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CARTAN-CHERN-MOSER THEORY ON ALGEBRAIC
HYPERSURFACES AND AN APPLICATION
TO THE STUDY OF AUTOMORPHISM GROUPS
OF ALGEBRAIC DOMAINS

by X. HUANG (*) and S. JI

0. Introduction.

It is known that for a projective compact Riemann surface S, the
number of elements in its automorphism group Aut(S) is finite (when
g(S) > 1), which is moreover bounded by a certain constant depending
only on the degree of the equations defining S. It would be interesting to
find an analogue of this fact for a bounded strongly pseudoconvex domain
D C C™*! defined by a real polynomial. Motivated by this problem, we
shall prove in this paper, that for a strongly pseudoconvex domain D
defined by a real polynomial of degree kg, the Lie group Aut(D) can be
identified with a constructible Nash algebraic smooth variety in the CR
structure bundle Y of 0D, and the sum of its Betti numbers is bounded by
a certain constant C, i, depending only on n and ko. In case D is simply
connected, we further give an explicit but quite rough bound in terms of
the dimension and the degree of the defining polynomial.

Our approach is to adapt the Cartan-Chern-Moser theory to algebraic
hypersurfaces. Since the domain under consideration is strongly pseudocon-
vex, the study of its automorphism group can be pushed to that of the CR
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Keywords: Real algebraic hypersurface — Automorphism group — Algebraic domains —
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1794 X. HUANG & S. JI

automorphism group of its boundary. Applying the CR equivalence theory,
this can be reduced to investigating a certain variety in its structure bundle
defined by certain curvature equations. The precise estimate of the total
Betti number of the just mentioned variety is then obtained by making
use of a result of Milnor [M] and the specific construction of its defining
equations.

Now, we give our main result, whose statement requires some termi-
nology to be explained in §1-§3:

THEOREM 0.1. — Let D,D C C"*!, n > 1, be bounded strongly
pseudoconvex domains defined by real polynomials of degree < ko. Then
there is a smooth submanifold V C Y such that the following holds:

(1) There exists a bijective map A between V and the collection of
proper holomorphic maps from D to D denoted by Prop(D, D).

(ii) If we equip Prop(D,f)) with its classical topology, then A is a
homeomorphism.

(iii) The sum of the Betti numbers of V is bounded by a constant
Chn ko, > 0, which depends only on n and ko.

(iv) When D is further assumed to be simply connected, the above
Ch ko, can be taken as

2(n+2)2
{4 334208 (160 + 33 + 213)k0}

)

243.5(n+2)% -1
where ly = [(n +2)? — 1] [54 -3n+2* (32 4 20n + 37)k3}

From the proof of Theorem 0.1, we will see that V carries a “Nash
real algebraic structure”: It admits a finite open covering {V}}, where each
V; is diffeomorphic to a smooth piece of a Nash algebraic variety and the
associated transition functions are smooth Nash algebraic functions.

Theorem 0.1 is also in the spirit of the study of the parameterization
problem for the CR automorphisms of real analytic hypersurfaces. Along
these lines, there have recently appeared many papers (see [BER3] for a
survey and the references therein). Here, we only mention the work done
by Chern-Moser [CM], Vitushkin [V] and Baouendi-Ebenfelt-Rothschild
[BER1], to name a few.

The main idea of the proof of Theorem 0.1 can be explained as
follows (for detailed accounts of the notation and definitions, see §1-
§3): First we consider local maps from M = 0D to M = 9dD. Since
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CARTAN-CHERN-MOSER THEORY ON ALGEBRAIC HYPERSURFACES 1795

M = {r(z,Z) = 0} is a real analytic hypersurface, we can define its
complexification M = {r(z,{) = 0}, which is called the associated Segre
family of M. Let (¥, 7, M) be the G-structure bundle associated with M.
The following is the key fact for our argument: The existence of a Segre-
isomorphism ® between M and M with ®(p) = pif and only if the invariant
function spaces at certain points P € 7~ 1(p) and P € 7~ }(p) coincide:

(0.1) Tx(Q,V)(P) = Tx(Q,Y)(P)

as a lexicographically ordered set for any k (see Lemma 3.3 (ii) and
Lemma 4.2 for the notation and explanation). Here all invariant functions
are defined on the projective structure bundle Y () associated with M
(Mv , respectively). Notice that the above is only an equation for the value
of the invariant functions at a point, instead of the typical version (see
Theorem 3.2) where the relations are for functions on a certain open
subset. Fix a point P € Y N Y. Then the complex analytic variety
V' = {Q € Y | Tk(Q) = Tx(P),Vk} is bijective to the set of all local
Segre-isomorphisms ® from M to M. This relates the set of maps to a
complex analytic variety. To study the set of all local Segre-isomorphisms
induced by CR-isomorphisms from M to M , we need to consider the CR
structure bundle Y naturally embedded in Y. We have a real analytic
variety V = V* NY. In case M is defined by a real polynomial, the variety V
turns out to be a real algebraic variety. Next we consider global maps from
dD to &D. When 8D is simply connected, a local CR isomorphism can be
holomorphically extended to a neighborhood of dD. Hence, it extends to
a proper holomorphic map from D to D.T hus, the real algebraic variety
V is the desired one in Theorem 0.1. In general, an arbitrary local CR
isomorphism is not necessarily a global CR isomorphism. We will then find
a subset Vy of V by taking certain intersections such that it represents all
global CR isomorphisms.

Once V, is constructed, in light of the Milnor Theorem [M], the
estimate of its total Betti number can be done by studying the defining
functions of V.

The paper is organized as follows. In Section 1, we collect some basic
results related to the Milnor Theorem and Segre families. In Section 2,
we prepare some needed properties for algebraic functions. We review
and outline Cartan’s method on the equivalence problem in differential
geometry in Section 3. We then apply Cartan’s method to CR geometry in
Section 4. In Section 5, we shall construct the variety ¥ in Theorem 0.1 and
prove (i)—(iii) of Theorem 0.1. We shall prove the last part (iv) of Theorem
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1796 X. HUANG & 8. JI

0.1 in Section 6 by an explicit computation, following up a procedure in
Chern’s paper [Ch]. The computation in [Ch] was carried out over the
projectivized cotangent space C"*! x P", instead of over the Segre family
M. Computing over C**1 x P simplifies the computation. For our purpose
here, we will carry out the computation over M that seems to provide a
better degree estimate.

In this paper, all small Greek indices have the range 1 < o, 3--- < n,
small Latin indices have the range 1 < 4,5, k,... < n+ 1, and repeated
indices imply summation.

1. Preliminaries.

e Algebraic functions. — Let K be the field R or C. Let U C K"
be an open subset. We recall a smooth function g defined on U is said to be
a Nash algebraic function (or simply an algebraic function) on U if there is
a non-constant irreducible polynomial P(z,y) in (z,y) € K™ x K of degree
k such that P(z,g(z)) =0, Yz € U. Here, k is called the degree of g.

o Betti numbers of sub-algebraic sets. — By the ¢qth Betti
number of a topological space X, we mean the rank of the Cech cohomology
group H?(X), using coefficients in K. In our proof, we need the following
result of Milnor:

THEOREM 1.1 (Milnor, cf. [M]). — Let p1,..,pm € R[R"] (resp.
C[C™]) be real polynomials (resp. complex polynomials) with deg(p;) < k.
Then the sum of the Betti numbers of the zero locus Z(p1,-..,pm) C R"
is < k(2k — 1)~ (resp. C C™ is < k(2k — 1)?"71).

PROPOSITION 1.2. — Let p1,...,Pm,91,---,9s € R[R"] be real
polynomials with deg(p;) < k and d := deg(g1) + --- + deg(gs). Let
X ={zeR"|p(z) = =pm(r) =0, g1(z) > 0,---,gs(x) = 0}.

