−1

)e
b
ee, A

c
fω

f
)

=
(
A−1

)d
a

(
A−1

)e
b
AcfT

(
ed, ee, ω

f
)
.

Note. In general relativity one sees the “contraction” operation, which has the rule:
If T cab is a (1, 2)-tensor, then T aab is a (0, 1)-tensor. One has to show this is indeed
a tensor, i.e., it is linear in the remaining component.

Last time we introduced manifolds and tangent spaces and reduced the calculus
of manifolds to calculus on Euclidean space. Given a map f : M → N we developed
a notion of a differential mapping dfp : TpM → Tf(p)N . This map is also called the
“push-forward” since it pushes vectors from TpM to Tf(p)N . Finally we discussed
tensors and corresponding change of coordinate formulas.

Exercise 1.16. Prove that if the components of a tensor all agree in one basis,
then they all agree in all others.

1.3. Vector Fields and Derivations. First we collect together the tangent spaces
into a global object.

Definition 1.17. Given a manifold M , its tangent bundle is the set TM =
∪p∈MTpM .

Proposition 1.18. TM is a manifold of dimension 2n.
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Now we can discuss the notion of a vector field.

1.3.1. Vector Fields.

Definition 1.19. A vector field X is a (smooth) map X : M → TM such that
X (p) = Xp is a vector in TpM .

Recall we defined a tangent vector as an operator on differentiable functions at
a point. Now we can do this globally: we can think of a vector field as a map
from F (M)→ F (M). So we can consider iterates of vector fields, i.e., XY (f) or
Y X (f). Note, however, that either of these alone will not in general be a vector
field. Indeed,

XY f = Xi
p

[
∂

∂xi

]
p

(
Y m

∂
(
f ◦ φ−1

)
∂xm

)

= Xi
pY

m
p

∂
(
f ◦ φ−1

)
∂xi∂xm

+Xi
p

[
∂

∂xi

]
p

Y m ·
∂
(
f ◦ φ−1

)
∂xm︸ ︷︷ ︸

[ ∂
∂xm ]

p
f

,

and the presence of the second derivative term prevents this from being a vector
field. However,

(XpY − YpX) (f) =

(
Xi
p

[
∂

∂xi

]
p

Y m − Y ip
[
∂

∂xi

]
p

Xm

)[
∂

∂xm

]
p

f

is a vector field.

Definition 1.20. The commutator of X and Y is the vector field given by the
expression above, and is written as [X,Y ].

1.3.2. The Lie Derivative. To understand the geometric significance of the commu-
tator, we must first understand flows/integral curves.

Definition 1.21. Given a smooth vector field X, we call γ : I → M an integral
curve of the vector field X if at each point along γ the tangent vector to γ is Xp.

Theorem 1.22. Given a smooth vector field X on M , there exists locally an integral
curve through each point p ∈M .

In components, γ is an integral curve if it satisfies the ode

d

dt

(
xi ◦ γ (t)

)
= Xi (x ◦ γ (t))

subject to initial conditions xi ◦ γ (0) = xip. One can prove this ode is locally
solvable, and that the solution has continuous dependence on the data. This gives
rise to the notion of local flow, φt : (−ε, ε)×U →M . Here, U is a neighborhood of
p.

Exercise 1.23. Suppose X is a vector field non-vanishing at p. Then locally near
p one can find coordinates such that X = ∂

∂x1 . Hint: choose a hypersurface S
through p which is transversal to Xp. Then find a diffeomorphism {−ε, ε}×X → U
which in the given coordinates sends

(
x1, x2, . . . , xn

)
7→
(
x1 + t, x2, . . . , xn

)
.
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Theorem 1.24. Let X,Y be smooth vector fields on M , p ∈ M and φt the local
flow of X near p. Then

[X,Y ]p = lim
t→0

1

t

[
Yφt(p) − dφtYp

]
.

Proof. Use the chart such that X = ∂
∂x1 . Then we have

lim
t→0

1

t

[
Y i
(
x1 + t, x2, . . . , xn

)
− Y i

(
x1, x2, . . . , xn

)]
=
∂Y i

∂x1

∣∣∣∣
p

= Xp

(
Y i
)

= Xp

(
Y i
)
− Yp

(
Xi
)︸ ︷︷ ︸

=0

= [X,Y ]
i
p

which completes the proof. �

Definition 1.25. The Lie derivative of Y along X is the vector field satisfying

LXY (p) = lim
t→0

1

t

[
Yφt(p) − dφtYp

]
.

As we defined vector fields, we also have the notion of tensor fields. These are
multi-linear maps which are linear with respect to F (M), in that

T (fX + gY, Z) = fT (X,Z) + gT (Y, Z) .

This implies that tensors are local objects, i.e., the value of T (X,Y ) at a point p
depends only on the values of X and Y at p. Note, however, that this is false for
the Lie derivative, which depends on derivatives as well.

1.3.3. Connections and Covariant Derivatives. As it turns out, Lie derivatives are
not general enough to relate vectors in different tangent spaces. So we have the
notion of a connection.

Definition 1.26. A connection ∇ on M is a map X (M) × X (M) 3 (X,Y ) 7→
∇XY ∈ X (M) (X (M) is the set of smooth vector fields on M) such that for
f : M → R a function we have the following properties:

(1) ∇X (fY ) = f∇XY + (Xf)Y
(2) ∇X+fY Z = ∇XZ + f∇Y Z
(3) ∇Xf = X (f).