Then the sum of the Betti numbers of X is bounded by 1ko(ko — 1)"71,
where ko = max{2k,d + 2}.

Proof of Proposition 1.2. — When m = 0, the proof was given in
[M]. The proof in the general case can be similarly done as follows:

We first let X, = X N B™(r), where B"(r) is the ball in R™ centered
at the origin and with radius r. Let gy = r% — |z|%.

ANNALES DE L’ INSTITUT FOURIER



CARTAN-CHERN-MOSER THEORY ON ALGEBRAIC HYPERSURFACES 1797

For any constant €, § with € > €72 > § > 0, let L(¢, §) denote the set

of points
go+6203"'7 gs+620a 6(90+6) """ (gs+6) Z(S+p%++p$n

Then L(e, é) is compact, and its boundary is obtained by setting only the
last expression equal to zero. Notice that the polynomial p? + ---p2 —
e(go+e€)----- (gs + €) has degree bounded by k.

Given a small €, we will choose ¢ so that the boundary 0L(e, ) is
non-singular. Then the argument in [M, Theorem 1] shows that

rank H*(0L(e,6)) < ko - (ko — 1)" L.
Hence by the Alexander duality Theorem (cf. [ES]), we have
k
rank H*(L(e, 8)) < ?O(ko )

We choose €; converging monotonically to zero and suitably choose é; so
that L(e1,81) D L(e2,62) D -+ with intersection X N B™(r). Then by the

argument in [M, Theorem 2], it follows that

rank H*(X,) < limsup(rank H*(L(e;,6;)) < %O—(ko — 1)t

Since X can be triangulated, it thus follows that rank H*(X)<%e (ky—1)"~1.

O
Similarly, we have the following:
ProprosIiTION 1.3. — Let p1,...,Pm,91,---,9s be as in Proposi-
tion 1.2. Let
(1.1) X:={zeR"|pi(z) = =pm(z) =0, g1(z) >0,

g2 #0,...,9:(x) #0}.
Then the sum of the Betti numbers of X is < ko(ko — 1)"~!, where
ko = max{2k,d + 2}.

Proof of Proposition 1.3. — Let g* = +g,---g,. For any constant
r>1,¢,6 with € > €* > § > 0. Denote by L¥(r, ¢, ) the set of points

r? —|z|*+€>0,91 +€—1/r >0,
gE+e—1/r >0, e(r’—|z>+e)(gi+e—1/r)(gE+e—1/r) > 5+p3+---+p2,.

Then a similar argument as before shows that the study of H*(L*(r, ¢, 8))
gives the estimate

rank H*(XZ) <1/2ko- (ko — 1),

TOME 52 (2002), FASCICULE 6



1798 X. HUANG & S. JI

where X = XNB*(r)n{z: gt >1/r,g1 > 1/r}. Write X,, = Xt UX,".
Then, rank H*(X,) < kg-(ko—1)""'. Let 1 <ry <ry < --- withr; — oo.
Since X,, CC X,, CC X,, CC --- and their union is precisely X, we see
the proof of Proposition 3.1 as in [M, p. 278]. O

e Segre families. — Let M, = {z € U | r(2,z) = 0} c C**!
be a real analytic strongly pseudoconvex hypersurface, where U is a
neighborhood of 0 in C**! and r is a real analytic function on U with
r(0,0) = 0 and dr # 0. Replacing Z by new variables {, we obtain a
holomorphic function 7(z,{) on U x Conj(U) C C"*t! x C**!  where
Conj(U) := {2z : z € U}. We then have a complex analytic variety
M, = {(2,{) € U x Conj(U) | r(2,¢) = 0}, which is called the Segre
family associated with M,..

Suppose

(1.2) 71 (0,0) = —2F or

5o ST (0,00 #0 and rt1(0,0) =

Let M, and M, be as above. We define a holomorphic map S : M, —
PTC™*! given by

(1.3) S(z%, 2" ¢,) = (z 2"+ [7"1 Ceee Tn+1](za,z"+l,Ca))

()

(0,0) # 0.

o n+1

where 7, = 387’; and py = —

of the local defining function r.

Since M, is strongly pseudoconvex at p, the map S is locally biholo-
morphic at (p,p) € M, and L,(p,P) # 0, where

0 J
Lr(z,g‘) = det (Ti :z) (Z,C)

is the Levi determinant of 7([CJ2]). Here, we use the notation r* = g_(g’ ri =

or i
92,0 Ty ac a

M; = {(Z, C) | 'I'(Z,C) = O,’/’j(Z,C) 7é 07rl(z7C) 76 OvLT(Z7C) 7é 0}’

and M} := M} N {(2,¢) | ¢ = z}. Also, when there is no confusion,
we identify M} with its projection to the z-coordinates space. Let D

. For any 1 <14,5 <n+1, write

be as in Theorem 0.1 with a polynomial defining function r. Then Mj
described above is strongly pseudoconvex and {M }1<z j<nt1 forms an
open covering of dD. For simplicity, we write, in what follows, M := Mr’fjr“ll,
and M := M.

ANNALES DE L'INSTITUT FOURIER
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Making use of the implicit function Theorem and (1.2), we can replace
the local defining function 7(z, ¢) of M near (0,0) by 2"t —p(2%, (s, Cnt1)-
Then the functions p, in (1.3) become —;Zla. Restricting dp, = posdz® +
pldls + pitidCay1 to M, we get

pat'ps Py Py’
(14) dpaiM = (paﬁ — pn+1 )d ,3 pOt dzn-l—l + (pg ;n+1 )dCB
As above, we write p, = %, = pe 8{ , etc. Then we have the following

coframe (cf. [CJ1, p.587]) on M near (0, 0)

0 = dz ! 4 L0 dp = gzt - Padz®,

Tn+1
(1.5) 6% = dz®
n+1 n+1,03
p 5 Pa P
o= Pyl + (v2 - e )ds -

Since dpa — pagdz® = 6, on M by (1.4), we see df = 0* A 0. From the
chain rule, it follows that

p Py —% _ — 7'(1
() 922 o1 )
o Op re
P = — = —
a(a Tn41 ’
il 8]7 ,r.n+1
p = -
8Cn+21 Tn+1 ’
n+1l__ 3 p
Pa 0z20znt1
6  Tan 1T —(rag )2 =2 e + T Tt
( 6) (Tn+1)3
o O
* 02%0(g
B "'an+1rﬂrn+1 - (rn+1)27"g - 7"("4_1)27‘[37‘0 + 7“5+17‘a7’n+1
(rn+1)? ’
__ P
Paf = 50,8 )
Tan+178Tn+1 — (Tn-‘rl) Tag — T(n+1)2rﬁroz + Tn+18TaTn+1
(Tn+1)3 '

TOME 52 (2002), FASCICULE 6



1800 X. HUANG & S. JI

2. Algebraic functions.

For non zero polynomials P @, f = P/Q and deg,(f) := max{deg(P),
deg(Q)+1}. Then deg(f) < deg,(f). When P and @ have no non-constant
common factors, it then holds that deg(f) = deg,(f). It is clear that

deg,(f+9) < max{deg*( ), deg, (g)} for rational functions with the same

denominator: f = 5, g= g. More generally, we have the following degree

estimates, which will be used for the proof of Theorem 0.1 (iv).

LEMMA 2.1.

(1) For any non-zero rational functions f and g in C", deg(f + g) <
deg(f) + deg(g) — 1, and deg(fg) < deg(f) +deg(9). If f = §, 9 = §
where P, P, and Q # 0 are polynomials on C", then deg,(f + g) <

max{deg, (f),deg,(g)}, deg,(fg) < deg,(f) + deg,(g)-

(2) If f(z,1t) is a rational function on an open subset of C* x C™ with
n' +m =n, and r(z) = (rV(2),..., r(™)(z)) are non zero Nash algebraic
functions defined on an open subset V. C C™, then f(z,7(z)) is a Nash
algebraic function satisfying

deg (f(z,r(z))) < 2 deg(f i (deg (u) )

is a rational

(3) If f is a rational function, then for any index a, 3‘920

function with of
deg (5“_) < 2deg(f) — 1.