Definition 1.27. The vector field ∇XY is called the covariant derivative of Y
with respect to X. The (1, 1)-tensor ∇Y is called the covariant derivative of Y .

Remark. That ∇Y is a (1, 1)-tensor follows from property (2) in the definition
above.

Example 1.28. Do connections exist? For instance define, given X = Xi∂i,

∇YX =
(
Y i∂iX

k
)
∂k.

In R2, ∂x and ∂y would satisfy

∇∂x∂x = ∇∂y∂y = ∇∂x∂y = ∇∂y∂x = 0.
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But note that in polar coordinates on R2,

∂r =
1

r
(x∂x + y∂y)

∂φ = −y∂x + x∂y

so the connection must transform in a non-obvious way.

Definition 1.29. We say that Y is parallely transported along X if ∇XY = 0.

Let’s work out the covariant derivative in a (moving orthonormal) basis. Write
∇eaeb = Γcabec (the Γcab are the “connection coefficients”), then

∇XY = ∇Xaea
(
Y beb

)
= Xa∇ea

(
Y beb

)
= X

(
Y b
)
eb +XaY bΓbaceb.

So specifying the connection coefficients specifies a covariant derivative. The com-
ponents satisfy

(∇XY )
b

= X
(
Y b
)

+XaY cΓbac.

Example 1.30. For R2 and e1 = ∂x, e2 = ∂y we have Γ = 0. For polar coordinates
we have er = ∂r and eφ = 1

r∂φ, so ∇eφer 6= 0. Intuitively, this is because e1 and
e2 are parallely transported along themselves, whereas the basis er, eφ changes as
it is paralelly transported in the φ-direction.

Note. We said that if the components of a tensor are zero in one basis, then they
will be zero in all bases. But the connection symbols change from basis to basis!
The previous ex shows that Γcab cannot be a tensor.

Exercise 1.31. Show that if êa = Bbaeb, then

Γ̂abc =
(
B−1

)a
f
BgbB

h
c Γfgh +

(
B−1

)a
f
Bhc eh

(
Bfb

)
.

Hint: we know ∇êa êb = Γ̂cbaêc. Now substitute êa = Bbaeb and use the properties of
the connection to expand.

Remark. The difference of two connections is a tensor:

D (X,Y ) = ∇XY − ∇̃XY.

Now we’ll generalize the covariant derivative to covectors. If ω is a one-form,
then ∇Xω should be a one-form as well. For the Leibniz rule to hold, we must have

∇Xω (Y ) = ∇X (ω (Y ))− ω (∇XY ) .

In this way we can define the covariant derivative of a covector.

Exercise 1.32. Show that

(∇aω)b = ∂aωb − Γcabωc.

Here, ∇aω means ∇eaω.
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1.4. Geodesic Flow. We’ll take a closer look at the equation of parallel trans-
port. Suppose we have a curve γ with tangent vector X = Xa∂a = ∂t. Then in
components the condition on Y for Y to be parallely transported is

Xa∇aY c + ΓcabX
aY b = 0

or just
d

dt
Y c + ΓcabX

aY b = 0.

This is a linear ode, and can be solved for Y c subject to initial conditions.

Definition 1.33. Let X be a vector field such that ∇XX = 0. Then the integral
curves of X are called geodesics.

Theorem 1.34. There is precisely one geodesic through each point p whose tangent
vector at p is equal to Xp.

Proof. We’ll use an ode theorem. We have

d

dt
Xc + ΓcabX

aXb = 0

and since

Xc =
d

dt
xc (t) =

d

dt
(xc ◦ γ (t)) ,

we in fact have

(1.1)
d2

dt2
xc (t) + Γcabẋ

aẋb = 0.

Once we specify initial conditions an ode theorem on existence and uniqueness gives
the result. �

Remark. Equation (2.1) is referred to as the “geodesic equation.”

1.5. Torsion and Curvature. Having specified a connection, one can introduce
some geometrically important tensors. Here are two now.

Definition 1.35. The torsion tensor is a (1, 2)-tensor field T defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ] .

One must check this is indeed a tensor field; i.e., one should check this is linear
in each argument. As T is anti-symmetric, one only needs to check it is linear in
X. This is a calculation.

Note. We will work with torsion-free connections (symmetric connnections). These
are called as such as T = 0 implies the anti-symmetric part of Γcab is zero. (That
is, Γcab − Γcba = 0.)

Definition 1.36. The Riemann curvature tensor is a (1, 3)-tensor field defined by

R (X,Y )Z = ∇Y∇XZ −∇Y∇XZ +∇[X,Y ]Z.

In a coordinate basis, this is

Rabcd = Γabc,d − Γabd,c − ΓcpcΓ
p
bd + ΓapdΓ

p
bc.

This tensor measures the failure of covariant derivatives to commute. Imagine
parallel transport of a vector along a triangle on the surface of a two-sphere. The
resulting vector will be different than the initial vector, and indeed Rabcd 6= 0.
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2. Local/Global Riemmanian Geometry

So far we have discussed the differential calculus of manifolds. We introduced
additional structure via a connection, which gave rise to the notions of curvature
and torsion. In this section, we’ll endow our manifolds with a metric, g (v, w), a
symmetric bilinear form on each tangent space. In general, g can be positive definite
(Riemannian geometry) or indefinite of signature (−,+, . . . ,+) (Lorentzian geome-
try). Eventually, we’ll try to understand how these geometries are similar/different.
But, as we’ll see now, there is a unique connection for which torsion vanishes, the
so-called Levi-Civita connection; this will be the connection we work with for the
rest of the course.