(4) Let f be a smooth function on U C C™ given by the equation
F(z, f(z)) = 0 for a certain algebraic function F. Then f is Nash algebraic
with deg(f) < deg(F).

(5) Let (dzY,...,dz") be the Euclidean coframe in C"™ and (w, ... ,w")
be another coframe in U C C". Suppose dz? = hiw’c where hfc = %
with F] and R polynomials. For any rational function f over U, write
df = fjdz? = f,w?, then

deg, (fi,+) < max{deg, (f;)} + n;ch{deg*(hi)}-

ANNALES DE L’INSTITUT FOURIER
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Proof of Lemma 2.1.

(1) Assume that f = g and g = g with deg(f) = max{deg(P),

deg(Q) + 1} and deg(g) = max{deg(P P),deg(Q) + 1}. Then deg(f + g)
max {deg(PQ+PQ),deg(QQ)+l} < deg(f)+deg(g)—1. When f = and

g= g we have deg, (f+¢) := max{deg(P+P),deg Q+1} < max{deg*( ),
deg,(9)}. S1m11ar1y, we have the inequalities for deg(fg) and deg, (fg).

(2) Let f = £ where P and @ have no non constant common factors.

Take T'(z,t,X) = Q(z,t)X P(z,t). Then T'(z,t, f(z)) = 0. Since r()(z)
is algebraic (1 < v < m), there exists a polynomlal T®) (2, X) such that
TO) (z,r®)(2)) = 0 with deg(T®)) = deg(r®)). Write

T (2, X) = B (2) X% + -+ b (2) X + b5 (2)

= b (2)(X —r{(2) - (X — r{(2))

v
=0 ()X — o ()X @ 4+ (1)) (2)),
where (—1)10;»”)(2)ng)(2) = b;v)(z), riv)(z) = r(¥)(2), and réu)(z),...,
r{")(z) are other branches of r(*).

In the following, we may shrink V' if necessary. Define H(z, X) by the
expression

I (b0, ()™ “* Q2,7 (2)) - Q(z, D (2)) (X = f(2,7(2))
’ (X = f(zr0(2)

=TT 0)™ “*(Qz,r{” (2))X - P(z,7{"(2)))
’ QT ()X — P(z,7(2)).

Clearly H(z, f(z,7(2))) = 0. We need to show that H(z, X) is a polynomial
and estimate deg(H). In fact, since Q(z,t) and P(z,t) are polynomials, by
the properties of Newton symmetric polynomials,

H(z,X) = (bl(li)(z))‘h deg(f) (b(m)( ))qm deg(f

am

>

L1434, (6587 4265 4ot gt ) (@ t+gm) des(f)

)q1+"'+Qu

Jj=0

m

(u)() w? H “) t(“) : (”))t'(’i)Xj
Lt“ t"

pu=1

TOME 52 (2002), FASCICULE 6



1802 X. HUANG & S. JI

— § C(H)
Ljt{*) e

LG+, (#0426 4,0 S (14 +qm) deg(f)

qu deg(f)—t{" - —t(D) Grm deg(f)—t{™ = —t{m)
)

(1) (n)
. oL H(agﬂ)b‘(ﬁ))tl (o ((;Z)bQu)tq“ X
m

_ ~((1))
= Z Cth§“>---t,§“)
LI+, (18 4268 44 qutlly)) < (a1 4+ +am) deg (f) :
; q1 deg(f)—t{) ——t D qm deg(f)—t{™ = —t{™)
"\ Y& (z) © | 0g, (2

LH b(u) t(#) . (u))t(M)XJ‘

Since by’) are polynomials, H(z,X) is a polynomial. It remains to
estimate deg(H). For each j, L and (u1, ..., tm), we have

q1 deg(f)—t{) ——t(D) qm deg(f)—t{™ = —t{m)
deg [ (b (2)) e (b @) "

LH t(ﬂ) b(”))t(M)XJ]

< zdeg (r) (g deg(f) — 1" — - =) +|L|
I3

+ Zdeg (r) A + -+ 1) +
= Zdeg (deg r(“)))2 +|L| + 7 < 2deg(f) Z (deg (r() ) .
w

Hence deg(H) < 2deg(f)>_, (deg(r(”)))g.

(3) Let f = 5, where P and @ have no non constant common factors.
Then deg(f.)= deg (QP'(;?' ”) < max{deg(QP., — Q' P),deg Q? + 1} <
2deg(f) — 1.

(4) Since F(z,t) is an algebraic function with F(z, f(z)) = 0, there is
an irreducible polynomial P(z,t, X) = 0 such that P(z,t, F(z,t)) = 0 with
deg(F') = deg(P). Then P(z, f(z),0) = 0 with deg(f) < deg(P) = deg(F).

(5) The proof follows by applying (1) to fur =3, fihi. O

ANNALES DE L’INSTITUT FOURIER



CARTAN-CHERN-MOSER THEORY ON ALGEBRAIC HYPERSURFACES 1803

For Nash algebraic functions, we have the following:

LEMMA 2.17.

(1) If f,g are two Nash algebraic functions, then deg(f + g) <

deg(f)deg(g) [deg(f) + deg(g)], and deg(fg) < deg(f)deg(g)[deg(f) +
deg(g) + 1].

(2) If f(2,t) is a Nash algebraic function on an open subset of C* xC™
with n’ +m = n, and 7(z) = (rV(z),..., 7(™(z)) are non zero Nash
algebraic functions defined on an open subset V. C C", then f(z,7(z)) is
a Nash algebraic function satisfying

deg (7(z,7(2))) < mldeg( ) (nfix deg(r9)) "

B)Iff= g is a Nash algebraic function, then for any index a, a%[a"
is an algebraic function with

deg (;%é—) < (deg(f))®.

(4) Let f,g be Nash algebraic functions near p. If D* f(p) = D%*g(p)
for any

laf < deg(f) deg(g)[deg(f) + deg(g)],
then f = g.

Proof of Lemma 2.1'. — We only explain (4). The others can be
done as in Lemma 2.1.

Assume that p = 0. Suppose f — g # 0. Since f — g is algebraic,
there is an irreducible polynomial R(z,X) such that R(z, f(z) — g(2)) =
an(2)(f = 9)"(2) - - a1(2)(f — 9)() +ao(2) = 0 with deg(R) = deg(f — g)
where ag(z) # 0. Notice that deg(agp) < deg(R) = deg(f — g) <
deg(f) - deg(g)(deg(f) + deg(g)) by (1). Applying the differential operator
D> to R(z, f(2) — g(2)) for |a| < deg(R) and letting z = 0, we conclude
that D%ag(0) = 0, for any |a| < deg(ag). Hence, ag(z) = 0. This is a
contradiction. O

LEMMA 2.2. — Let f = (fi,...,fn) : U — f(U) C C™ be a Nash
algebraic biholomorphic mapping, where U C C™ is an open subset. Then
every component fj_1 of its inverse map f~! = (fl_l,...,fn_l) is Nash
algebraic on f(U) with

511*1

deg(f;') < (deg f)

TOME 52 (2002), FASCICULE 6



1804 X. HUANG & S. JI
Here deg(f) := max]_, deg(f;).

Proof of Lemma 2.2. — Consider w, = A§1)(z) = fi(2), 1 <
j < mn. By the implicit function Theorem for algebraic functions (cf.
[BER2, Theorem 5.4.6]), without loss of generality, we can assume that
n = An(21,...,2n_1,wy). By Lemma 2.1 (4), A, is Nash algebraic and
deg(An) < deg(f).