2.1. Metrics and the Levi-Civita Connection.

Definition 2.1. A metric tensor g at a point p is a symmetric (0, 2)-tensor. It

assigns a magnitude d (X) =
√
g (X,X) to each vector X, and we’ll say that X

and Y are orthogonal if g (X,Y ) = 0.

Definition 2.2. The length of a curve γ (t) : [t1, t2]→M is defined as

l (γ) =

∫ t2

t1

√
g (X,X) dt.

In a coordinate basis we can write

g = gabdx
a ⊗ dxb.

Definition 2.3. A smooth assignment of a metric to each tangent space is called
a metric on M .

Definition 2.4. We say (M, g) is a Riemannian manifold if g is positive definite.
We say (M, g) is Lorentzian if g has signature (−,+, . . . ,+).

Note. Positive definiteness implies non-degeneracy, i.e., that g (X,Y ) = 0 for all
Y implies X = 0. This gives an isomorphism TpM 3 v 7→ g (v, ·) ∈ T ∗pM . This
allows us to observe the convention of raising and lowering indicies. If va are the
components of a vector, then vb = gabv

a is the metrically equivalent co-vector.

Also,
(
g−1

)ab
gbc = δbc, but most books write gab to mean the inverse of gab.

Definition 2.5. The gradient of f : M → R is the vector metrically equivalent to
df , i.e., the vector satisfying

g (grad f, ·) = df.

Now here is a miracle which simplifies much of our work.

Theorem 2.6. For a pseudo-Riemannian manifold (M, g) there is a unique torsion-
free connection which is metric compatible, i.e., which satisfies ∇g = 0.

Proof. See exercise 2.15 the course notes. �

We’ll use the connection described above implicitly throughout the rest of the
course: it is called the Levi-Civita connection. Now we are ready to discuss local
Riemannian geometry.
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2.2. The Exponential Map. Recall the geodesic equation

(2.1) ẍa (t) + Γabcẋ
b (t) ẋc (t) = 0.

In flat Euclidean space the geodesics are straight lines (in cartesian coordinates
Γabc = 0). Any two points are connected by a unique geodesic, which minimizes
length. We ask two questions:

• Can we always connect two points by a geodesic?
• Do geodesics minimize the length?

Both are false in general. The first fails for the punctured plane. The second fails
on the sphere. But perhaps we can come up with conditions under which these are
true.

Write xa (t) = xa ◦ γ (t) and d
dtx

a (t) = d
dt (xa ◦ γ (t)) = Xa. With these we can

think of equation (2.1) as a first order system:

d

dt
xa (t) = Xa (t)

d

dt
Xa (t) = −Γabc (x)XbXc,

subject to initial conditions xa (0) = xap, Xa (0) = Xa
p . Now given q ∈ M and a

neighborhood V of q, define the set

UV,ε =
{

(p, v)
∣∣ p ∈ V, v ∈ TpM, ||v|| < ε

}
.

Applying the usual ode theorem for existence and uniqueness (and continuous de-
pendance on the data) immediately gives the following result:

Proposition 2.7. Given q ∈M we can find a neighborhood V and an ε such that
the map γ : (−δ, δ)× UV,ε → M , (t, p, v) 7→ γ (t, p, v) =the unique geodesic passing
through p with tangent vector v at t = 0 is smooth.

Lemma 2.8. If γ (t, p, v) is defined for (−δ, δ) then γ (t, p, av) is defined for (−δ/a, δ/a)
and γ (t, p, av) = γ (at, p, v).

Proof. γ (t, p, v) is defined for (−δ, δ) implies that h (t) = γ (at, p, v) is defined for
(−δ/a, δ/a). Now check

∇h′(t)h′ (t) = a2∇γ′γ′ = 0.

Since h (0) = p and h′ (0) = av, uniqueness gives the result. �

Remark. The point here is that we can always rescale the interval of time on which
γ is defined to (−1, 1).

Definition 2.9. Let q ∈M and UV,ε be as above. The map exp : UV,ε →M given
by

exp (q, v) = γ (1, q, v) = γ

(
||v||, q, v

||v||

)
is called the exponential map.

We’ll be interested in the restriction to a point p, i..e, the map expp : TpM →M
given by

expp (v) = γ (1, p, v) = exp (p, v) .

Proposition 2.10. The exponential map is a local diffeomorphism at p.
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Proof. Note that d
(
expp

)
0

: T0TpM → TpM . Usually we make the identification
T0TpM w TpM . Let’s compute this differential:

d
(
expp

)
0
v =

d

dt

(
expp (tv)

)∣∣∣∣
t=0

=
d

dt
γ (1, p, tv)

∣∣∣∣
t=0

=
d

dt
γ (t, p, v)

∣∣∣∣
t=0

= v.

So the d
(
expp

)
0

is the identify, and hence the claim. �

Definition 2.11. A neighborhood U in M which is the diffeomorphic image of
expp of a neighborhood in TpM is called a normal neighborhood.

Remark. One can refine this to a totally normal neighborhood, i.e., a neighborhood
which is a normal neighborhood of each of its points. This will be useful later.

Now we can describe the notion of normal coordinates. Given q in a normal
neighborhood we can write q = expp (v) for unique v ∈ TpM . Now choose an
orthonormal basis ea in TpM and write v = xa (q) ea. The xa (q) are called “normal
coordinates” of q. Using the exponential map we can solve for the xa (q):

q = expp (xa (q) ea)

=⇒ xa (q) = ωa exp−1
p (q)

where ωa is the dual basis to ea.