Consider w; = A§.2)(zl,...,zn_1,wn) = Ag.l)(zl,...,zn_l,An) for
1 < 7 < n — 1. By the implicit function Theorem for algebraic func-
tion again, we can still assume z,_1 = Ap_1(21,-..,2n-2, Wn_1,Wy).

By Lemma 2.1 (4) and Lemma 2.1’ (2), deg(A,—1) < deg(ASll) <
(deg AL),)? (deg An)® < (deg f)*(deg f)* = (deg(f))".

Repeating this process, we can assume that wy = f1(2) = f1(z1, Az, - . .,
A,) with 23 = Ay (w1, w2, ..., w,), where A; is a Nash algebraic function
and deg(A;) < (deg f)5"_1. Since A; = f; ', it follows that deg(f; ') <
(deg f)*" . Similarly, we can get the same estimates for deg( fj”l) for
2<j<n. ]

3. Cartan’s method on equivalence problems.

e Cartan’s Theorem on equivalence problems. — We will
restrict ourselves here mainly to the real category. However, we emphasize
that the results in this section can be stated in a parallel manner in the
complex setting.

Let V,V C R™ (or (C”) be open subsets with p € V and p € V.
Let 6y = (6},,...,607) and 0~ = ( 0”) be coframes on V and V,
respectively. (In the complex settlng, they are assumed to be holomorphic
one forms.) Let G C GL(n,R) (or GL(n,C), in the complex setting) be a
connected linear subgroup. With the natural left action of G on the product
space V x G (resp. V x G):

(3.0) C(p,S) = (p,CS), VC,S€ @, VpeV (resp. V),

WesaythatVxG(oerG)lsaGspace Let my : VX G — V (or
LV xG— V) be the natural projection. We then obtain 1-forms on

V x G and V x G defined by

(3.1) (wl,...,w")](v,s) =5 Ff/ev, (&1,...,6")|(§’S) =5 71’%/«9*‘;
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LEMMA 3.1 (Cartan, cf. [Ga, p. 11]). —  There exists a diffeomor-
phism ® : V — V satisfying
(3.2) 05 =7, 50v, with 7,5 :V =G, 8(p) = p,

if and only if there exits a diffeomorphism ®! : V x G — V x G such that
(3.3) (@Y., 0" = (W)...,w"), with ®1(P) =P,

where P is in V x G such that my (P) = p and P is a certain point in V x G
such that 7 (P) = p.

Let dim G = r. Then dim(V x G) = n+r. With the forms w1, . ..,wn,
we would like to add r more 1-forms w™t! ... ,w™*" on V x G to form a
coframe 2 such that the induced group becomes the trivial group {e} from
G. Such a Q is called an e-structure. Consequently, there exists ® satisfying
(3.2) if and only if there exists a diffeomorphism ®! : V x G — V x G
satisfying

(3.4) P =wl, 1<j<n+r
Suppose the existence of such an Q and write
(3.5) Q:={w',...,w""} (Q={&',...,5"""}, respectively).

For a differentiable function « defined on V x G, we define its
covariant partial derwative: dy = Y yw'. From dw' = 37 Cwl A wk
with €}, = —Cp;, it gives
(3.6) o1 Cly = Cly.

Hence {C’;k} are invariants with respect to such a ®!. For each integer s
with 1 < s < n+r, we define

(37)  Ty(V x G) = {C;ik,c;k,h,u-,C;?,C”l___,ls_l |

< ik by oo Sntr )y
which is ordered lexicographically. Define
(3.8) ks(p) := rank{dl's(,V x G)}(p), p€V x G,

to be the dimension of the span of the differentials of functions in the
ordered set I's(Q, V' x G). The order of the e-structure at p € V x G is the
smallest jo = jo(p) such that

(3.9) ko (p) = kjo+1 (p)-
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In this case, the rank of the e-structure at p is defined to be
(3.10) po = po(p) == kjo (p)-

We say that the e-structure is regular of order j, and rank poy at
p € V x G if there exists a neighborhood U, of p in V x G such that
Jo(q) = Jo(p) po(q) = po(p), Vg € U,. Suppose Q is regular with order jo
and rank po. Then we can find po functions {g1,...,9p,} C T, (2 V x G),
and a certain neighborhood U, of p in V x G, so that
(3.11)
dgiN---Ad gy, 70, dgAd g1 N---Ndgp, =0, on Uy, Vg€l +1(2, VXG).

Notice that 1 < jo < n+7r. The case jo = 1 occurs when the functions
Cjy, = constant for all i,5 and k. And the case jo = n + r occurs if and
only if one invariant function is added at each jet level.

Notice that 0 < pg < n+r. When pg = n+r, we say that I'(Q,V x G)
is of mazimal rank.

In what follows, we always assume that py > 1.

Notice that these g1, -, gy, can be extended to a coordinate system
in a neighborhood U, of p in V' x G. Namely, we can define a coordinates
map at p by adding some new functions hp,41,. .., hntr (if po < n+7):

(3.12) h:U, — R™" gz = (z1,--,2,) = (91(q),-- -
9po (Q)v h’p0+1(q)’ SRR hn+T(q))’
with hp,4;(p) =0 for j > 1 (if po <n+7).

THEOREM 3.2 (Cartan, [Ga, p. 59]). — Let Q and Q be regular
e-structures of order jo and rank py. Let h and h be defined near p and D,
respectively, as in (3.12). Assume that (g1, ...,3p,) are the corresponding
invariant functions with the identical lexicographic order as for (g1, - .., g,,)
in the corresponding set of invariant functions. Then there exists a diffeo-
morphism ® such that (3.2) holds if and only if

(3.13) Tjor1(V xG)oh™ =Ty 11(Q,V xG)oh™".

e Equivalence between analytic e-structures. — Suppose that
Q and Q are regular with rank pg and order jy at p and p, respectively. Let
us consider the analytic case (i.e., all coframes, Yy - - - Are real analytic).
Take g1,...,9p, €T, (2,V x G) asin (3.11):

(3.14) dgi1A---Adgp, # 0, dgAdgiN---Ndg,, =0, Vg € T'jo11(2,VxG).
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Notice that

(3.15) 9=A4(915-:9p0)

for a certain uniquely determined real analytic function A4 near (g1(p),.. .,
9po(P)), which is called the relation function of g with respect to {g,...,

9po }-

LEMMA 3.3. — Let Q and Q be analytic regular e-structures of
order jo and rank py at p and p respectively. Let g1, ..., g,, be as in (3.14).
Let g1,...,Gp, be the corresponding set with the same lexicographic order
as for g1,...,9p,- Then the following statements are equivalent:

(i) There exists a C* diffeomorphism ®' : V x G — V x G with
0 =0, ®'(p) =p.
(ii) Tk(2,V x G)(B) =Tw(Q,V x G)(p) holds for any k.

(iii) gj(p) = g;(p) holds for 1 < j < po, and for any function
g€Ti+1(QV xG) and g € T'j,+1(, V x G) with the same lexicographic
order, it holds that A, = Ag.

Proof of Lemma 3.3. — We only explain the implication: (ii) = (i).

For {g1,...,9p,} and {g1,...,Gp,}, we take h and h as in (3.12),
respectively.

Use z = h and % = h for the coordinates on V x G and V x G near
h(p) and E(ﬁ'), respectively. Under the assumption of (ii), it can be verified
that the Taylor coefficients of g with respect to the coordinates = at h(p)
is equal to the corresponding Taylor coefficients of g in the coordinates x
at h(p). This implies joh~! = go A~ L. u]

e Equivalence between two e-structures with algebraic rela-
tion functions. — For any g € I'j,+1(Q,V x G), still write Ag(z1,...,
x,,) for the relation function of g such that g = Agy(g1,...,9p,)- Here jo
is the same as in (3.14). Let us consider the real algebraic case (i.e., all

coframes, Yy - - - are real algebraic). Let Iy be the smallest integer satis-
fying
(316) deg(Ag) <lp, Vg S Fj0+1(Q, V x G)

Then by Lemma 3.3 and Lemma 2.1’ (6), we can easily obtain the following:

LEMMA 3.4. — Let Q and § be real algebraic regular e-structures
of order jy and rank pgy. Let ly be given as in (3.16) with respect to both Q
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and Q. Then there exists a real analytic diffeomorphism ®! : V xG — VxG
with
Q0 =0, ®'(p)=p

if and only if
(3.17) Ty (2,V x G)(p) =Ty3(2,V x G)(P).

We now give a rough estimate of the ly in (3.16). Assume, without
loss of generality, that po = n + r. From (3.15), Ag = Ag4(91,- -+, Gntr) ©
(915> Gntr) ", where we write (g1,...,gnsr)"t = (97", gnir)- By
Lemma 2.2, deg(gj_l) < ( maxy deg(gx))®""" . Applying Lemma 2.1’ (2),

2 —1n3
we get deg(Ay) < (n+7)(deg Ag(g1,-..,gn+r)) (maxydeg(gy;'))”. Hence

3_5n+'r—1

(318)  lo<(n+ T)Tz(m;?x deg gk) = (n+ )T+

where T := sup{deg(g) | g € T'jo+1(,V x G)}.

As we mentioned before, Lemma 3.4 and (3.18) hold in the complex
algebraic setting, which will be extensively used in the later discussion.

4. Equivalence problems in CR geometry.

¢ Equivalence between Segre families. — Let {0,6%,60,} be the
coframe (1.5) on M. Let
u 0 O
@1 g={|uw w3 0 \wéo, det(ug) # 0, det(v?) #0

v 0 0P
be a connected linear subgroup of G(2n + 1,C). Then M x G is a G-space

by (3.0). Similarly, let M be the associated Segre family of M with the
corresponding coframe {5, 5"“, ga} as in (1.5).

It is easy to verify that there exists a biholomorphic mapping
®(2,¢) = (f(2),9(¢)) from an open subset in C"*! x C"*! onto an open
subset in C™*1 x C™*! such that ®(M) C M with ®(0) = 0 if and only if
there is a biholomorphic mapping ® : M — M, with ®(0) = 0, satisfying

1 u 0 0\ /0 0
42) @ |0 =ur ug 0 |06 |=(v5) 06"
0. Vo O vg 0, 0,
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where the (2n + 1) x (2n + 1) matrix (v§) defines a holomorphic map-

ping from M into G. The mapping ® satisfying (4.2) is called a Segre-

isomorphism. Then by Lemma 3.1, there exists such a Segre-isomorphism

<I> t M - M if and only if there exists a biholomorphic mapping
: M x G — M x G with

(4.3) 0 = w, VY = w*, T, = w,

where w,w®, w, were defined as in (3.1), i.e

w = ub,
(4.4) w® = u®f + uj6”,
o =Val +v50s, w0, det(uf) #0, det(vl) # 0,
v 0 0

where the matrix | u® ug 0] egd.

Vo O vg
By [CM] and [Ch], the lifting {w,w®,w,} of the coframe {0, 6%,6,}
can be expended to an e-structure on M x G (see Theorem 4.1 below). To
see that, we shall replace M by £ and replace G by another linear subgroup
G, as follows.

Let
E:=Mx{ub|ueC, u+#0}.

w = uf is globally defined on £. We consider dw = u6* A0, +w A ¢, where
do = —%“. Then we get a coframe (uf,0%,0,,do) on E. Let

1 0 0 0
u® ug 0 0
(4.5) G = v 05 o8 0 upvy =63

t aug —u*v? 1
be a connected linear subgroup of G(2n + 1,C). As in (3.0), £ x G; is a
G1-space. Now we write dw = W A wa + w A ¢. Slmllarly, let £ be the

associated bundle over M with the coframe {u9 0 Ou, qSo} which has the
same properties as for {uf, 0%, 0,, ¢o}.

Let @ := (f(2),9(¢)) : M — M be a Segre-isomorphism. It is easy
to verify that LD induces a unique biholomorphic mapping, still denoted as
®, from € to &, satisfying

0 10 0 0\ /96 0
o~ u®  ug 0 of]ee 0

1 ~ = B — (A
* 14, v 0 o6 ] =0,
0] t weuj —uv? 1 ¢ 1)
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where the (2n + 2) x (2n + 2) matrix (7§) defines a holomorphic mapping
from & into Gi. Then by (3.2) and (3.3), there exists a Segre-isomorphism
® : M — M if and only if there exists a biholomorphic mapping

(4.6) LY =ExG —-YV=ExG
such that
(47) (bl*(:) =w, @1*&3& — woc’ q)l*&‘ja — wO“(pl*%: ¢

7w : Y — & is called the projective structure bundle of M. Any map ®!
satisfying (4.7) is called a G -isomorphism.

THEOREM 4.1 [Ch]. — Let M be strongly pseudoconvex real ana-
Iytic hypersurface. From w,w®™,w, as in (4.4), one can construct holomor-
phic 1-forms ¢, ¢3,d*, ¢p,¥ on Y such that

(4.8) Q:={V, 1<j<(n+2)? -1} :={w,w* ws, ¢, ¢3, % ¢3,9}

forms an e-structure on Y and these 1-forms are uniquely determined by
the following structure equations:

dw = tw* ANwg +w A ¢
dw® = WP A ¢F +w A p°
dwe = 2 Awg +wa AP+ wAdg
dd = iw* N g + 1% Awe +w A Y
dph = §YN PP +iwa A PP —igo AwP —i6f (s Aw”) — L85 Aw+ @5
do* = ¢ N ™ + ¢° N ¢F — 3P Aw* + B
dpo =5 Ndpg — 29 Awa + Do
dp =AY+ 210 Ao + ¥
where ®F = Sggw" AWg —l—Rng AW +TPw A w,
% = Tg"wP Awy — §QFw A WP + L*Pw Awg
b, = Rg,yw“/ Awg + Pagw AwP — %Qﬁw/\wﬂ
\Il:ngaAw5+HawAw°‘+K"‘w/\wa
and SB5 = Sh7 = 528, RS = RS, Tg" = T3%, L*P = LP®, Pos = Ppa,

ap

587 = R2, =T3P = Q% =0.

Theorem 4.1 was proved in [Ch] over S(M) C PTC"*!, where S is
defined in (1.3). By our choice of the coframes (1.5), all computation over
S(M) can be identically passed back over M. A biholomorphic mapping
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L.y 5 Yisa Gi-isomorphism if and only if ®*Q = Q. When M is, in
addition, real algebraic, since all the functions S{fg, ng T;),”, LB, ... are
obtained by operating the addition, subtraction, multiplication, division,
partial differentiation (cf. [Ch], or see the proof of Theorem 6.1) to the
defining function, they are all algebraic functions. Hence from Lemma 3.4

and Theorem 4.1, we get the following.

LEMMA 4.2. — Let  and Q be holomorphic algebraic regular e-
structures of order jo and rank pg over ) and ), respectively. Then there
exists a Segre-isomorphism ® : M — M with ®(p) = p if and only if

(4.9) T3 (9, Y)(P) = T3 (2, V)(P),

where ly is as in (3.16), 7(P) = p and w(P) = p.

e Equivalence between CR hypersurfaces. — Let M be as
before. For the moment, let § = i0r and 6% = dz,. We have a coframe
{6,6%,6>} on M. Let

v 0 0
(4.10) G:=4qlu* ug 0 u€R, ug,u*€C, u >0, det(ug) #0,,
w0 g
be a connected linear subgroup of G(2n + 1,R). M x G is a G-space.
Similarly, let M be another real analytic hypersurface as in §1 with a similar
coframe {6, 6,62},

It can be verified that there exists a biholomorphic mapping ®(z) from
an open subset in C"*! onto an open subset in C"*! such that ®(M) C M
if and only if there is a C¥ diffeomorphism ® : M — M satisfying

0 u 0 0 0 0
(4.11) 0| =|u uy 0|6 =050
Ga u* 0 ug 004 0&

where the (2n + 1) x (2n + 1) matrix (7§) defines a real analytic mapping
from M into G. Such a mapping ® is also called a CR isomorphism. By
(3.2) and (3.3), there exists a CR isomorphism ® : M — M if and only if
there exists a C* diffeomorphism ®° : M x G — M x G such that

(4.12) "% = w, T = w®, T, = Ua,
where w,w® are defined as in (4.4).