Exercise 2.12. Show that in normal coordinates gij (p) = δij and Γijk (p) = 0.

Hint: in these coordinates, xa (γ (t)) = tva where v = γ′.

2.3. Minimizing Properties of Geodesics. Our goals are now to show

(1) If p, q ∈ M and there is a curve γ which minimizes the length between p
and q, then γ must be a geodesic.

(2) For a sufficiently small neighborhood, one can connect any two points by a
geodesic. Moreover, this geodesic minimizes the length.

The solution of the first involves a variational principle. In the exercises we’ll
consider variations of the length functional

l (γ) =

∫ b

a

√
g (γ′, γ′) dt,

and we’ll see that in order to extremize this functional γ must satisfy the geodesic
equation.

We discuss (2) now. The key lemma is the so-called “Gauss lemma.”

Lemma 2.13 (Gauss). Let p ∈M and v ∈ TpM be so that expp (v) = q is defined.
Then for any w ∈ TpM we have

g
(
d
(
expp

)
v
v, d

(
expp

)
v
w
)

= g (v, w) .
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Proof. Consider the parametrized surface f (t, s) = expp (t (v + sw)). We compute

∂f

∂t
(t, 0) = d

(
expp

)
tv
v,

∂f

∂s
(t, 0) = d

(
expp

)
tv
tw.

Note that d
(
expp

)
tv
v is the tangent vector to the radial geodesic. Recall that the

norm of the tangent vector does not change along a geodesic. So for w = v the
statement is clear; in fact it is clear for w = αv for any α. So we can assume w ⊥ v.

Observe that

g
(
d
(
expp

)
v
v, d

(
expp

)
v
w
)

= g

(
∂f

∂t
(1, 0) ,

∂f

∂s
(1, 0)

)
.

We must show this is zero. We have that

lim
t→0

g

(
∂f

∂t
(1, 0) ,

∂f

∂s
(1, 0)

)
= 0,

but g
(
∂f
∂t ,

∂f
∂s

)
is constant in t! �

Exercise 2.14. Finish the proof by showing ∂
∂tg
(
∂f
∂t ,

∂f
∂s

)
= 0.

Let’s try to build intuition about the lemma. Recall the map expp gives rise to
normal coordinates in the manifold. The following will be useful:

TpM
expp−→ M

τ̃ : TpM → R τ : M → R
τ̃2 (x) =

(
x1
)2

+ · · ·+ (xn)
2

τ2 = τ̃2 ◦ exp−1
p(

τ̃2
)−1

(c) are hyperspheres
(
τ2
)−1

(c) are distorted hyperspheres

grad τ̃2 = 2P̃ = 2xi∂i P = d
(
expp

)
x
P̃ , tangent to radial geodesics

g
(
grad τ̃2, w̃

)
= w̃

(
τ̃2
)

= 0 grad τ2 = 2P
(w̃ is tangent to the sphere) (For proof see below.)

Ũ = P̃
r U = P

r , unit radial vector

Proof of grad τ2 = 2P : Choose v = d expp ṽ and compute

g
(
grad τ2, v

)
= v

(
τ2
)

= d expp ṽ
(
τ2
)

= ṽ
(
τ2 ◦ expp

)
= ṽ

(
τ̃2
)

= g
(
grad τ̃2, ṽ

)
= g

(
P̃ , ṽ

)
= g (P, v) .

Now we can resolve (2).

Proposition 2.15. Let p ∈ M and B a normal ball around p. Let γ : [0, 1] → B
be the radial geodesic connecting p and q, i.e., γ (0) = p and γ (1) = q. (γ (t) =
expp (tv) =⇒ q = expp (v).) Then any competing (piecewise differentiable) curve
α : [0, 1] → M joining p to q has longer length unless α is a monotone reparame-
terization of γ, in which case equality holds.
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Proof. The length of α is

l (α) =

∫ 1

0

√
g (α′ (t) , α′ (t)) dt.

For γ we have

l (γ) =

∫ 1

0

√
g (γ′, γ′) dt

=

∫ 1

0

√
g (v, v) dt

=
√
g (v, v)

= r (q) ,

the radial distance. Look at the competitor curve. Decompose α′ as

α′ = g (α′, U)U +N

where U ⊥ N (N is tangent to the geodesic ball). Compute√
g (α′, α′) =

√
(g (α′, U))

2
+ g (N,N)

≥
√

(g (α′, U))
2

≥ g (α′U) ,

so we can write ∫ 1

0

√
g (α′, α′) dt ≥

∫ 1

0

g (α′, U) dt

=

∫ 1

0

g (α′, grad τ) dt

=

∫ 1

0

d

dt
(r ◦ α) dt

= r (q) .

When equality holds, show γ and α have the same image in M , and also that
dr
dt > 0. These will show that α is a monotonic reparametrization of γ. �

Remark. The proof above assume α sits in the normal neighborhood. But if it
leaves, then part of it sits in the normal neighborhood and the proof carries over
there. And the length of the peice outside is non-zero, so the result still holds.

The characterization of geodesics as locally length-minimizing does not extend
as a global result in general. Indeed, consider the geodesic paths connecting two
points on the two-sphere. Next, we’ll see exactly when this characterization extends
to a Riemannian manifold in the large.

2.4. The Hopf-Rinow Theorem. Let (M, g) be a connected Riemannian mani-
fold. Define

Ωp,q = {piecewise differentiable curves connecting pand q}
and then define a distance

d (p, q) = inf
γ∈Ωp,q

{l (γ)} .
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Exercise 2.16. Check this is a distance. Hint: for d (p, q) = 0 =⇒ p = q use the
Hausdorff criterion.