Define
E=Mx{w=ub:w=w, u>0}
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Choose 6% := u*9 + ugdzﬁ for some real analytic functions u®,ug
so that df = i#* A #=, mod(f). We obtain a coframe (w, #%,0%, ¢o) on E,
where dw = uf® A 0% + w A ¢o. Let

(4.13)
1 0 0 0
Gy = Z_a uoﬁ @ ollv> 0, seR,u® ugEC,ugug =03

s uug —iu"@ 1
be a connected linear subgroup of G(2n + 1,R). E x G, is a G;-space.

—

Let E be the associated bundle over M with the corresponding coframe
{[‘77 9(1, ea’ ¢0}
Let ® : M — M be a CR isomorphism. It is easy to verify that

® induces a unique C* diffeomorphism, still denoted as ®, from E to E
satisfying

0 10 0 0\ /9 0
0~ u® ug 0 0 0> 0>
* z — - [3 . — «
(4.14) @ 0 = 0 = ol ) | 4.
) s wSuf  —iutuf 1 ) )

where the (2n +2) x (2n + 2) matrix (v§) defines a real analytic mapping
from F into Gi, 6, = 6%, etc. By (3.2) and (3.3), the existence of a
CR isomorphism ® : M — M is equivalent to the existence of a C¥
diffeomorphism ®! : Y := E x G; — Y := E x G such that

(4.15) VD = w, DG = W, DV, = wa, PP = ¢.

(Y, 7, E) is called the CR-structure bundle over M.

The fundamental Theorem proved by Cartan-Chern-Moser [CM] as-
serts that from w,w®, wy, one can construct 1-forms ¢, ¢, ¢*, %, ponY,
with w =@, ¢ = ¢, 1 = 1, such that
(4.16) Q:={, 1<j<(n+2)?-1}:={w,w*w*¢,05,¢% ¢, ¢}
forms an e-structure on Y, and they are uniquely determined by certain
structure equations. These structure equations are the restriction of those
in Theorem 4.1 from Y to Y, together with several other reality conditions
(see [Fa, Theorem 5.5, p. 151] [BS]). Now from Lemma 3.4, we get the
following:

LEMMA 4.3. — Let Q and § be real algebraic regular e-structures
of order jy and rank pg overY and Y, respectively. Then there exists a CR
isomorphism ® : M — M with ®(p) = p if and only if
(4.17) Ly (2, Y)(P) = T3 (2,V)(P),
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where ly is as in (3.16), and 7(P) = p and ©(P) = p.

Now, we let 0, 6, be again as defined in (1.5). Since we have the
embedding M — M, by mapping z — (z,%), we can regard the bundles
E,Y as the subbundles of £, ), respectively, as follows (cf. [Fa, (5.9)], [BS]):
Let

(4.18) E* = {(z,z,ue) lze M, —— > 0} CE,

n+1
over M. On E*, we see w* = w* := uf. Let Y* be the collection of the
frames in ) restricted to E* such that w’ = w*®, ¢* = ¢* over E*.

Since w* = w*, WX = w*® and ¢* = ¢* hold on Y*, one can check that
the structure equations defining Q* over Y* are the same ones defining 2
on Y. Hence, Y and Y* are Gj-isomorphic. From now on, we identify E
and Y with E* and Y™, respectively. Then the restriction of a function
g € T(,Y) on Y equals to the lexicographically corresponding function

gly € T(Qy,Y).

5. Construction of V in Theorem 0.1.

From the procedure in Chern’s paper [Ch], any g € T'x(Q2, V), k > 0,
is a combination of addition, multiplication, division, covariant partial
derivations of pog(2,pa), (defined in (1.6)), with rational functions in the
variables (u, u,u®, v, t). (Also see the proof of Theorem 6.1. In passing,
we mention that when n = 1, the specific formulas for a basis g € I'1 (22, )
were given in [HJY, Theorem 3.1]). Since r is a polynomial, it follows that

(5.1) g is the restriction of a rational function

in Z := (2%, 2" (s, Cus1, ug, u®,vq, t) to the hypersurface given by the
equation r(z%, 2", (4, Cuy1) = 0.

N Recixll {M}}lgi’anH covers Mp = 0D and {M}_}lswgnﬂ covers
My = dD. Fix a point py € Mp such that (i): po € M for any i and j;
(ii): Q is a regular e-structure with order jy and rank pgy at a generic point

Py in the fiber of Y C Y over py. We can also assume that jj is the largest
possible value.

When 0D (hence 85) is spherical, it was shown that D (hence D’)
must be biholomorphic to the unit ball B*+1 ¢ C**! [HJ 98]. In this case,
Theorem 0.1 holds trivially. Hence, in what follows, we shall assume that
dD and 8D are non-spherical.
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Step 1. Construction when 9D is simply connected. — We
first construct ¥V when 9D is simply connected. Define a subset V* in Y by

(5.2)  V':={QeV:9(P)=3(Q), Y§eTx(Q,V), 0 <k <20}

where g € Fk(ﬁ, )NJ) is the lexicographically corresponding function for g,
and lo is as in (3.18) with jo = (n + 2)2 — 1. Since D is not spherical, V is
a proper subvariety of J. We also define

(5.3) V:i=v*nY.

Notice that all g are holomorphic. V* is a complex analytic subvariety.
Since D and D are algebraic, V* is an algebraic complex subvariety. Since
Y C Y is real algebraic (see (4.19)), V is a real algebraic subvariety of Y.

(i) We claim that there is a bijective map A:
(5.4) A: Prop(D, D) = {proper holomorphic maps f : D — 5} - V.

In fact, if f € Prop(D, 5), f extends holomorphically to a neighborhood
of D, for 8D is strongly pseudoconvex and real analytic. Since both 9D
and &D are strongly pseudoconvex, the restriction of f to 9D is a local
CR equivalent mapping from 9D onto aD. Hence, there is a unique lifting,
a local Gi-isomorphism near Py, F : Y — 37, such that its restriction
Fly : Y — Y is a local G1-isomorphism near Py from Y to Y. Define
A(f) := Py := F(Py) € YNY. Then by Lemma 4.2, A(f) € V. Conversely,
for any point }30 € V. By Lemma 4.2, there exists a local biholomorphic
map F from Y to Y with F(Py) = P, such that F*Q = Q. By the discussion
in §4, the restriction F|y must be a local G1-isomorphism from Y to Y with
Fly (Py) = Py. Therefore, the local isomorphism Fly is uniquely induced
by a local CR-isomorphism f from 8D to dD near the point pg.

Since 0D is not spherical and since @D is simply connected, we can
apply an extension Theorem of Pinchuk ([Pi]) to conclude that the local
map f extends into a CR map from 9D onto dD’. By the Bochner extension
Theorem [Bo], f extends to a holomorphic map from D onto D’. Also, f
must be proper. Thus we have well defined A~1(P,) := f. Claim (5.4) is
proved.

(ii) Let us show that the variety V is smooth. In fact, suppose not.
Take any two points ﬁl,ﬁg € V , there is a unique local G;-isomorphism
H from an open subset of ¥ to Y such that H(P,) = Pj. Since V is
invariant under the action of G;-isomorphisms, this implies that if 131 ey
is a singular point, then ]32 (hence every point of V) must be singular, too.
This is impossible. Also it implies that V is purely dimensional.
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Since D and D are not equivalent to the ball, it is known (see [Be])
that a sequence of proper holomorphic maps from D to D converges
uniformly on compact subsets if and only if it converges in the C*°(D)-
topology. From this fact, it is clear that with the natural topology equipped
to Prop(D, D’), A and A~ are continuous.

(iii) Let )7; be the CR-structure bundle over ]\’\4/]1 We can regard i/v';

as one coordinate patch of the bundle }75. From the construction, we know
Vit = {Q 1 9(P) = 5(@), Vg € Tyg(@, ) } N V]
={@=G ¢ u a3 @, %|7E =0, (=7
(5.5) Fai1(2,C) #0, T (Z, ) #£0,

- >0, we = 02,
n+1

§ =6, 9(Po) =3(Q), Vg € Toyy(@, ) }.

Making use of Proposition 1.3, (5.1) and (5.5), we get a uniform bound
for the sum of Betti numbers for Vn 1. Similar procedure works for Vf
for any 4,7 < n + 1. Hence, applying the Mayer-Vietoris sequence [BT,
p. 43|, we see the uniform boundedness for the sum of the Betti numbers
of V = Ulgi’an.HVg.

Step 2. The construction in the general case. — We choose
the same py € 0D and Py € Y N as above. Define the complex variety Vg
and V§ as in (5.2) and (5.3), respectively. Now Vy gives the set of local CR
isomorphisms f near pg from 0D to aD. Clearly, Prop(D, D) is a subset of
Vo.

Our argument goes as follows. First, we notice that there is a number
co {see [Hu2, Chapter 1]), depending only on the degree of the defining
functions of D and D such that any local CR diffeomorphism between their
boundaries is algebraic and has degree bounded by cg. Hence, its lifting to
the algebraic map between their structure bundles also has a fixed degree
depending only on the degree of D and D.

We take a Jordan loop v1(t) € 0D, 0 < ¢ < 1, with 7(0) = 7 (1) =
po- We want to define the subset V; C V; which will be bijective to the
set of local CR isomorphic maps f that are initially defined at py and then
extend holomorphically along the loop v, with lim, ;_ f|,, D*(n(t)) =
D fl,,(71(0)), with |a| bounded by a certain fixed constant ¢ (in fact, we
can take ¢ = 2). We shall explain that V), is a real algebraic variety defined
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by algebraic functions of degree less than a certain constant depending only
the degrees of D, D.

Let {;} be a finite set of Jordan loops with +v;(0) = 7;{1) = po, which
generates the fundamental group of dD. For each ;, we shall similarly
define a real algebraic subvariety V; as above. Hence we have a real algebraic
subvariety defined by

(56) V.= ﬁjVj.

This V therefore represents the set of all local CR isomorphism f with
f(po) € 8D such that lim;_,; D fl, (v;(t)) = D fl,,(7;(0)) |a| < ¢ for
all j. Therefore for any other point ¢ € 0D and a path o connecting pg
and g, the extension value f|,(g) will be independent of the choice of o.
Hence, such an f extends into a well defined CR map from 0D to aD.
By Bochner’s extension Theorem [Bo], f extends into a holomorphic map
from D to D. By the same arguments as in Step 1 above, we see that V is
bijective to the set Prop(D, 5) Now, we turn to the construction of V;. We
lift 1 into a Jordan loop 7, in Y with 43 (0) = Py. Take Q" € Vy. Then there
is a local isomorphic map F¢ such that Fg/(Py) = Q'. Notice that Q' is
determined by the second jets of the induced underlining CR diffeomorphic
map Fg and the initial fixed point Fy. By slightly modifying the proof of
Proposition 3.1 of [BER1], one can see that Fg/(Z) depends algebraically
on Z and @ and smoothly on (Z, Q') for (Z, Q') near a small neighborhood
of (M (t), Q) with Q" € Vy. (We leave out such a modification). Moreover,
the total degree of F is bounded by the degree of D and D', for it can
be obtained with a fixed number of algebraic preserving operations to the
defining equations of the domains. By the persistence property of algebraic
functions, D*Fg(F1(1)) = limy—1_ D*Fo (F1(t)) is also an algebraic
function of @ whose degree depends only on the total degree of F/(Z).
Next, we get a Nash algebraic variety

(5.7) Vi :={Q € V; | D"Fo (7:(0)) — D*Fy (11(1)) = 0, || < e},

and V; = Vi nY.
The uniform estimate of the sum of the Betti numbers of V; follows from
an algebraic version of Proposition 1.3, which can be also done as in the

polynomial case in [M]. The rest of the arguments is similar to the simply
connected case. ]
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6. Completion of the proof of Theorem 0.1.

In this section, we use Y = {Y;} = {2%, 2", Ca Cng1, U, uf, u®, va, t}
for the coordinates in C("*2* Use Z = {Z'} = (2%, 2", Cay u, uf,
u® Vo t) for the coordinates in it} = MPH1 x C+D*+1 — ty €
(C(n+2 ' T( a n_chozaCn-H) - 0}' Here

M = {(Zavzn_HaCan-H) | T(Zavzn+1,<a7<n+l) = O}

is the Segre family with r a polynomial defining function of degree ko. Let
hY) = H((z,/) be a holomorphlc rational function on C("*2* We denote
by deg(h) the degree of h = ﬁ as the rational function of Y, and denote
by degy,(h) the degree of the restriction of » on ) as an algebraic function

of Z. By Lemma 2.1 (2),
(6.1) degy(h) < 2deg(h)(ko)* < 2 deg, (h)(ko)?,

where deg,(h) = max{deg(H),deg(R) + 1} as in §2. For simplicity of
notation, we also use h for its restriction on Y, if there is no confusion
from the contexts. We observe that any CR curvature function g over ) is
the restriction of a certain rational function defined in C("+2°,

THEOREM 6.1. — Let M be algebraic with degree < ko. Then for
any function g € T'y3(€2, V) where lo is as in (4.9), g is algebraic and satisfies

deg(g) < deg, (g) < 33723 (16n + 33 + 213)ko

s(n+2)%-1
where lp < [(n+2)2 — 1] [54 - 30+2 (n? + 20n + 37)k§] ™ :

For the proof of Theorem 6.1, we can apparently focus on the

calculation in the chart Y"1 Let {Q7)} be an e-structure on ). For a
n+1

function h defined over V3|, we have dh = > b, ¥ = 3, hjdZ".
Suppose dZ¢ = 3", CiQF, where Cj is the restriction of a rational function

ET-, Vi,k with E} and T polynomials in the variables Y. The following
lemma will be used to compute the covariant derivatives h|q, of a CR
curvature function h.

LEMMA 6.2. — Let h =4 {Q7},C} be as above. Then
deg, (hjo:) < 2deg, (h) + maxdeg, (Cy) + ko — 2
2,

degy (hjq) < 2k? deg, (hja:).
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Proof. — We have
deg. (hyo:) = deg, (D hCl) = maxdeg, (mCY)
k

by Lemma 2.1 (1).

Let us denote by Dy, the partial differential operator with respect to
Y;. We have

( Ty

o = Da (1) — 4D (),
Tyn+1
hiny1 = D nir(h) — chn“(h)»
P
h|n+1+a = DCQ (h) - mDCn+l (h)a

Ri2ny2 = Du(h),
hiznt2+(8-1)n+a = Dug(h),
h|2n+2+n2+a = Dye (h)7
hiant24n24+a = Dy, (),
Ri(n+2)2—1 = Dy(h).

Consider k = o € {1,...,n}. Applying Lemma 2.1, we get

deg, (h,aof)

Ty o
= deg, [(Dz“ (h) — mDCnﬂ(h))Ci }
—d 7541 (RDoH—H Do R) =740 (RDonyoH—HDan 2 R) E
= aeg, ( R2T‘C"+1 ’ _j:)

< 2deg, (h) + max{deg, (C})} + ko — 2.