The distance d turns (M,d) into a metric space, and induces a topology on M
via balls.

Proposition 2.17. The topology induced on M by d is the same as the manifold
topology.

Corollary 2.18. The function p 7→ d (p, ·) is continuous.

Definition 2.19. We say M is geodesically complete if expp is defined for all
v ∈ TpM at each p ∈M .

Theorem 2.20. Let (M, g) be a Riemannian manifold and p ∈ M . Then the
following are equivalent:

(1) expp is defined for all v ∈ TpM
(2) The closed and bounded sets of M are compact
(3) M is complete as a metric space
(4) M is geodesically complete.

In addition, any of (1)-(4) implies

(1) For any q ∈ M there exists a geodesic connecting p and q whose length
realizes the distance d (p, q).

Proof. First show (1) =⇒ (5). Fix p and q and call d (p, q) = r. Pick a normal
ball around p, Bδ (p) with boundary Sδ (p). This boundary will be compact, so the
map Sδ (p)→ R, p̃ 7→ d (p̃, q) acheives a minimum. Say this minimum is at p′, then
there exists v ∈ TpM so that p′ = expp (δv) for ||v|| = 1. We want to show that in
fact q = expp (rv).

To do this we’ll use an open/closed argument. Consider the set

A =
{
s ∈ [0, r]

∣∣ d (q, expp (sv)
)

= r − s
}
.

It is not empty, since 0 ∈ A. It is also closed, for d and exp are continuous. We
will show now that if s0 ∈ A then s0 + δ′ ∈ A for sufficiently small δ′. (It follows
that [0, r) ⊂ A and so by closedness A = [0, r].) Choose a normal ball around x0,
Br′ (x0) with boundary Sδ′ (x0). Say d is minimized on Sδ′ (x0) at the point x′0.
We have

d (x0, q) = δ′ + d (x′0, q) ,

and since x0 = expp (s0, v) the left hand side is r − s0, and thus

d (x′0, q) = r − s0 − δ′.
But also

d (p, q) ≤ d (p, x′0) + d (x′0, q)

and thus

d (p, x′0) ≥ r − (r − s0 − δ′) = s0 + δ′.

There is a curve which acheives equality, the (possibly broken) geodesic which goes
first to x0 and then from x0 to x′0. But since this curve extremizes, it must not be
broken (if it were, find a totally normal ball about the break point and produce a
shorter curve). By uniqueness we get

x0 = expp ((s0 + δ′) v)
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and thus s0 + δ′ ∈ A. This completes the argument.
Now we’ll do (1)+(5) =⇒ (2). Let U be closed and bounded. By (5) and

boundedness, we have that

U ⊂ expp

(
BR (0)

)
for sufficiently large R. Since U is a closed subset of a compact set, it must be
compact.

The rest will be an exercise. �

Exercise 2.21. Show (2) =⇒ (3) and (3) =⇒ (4) to finish the proof.
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3. Lorentzian Geometry and Special Relativity

We are working towards general relativity and the Einstein equations. As we’ll
see, a solution to these equations takes the form of a Lorentzian manifold and
its (−,+,+,+) metric. Thus we’ll consider now some basic results in Lorentzian
geometry, through the lens of special relativity.

The domain of special relativity is R3+1 equipped with the Minkowski metric

η = ηµνdx
µ ⊗ dxν ,

where

ηµν =


−1

1
1

1

 .

Note. Sometimes this is presented as

η = −dt2 + dx2 + dy2 + dz2.

The first question we ask is: What are the isometries? So we look at the Killing
fields, i.e., LKη = 0. From the exercises in the course notes, we know

∇aKb +∇bKa = 0,

∇a∇bKc = RdabcKd.

But Minkowski space is flat, so this is

∂aKb + ∂bKa = 0,

∂a∂bKc = 0.

These equations admit the solution

Kc = acbx
b + bc

for antisymmetric acb. So the Killing fields are the translations ∂t, ∂x, ∂y, ∂z; the
rotations (−x∂y + y∂x) + two others; and the Lorentz boosts (x∂t + t∂x) + two
others. These transformations generate the Poincare group.

This was not how special relativity was described classically. In those days, one
would search for variable transformations which preserved solutions to Maxwell’s
equations – these are the Poincare transformations. In the language of differential
geometry, one would consider transformations which preserve the wave equation

ηµν∂µ∂νψ = 0.

On a generic manifold this equation depends on the coordinate frame; the com-
pletely covariant presentation is

�gψ = gµν∇µ∇νψ = 0.

We’ll come back to this equation again later in the course.
Consider the 1 + 1 picture, so g = −dt2 + dx2. We have g (∂t, ∂t) = −1,

g (∂x, ∂x) = +1, but g (∂t ± ∂x, ∂t ± ∂x) = 0. So we say ∂t is “timelike,” ∂x is
“spacelike,” and ∂t ± ∂x is a “null-vector.” Note that g (v, v) = −1 is a hyper-
boloid. This is quite different from Euclidean geometry!

Definition 3.1. Let (M, g) be a Lorentzian manifold and v ∈ TpM for some p ∈M .
We will call v
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• spacelike if g (v, v) > 0
• timelike if g (v, v) < 0
• null if g (v, v) = 0 (and v 6= 0).

Also we’ll call v causal if it is either timelike or null.

Remark. This definition will be inherited by curves: a curve will be spacelike if its
tangent is always spacelike, etc.

Exercise 3.2. Let X,Y be non-zero in TpM satisfying g (X,Y ) = 0. Prove the
following statements:

a) If X is timelike, Y is spacelike.
b) If X is null, Y is spacelike or null.
c) If X is spacelike, everything is possible.
Hint: for (a) choose a basis such that e0 = X.

Lemma 3.3. Let X,Y ∈ TpM be causal. Define ||X|| =
√
−g (X,X). Then

• |g (X,Y )| ≥ ||X||||Y ||
• |g (X + Y,X + Y )| ≥ ||X||+ ||Y || if X and Y point in the same half of the

light-cone.

Proof. For the first statement, it suffices to assume ||X|| = 1. Then write e0 = X
then complete to an orthonormal basis ei. Decompose Y as Y = Y 0e0 + Y 1e1 +
· · ·+ Y nen, then we must verify

|Y 0| ≥ 1 ·
√
|Y 0|2 − (· · · )2

.

The second follows easily. �

Exercise 3.4. Fill in the details above.

Remark. The “reverse triangle inequality” above explains the twin-paradox of spe-
cial relativity. It also demonstrates that time-like curves cannot be length minimiz-
ing.
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4. General Relativity

General relvativity was Einstein’s answer to Newtonian mechanics. In this sec-
tion we’ll first see the equations and an important solution. Then we’ll discuss some
of the associated mathematical questions.

4.1. The Einstein Equations. What are the Lorentzian manifolds of (physical)
interest? These are the one which satisfy the Einstein equations:

Rµν −
1

2
Rgµν = 8πTµν

on a Lorentzian manifold (M, g). Here Rµν = Rsµsv is the Ricci-tensor, R = gµνRµν
is the Ricci-scalar, and Tµν is the energy momentum tensor of matter. This equation
replaces Newton’s equation,

4φ = −4πρ

for the gravitational potential φ. Here ρ is the matter distribution. Upon specifying
φ one has the force

F = −∇φ.
The Einstein equations are horribly more complicated than Newton’s equations.
Indeed, if ρ = 0 and if we expect φ to vanish far from the origin, then we must
have φ ≡ 0. This is not true in Einstein’s theory! Indeed, Minkowski space is one
solution where Tµν = 0.

How does one study the Einstein equations? Formally we might write

R = ∂Γ + ΓΓ

= ∂∂g + (∂g) (∂g) .

The leading order part is gµν∂µ∂νgαβ , but only in harmonic coordinates. Recall
the wave equation:

�ψ =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
ψ = 0.

This can be written as

ηµν∂µ∂νψ = 0,

which looks quite similar. To study the wave equation one considers the Cauchy
problem. The similarity suggests that to study the Einstein equation one should set
up initial data and find solutions forward in time. However this is quite complicated,
and took several decades to formulate. Next we’ll discuss another approach, via
Killing fields (symmetry).

4.2. Schwarzschild’s Solution. Schwarzschild arrived at his famous solution by
modelling a star inside of a vacuum, and in particular examining space-time outside
of the star. His solution, which solves the vacuum Einstein equations

Rµν = 0,

is the metric

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
on (−∞,∞) × (2M,∞) × S2. Note that M is a parameter and is the mass of the
star in question.
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Observe first that this is a static metric: ∂t is Killing and

g (∂t, ∂t) = −
(

1− 2M

r

)
= − (1− µ) < 0

for r > 2M . So this is a timelike Killing field. Also, notice that for large r this
approaches the Minkowski metric in polar coordinates,

g = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

This makes sense, for we are only studying an isolated star. More interesting,
however, is that there is a singularity at r = 2M and r = 0. Schwarzchild only
considered this solution on r ≥ r0 > 2M , for his matter model told him the
star must have radius r0 > 2M . We’ll discuss now r = 2M via geodesics and
a coordinate transformation. Throughout, we’ll time orient by declaring ∂t to be
future pointing. We ask the basic question: Can the domain of the metric be
extended?

Example 4.1. Let

(4.1) g = − 1

t4
dt2 + dx2

on −∞ < x <∞, 0 < t <∞. Consider the transformation t 7→ t′ = 1/t. Then we
have

g = −dt′2 + dx2.

Clearly this makes sense for −∞ < t′ <∞. Note that (4.1) is geodesically incom-
plete as t→∞. But by extending we can complete the geodesics.

With this in mind, let’s consider geodesics in Schwarzschild space. Let uµ = dxµ

dτ
denote the tangent vector of a geodesic, with τ an affine parameter. Then

gµνu
µuν = − (1− µ) ṫ2 +

1

1− µ
ṙ2 + r2

(
θ̇2 + sin2 θφ̇2

)
=

{
−1 for timelike

0 for null
.

It suffices to study θ = π/2 (from the equation for θ̈ and rotational symmetry).
Recall that uµKµ is constant along geodesics. This leads to the conserved quantities

E = −gµνuµ (∂t)
ν

= (1− µ) ṫ,

L = −gµνuµ (∂φ)
ν

= r2 sin2 θφ̇ = r2φ̇

given the earlier reduction. Thus we have the simpler equation

− E2

1− µ
+

ṙ2

1− µ
+
L2

r2
= K =

{
−1 for timelike

0 for null
.

Note that for positive E, the geodesic moves toward the future.
We can make some observations. First, write

ṙ2 +
L2

r2
(1− µ) = K (1− µ) + E2

and in the timelike case,

ṙ2 +

(
1 +

L2

r2

)
(1− µ) = E2.
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Expanding this gives

ṙ2 +

(
1− 2M

r

)
+
L2

r2
− 2ML2

r3
= E2.

The first three terms on the left describe Keplerian orbits in Newton’s theory.
The fourth term is a higher order correction to Newton’s theory. Testing for this
correction experimentally was one of the first verifications of the theory.

Next we’ll focus on radial (L = 0) null geodesics (K = 0). Then

ṙ2 = E2.

If we consider
ṙ = −E,

corresponding to moving inwards, then we have

r = −Eτ + r0.

Note that the affine length to reach r = 2M from τ0 is finite! But note that

dt

dr
=
ṫ

ṙ
= − 1

1− µ
,

so we cannot reach r = 2M in finite time. This suggests we can make a coordinate
transformation to extend the metric.

So we choose new coordinates: v = t+ r∗ with

r∗ = r − 2M log (r − 2M) .

Note that
dr∗

dτ
=

1

1− µ
,

and dv = 0 along ingoing null geodesics. In the new coordinates,

g = − (1− µ)

(
dv − dr

1− µ

)2

+
dr2

1− µ
+ r2dω2

2

= − (1− µ) dv2 + 2dvdr + r2dω2
2 .

This metric can be defined for all r > 0; the extension contains an isometric copy
of the restricted space. Note that

v = const. surfaces are null hypersurfaces,

r = const. surfaces are


spacelike for r < 2M

null for r = 2M

timelike for r > 2M

.

One can similarly extend the metric via outward moving geodesics. What is the
maximal extension? Define the set

U =
{

(T,R) ∈ R2
∣∣T 2 −R2 < 1

}
.

Then on U × S2 we can put a metric

g =
32M3

r
e−

r
2M

(
−dT 2 + dR2

)
+ r2dω2

2

where

T 2 −R2 =
(

1− r

2M

)
e
r

2M .
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Remark. There is another family of black hole solutions (containing the Schwarzschild
family) describing rotating black holes (Kerr).

Remark. Stability of the global picture is an open problem.
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5. Some Results in Stability Theory

We want to study the stability of the (fully non-linear, tensorial) Einstein equa-
tion. But this is very diffucult! So for the rest of the course, we’ll study the linear,
scalar wave equation

(5.1) �gψ = 0

for g being the Schwarzschild metric. We eventually hope to ask if the black hole
picture persists under perturbations. So in the simplified (linear, scalar) picture we
seek to show uniform boundedness and decay for ψ on the black hole exterior.3 If
we can understand this, then perhaps we can ask questions about

�gψ = (∂ψ)
2
.

And then, we’d perturb g. At the end of the day, we would like to move to the full
non-linear, tensorial equation. This is where current research is heading; but for
now, we’ll consider only the properties of equation 5.1.

Exercise 5.1. Show

�gψ = gab∇a∇bψ =
1
√
g
∂a
(√
ggab∂bψ

)
where

√
g =
√
−det g.

5.1. Estimates in Minkowski Space. Let’s return to Minkowski space, and
study the wave equation there:

�gψ =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
ψ = 0.

As usual, we multiply by ∂t and integrate∫
B

1

2
∂t

(
(∂tψ)

2
+ (∂xψ)

2
+ · · ·+ (∂zψ)

2 −∇ (∇ψ∂tψ)
)
dtdxdydz,

leading to the conservation law∫
ΣT

(∂tψ)
2

+ (∇ψ)
2

=

∫
Σ0

(∂tψ)
2

+ (∇ψ)
2

with ΣT the time-evolution of the initial hypersurface Σ0 through time t = T .
There is a more geometric formulation of energy conservation, via Killing fields.

Write the energy-momentum tensor as

Tµν = ∇µψ∇νψ −
1

2
gµν

(
gαβ∇αψ∇βψ

)
,

then
∇µTµν = 0

for ψ satisfying �gψ = 0. So for an arbitrary vector field X we gain the important
identity

∇µ (TµνX
ν) = Tµν∇µXν

=
1

2
Tµν (∇µXν +∇νXµ)

=
1

2
Tµνπ

µν

3We study the exterior for this is what we can observe from outside the black hole.



24 GUSTAV HOLZEGEL, TRANSCRIBED BY IAN TOBASCO

where πµν = (LXg)
µν

is the deformation tensor. If we call Jµ = TµνX
ν the energy

current and KN = Tµνπ
µν the space-time term, the identity then reads

∇µJµ =
1

2
KN .

Integrating and applying Stoke’s theorem yields the geometric conservation law∫
∂B

Jµnµ∂B =
1

2

∫
B

KN .

This relation is particularly useful if Jµnµ∂B has one sign.

Exercise 5.2. Check that

Jµnµ = TµνX
νnµ ≥ 0

if X and n are furture directed causal.

Suppose in particular we have two null hypersurfaces Nu, Nv intersecting each
other and the hypersurface Σ in Minkowski space. Then if we set X = ∂t (Killing),
we find ∫

Σ

(∂tψ)
2

+ (∇ψ)
2

=

∫
Nu

|Dψ|2 +

∫
Nv

|Dψ|2.

But one can prove each term on the right is non-negative, as Nu, Nv are null.
So if two solutions agree on Σ, then the energy of their difference there is zero;
definiteness of the right hand terms prove that the solutions must also agree on
Nu, Nv! (And on the entire region bounded by the three hypersurfaces, by a similar
argument.) This is one way to prove uniqueness of solutions geometrically.

Different vector fields X lead to different conservation laws. Here is a conformal
Killing vector field of Minkowski, due to Morowitz:

K =
(
t2 + r2

)
∂t + 2tr∂r.

It’s possible to show
∫
Tµνπ

µν vanishes (modulo boundary terms). The induced
conservation law is∫

ΣT

(
t2 + r2

)
|Dψ|2 ≤ c

∫
Σ0

(
t2 + r2 + 1

)
|Dψ|2.

At the initial hypersurface, t = 0, so in fact∫
ΣT

(
t2 + r2

)
|Dψ|2 ≤ c

∫
Σ0

(
r2 + 1

)
|Dψ|2.

Now if the right is finite, then the left must be finite for all time t. So |Dψ|2 has
to vanish in some way as t→∞, which can be a very useful estimate.

One other possible type of estimate is the “integrated decay estimate.” The idea
is to choose a vector field so that

Tµνπ
µν ≥ |Dψ|2

and so that the boundary terms satisfy∫
Σ

TµνX
µnν ≤

∫
Σ

|Dψ|2.

Then integrating in time gives∫ T

0

∫
Σt

|Dψ|2 dt ≤ c
∫

Σ0

|Dψ|2.
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Here is one last result which allows us to gain control of derivatives.

Proposition 5.3. (Commutation) If X is a Killing field and �gψ = 0, then
�g (Kψ) = 0.

5.2. Estimates in Schwarzchild Space. The metric is now

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dω2
2 ,

and once we take t∗ = t+ 2M log (r − 2M) we have

g = −
(

1− 2M

r

)
(dt∗)

2
+

4M

r
dt∗dr +

(
1 +

2M

r

)
dr2 + r2dω2

2 .

Some useful notation:

• Denote spacelike slices of constant t∗ as Σt∗ .
• On the event horizon, H+ (τ1, τ2) = H+ ∩ J + (Στ1) ∩ J− (Στ2).
• Call R (τ1, τ2) = ∪τ1<t<τ2Σt.

The vector field T = ∂t∗ is Killing and timelike, since g (∂t∗ , ∂t∗) = − (1− µ). Via
this Killing field (applying the important identity) we have the conservation law∫

Σt∗

(∂t∗ψ)
2

+ (1− µ) (∂rψ)
2

+ ||∇ψ||2︸ ︷︷ ︸
angular

derivatives

+

∫
H(t∗,0)

(∂t∗ψ)
2

=

∫
Σ0

(∂t∗ψ)
2

+ (1− µ) (∂rψ)
2

+ ||∇ψ||2︸ ︷︷ ︸
angular

derivatives

.

We can get pointwise boundedness of ψ away from r = 2M via commutation with
∂t∗ and elliptic estimates (and Sobolev embedding). But how do we control ψ on
the event horizon?

Proposition 5.4. There is a timelike vectorfield N such that

KN ≥ bJNµ n
µ
Σ for r ≤ 5

2
M,

KN ≤ BJ Tµ n
µ
Σ for

5

2
M ≤ r ≤ 3M,

KN = 0 for r ≥ 3M.

Here b is some small constant, B some large constant.

Remark. In the regoin r ≥ 3M we can just set N = T .

Applying the important identity with N yields∫
Στ2

JNµ n
µ
Σ +

∫
H(τ1,τ2)

JNµ n
µ
H +

∫
R(τ1,τ2)∩{r≤ 5

2M}
KN

=

∫
R(τ1,τ2)∩{ 5

2M≤r≤3M}

(
−KN

)
+

∫
Στ1

JNµ n
µ
Στ1

.
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After adding a multiple of
∫
R∩{r≥ 5

2M} J
T
µ n

µ
Σ to this we arrive at the estimate∫

Στ2

JNµ n
µ
Σ +

∫
H(τ1,τ2)

JNµ n
µ
H + b

∫
R(τ1,τ2)

JNµ n
µ
Σ

≤ B
∫
R(τ1,τ2)

J Tµ n
µ
Σ +

∫
Στ1

JNµ n
µ
Στ1

.

Now we estimate the first term on the right by

B

∫
R(τ1,τ2)

J Tµ n
µ
Σ ≤ B

∫ τ2

τ1

∫
Σt

J Tµ n
µ
Σ dt

≤ BD (τ2 − τ1)

where we’ve taken a supremum (controlled by the initial energy) out of the integral.
Calling

f (τ) =

∫
Στ

JNµ n
µ
Σ,

we have arrived at

f (τ2) +

∫ τ2

τ1

f (τ) dτ ≤ BD (τ2 − τ1) + f (τ1) .

Exercise 5.5. Show that this implies

f ≤ B (D + f (0))

and hence ∫
Στ

JNµ n
µ
Στ
≤ B

∫
Σ0

JNµ n
µ
Σ.

Upon commuting with ∂t∗ one can conclude pointwise boundedness of ψ. But
this is only part of stability, the other part is decay.

True stability involves long-time decay given small initial data. This turns out
to be much more difficult. Recall we derived

1

2
ṙ2 +

L2

2r2
(1− µ) =

E2

2
.

We can think of the second term on the left as a potential. Note that r = 3M
are null geodesics, which orbit the black hole (neither decay into or leave) for all
time. So energy concentrates on these orbits for long time; this is an obstacle to
proving decay. This is called “trapping.” But we can still get the integrated decay
estimates ∫

R(τ1,τ2)

|Dφ|2 (r − 3M)
2 ≤

∫
Στ1

|Dφ|2,∫
R(τ1,τ2)

|Dφ|2 ≤
∫

Στ1

|Dφ|2 + |D2φ|2.
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