A similar consideration for the other terms hjx completes the proof of
Lemma 6.2. ]

From (1.5), (1.6) and (4.4) notice that
(0 = i(dz"t! — podz?),

0% = dz°,
_pa 7 i v _ oy Par'p?
(62) aa - pn+19 + qadC’Y7 Wlth qa = pa — _I;n_'—_l’
w = ub,

w* = ugﬁﬁ + u®4,

Wa = Vo +v205, where ud’ = zulvf
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Hence
0= —-w,
u

e wau

0 =dz* = Luf - Ly,
U U

0. — % _ iubvg

a7 Ty P uz

Recall that (Z7) = (z“,z”“,Cmu,ug,u“,vmt) are the coordinates
in Yt Write Q := (€7) for those forms as in (4.8), and write dZ7 = C7Q".
In the following Lemmas 6.3-6.9, we shall estimate the degrees degy,(CY).

wy ivSu? .

LEMMA 6.3. — dz% = Tﬁwﬁ - Lrw = C‘ﬁ"dzﬁ + C*w, with

deg*(cg)v deg)}(C[(;)) deg*(cu)z degy(ca) <n+ L.

Proof of Lemma 6.3. — The identity can be easily derived from (4.4).
Since égu = iuﬁvg, vg can be written as a rational function

ng
Q )
where @ is the Jacobian of the matrix (ug), which has degree n, and Pg

is a polynomial of ug with degree n — 1. Applying Lemma 2.1, we obtain
the desired inequalities. O

(6.3) vg =

i'r‘avg uf iravg

LEMMA 6.4. —  dz™! = (L + 50 aw’ = Cw+ CpwP,
with deg, (C), deg, (Cg) < n+ko+1, and degy,(C), degy,(C) < 2(n+ko+

1)(ko)*.

Proof of Lemma 6.4. — The identity follows from (4.4), (1.5) and
(1.6). By (6.3) and Lemma 2.1, deg,(C) = deg ( Lo ) < ko + n. Then

Q"'n«}»l
by (6.1), degy(C) < 2(ko + n)(ko)?. Similarly, deg,(Cp) = deg, (5 +

e ’Ug u?

) = deg, (w) < n+ ko + 1 and hence degy,(C3)

u27‘n+1 uan+l S

2(n 4 ko + 1) (ko)?. o
. —1 B,y =1 B P+l

LEMMA 6.5. — d(, = U - uﬁw7 - wc’uz “e (v7 + U;—fi—r)w =

Corw" + Cow, with deg,(Ca,), deg,(Ca) < 4nko + 3ko — 4n — 1, and
degy(Cay), degy(Cq) < 3(4nko + 3ko — 4n — 1)(ko)?.
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Proof of Lemma 6.5. — The identity can be derived from (4.4), (1.5),
(1.6). By the definition of g2 (see (6.2)), (1.6) and Lemma 2.1, we have

3
(6.4) (qﬂ> = ( s pZJrlpﬁ) __(Pa)
« o pn+1 ,rn+1(,’nn+1)3 ’

where Pfa is a polynomial of Y of degree 4ky — 5. Hence we get the inverse
matrix

65 ()= () =" ) (PR (g%)

where Pfa and @3 are polynomials of Y with degree 4nkg — 5n + 1 and
4dnkg — bn, respectively. The desired inequalities now follows. O

From Lemmas 6.3, 6.4 and 6.5, for any differentiable function on M,
we can write dh = hj,w+h|ew+h|,, W = hrad2®+hnn dz" +he, dlq,
where

(6.6)
wﬁuﬁ 1 iravguﬂ iqgwug v”p"Jrl
hio = —hpo =2 s (=4 a8 v :
| U1 a2 v ipntl
ﬁ ivgvB
Be = by 08y 8%
u UTpy1
1q mug
h|wa = h,(7 —

Applying (6.2), (6.6) and Lemma 6.5, we obtain the following:
(6.7)

S O

) v
df = —w* Awy — w/\wa—l—i—';w/\wa, dg* =0,
U U

u?
pn+1 pn+1
40, = d(ng) A0+ 250 +d(g) ndgy
n+1 n+1 Tk
d(p;’:H) NG+ pZH (—w"‘/\wN — u—w/\w,{—i-zu wAw )
1 5 L 18,1 nt1
igy " Puj Yy U Py
+d(g3) A [Tw“ — (UM o )w]
_[lp dwepptt By Yujy v virp ™t WA
T lu ! uZpntl u2 H pn+1
1 wlpptt  iBagy wuﬁ iBsq, ! oot
+ [E 3t prtly2 w 02 (”#+ prtl )]‘“"9 Aw
13 i B —18,,#
ippt! iBagy Pujs iB5q; Tug
+[up?’+1 Y }w /\wu—k-———u—wg/\wu
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where
(B, — (ﬁ)l ) = ﬁi(f)ﬁﬂ) _ivevg 9 (pZ“)
1- pntl) e u 920 \pntl Urpyq OznHL \pntl )’
wg 0q)  ivsv] 0q)
B = Y = _9_(1 — 0—9 a
2 (ga)|we U 02°  urpyp 0271
Ba = (pg+1)| B iq;lougi(pg-{—l)
3= pn+1 we T u 8<'y pn+l ’
Bs = (q)|w
_ _ivgu” oq (Ly oty o i “’U%( ELARYH
u? 0z% \u  u?r,yq/ 0znt! u2 T gpntl ) 9¢e’
;—1lo, 0
g, Uy O
Bs := (q0)|wy = —F—"7—(q2)-
L «@ ] u acﬂ
LEMMA 6.6. — du = —u¢ + utw + ivqw® — iu®w,, with deg(u) =
degy (1), deg(vs) = degy(va), deg(u®) = degy (u®) < 2.
Proof of Lemma 6.6. — Since
d i D
dw:iw"‘Awa+wA(——u+ e ) ,
u u
we get
d Ve u®
(6.8) ¢ = S Wage z_u_wa.
u u u
The identity follows. a

In order to prove Lemma 6.7, we need some preparation. We shall
follow the procedure in [Ch] to partially determine the forms ¢%, ¢%, @,
and 1 as follows.

From
. . sy Y [e%
dwa — d(uae + u(xeﬁ) — wﬂ A (ﬁwﬂ — Zuavﬁw _ Zvﬂdu’Y)
p U u? u
du®  uuf ivPu?
+w/\(——— wg + —2 dua),
u w2 B u2 B
we obtain dw® = wP A 5" +w A ¢, where
u® iu*vg ivg
6.9 G = —wg — w— —Zdu?.
( ) ¢ﬂ w B u2 u v
and
. du®  uuP whu?
(610) (ba = —T — u2 (J.)ﬁ + u2 d Ug
_ Cdu® WYL, uuy,
U u Y u3
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These ¢3* and ¢** are not uniquely determined yet. Indeed we should (cf.
[Ch] or see (6.19) below) add a term bjw to ¢3*. This same term bjw
must be added to ¢**, and we should add a term —af w? with af, = aga
to ¢?, too. Here al 5 are determined by the following equation:

(6.11) —dwe + P ANwg+wa AP = alﬁwﬁ Awy, mod(w).
We compute the left hand side of the above equation:

—dwe + P Nws +wa AP = —d(Vad +VE05) + 5 AN wp +wa A

i By = ju)vP
Since §5u = iug vy, we have

5 s P
(6.12) dvf = e "2 gy wi Lo qu.

Notice that du in (6.12) can be expressed in terms of ¢,w,w®,w, by (6.8);
and that du? in (6.12) can be expressed in terms of ¢7*, w, and w by (6.9).
Notice that we need only to consider terms involving w® A w.,, we find
(6.13)

n+157 -1

iégva_iégvﬂ vt py zq tug v (ivﬂaqg ivuvg aqﬁ)

U u upntl u

u 029 wurpy, 020t

Qop = —
Modifying ¢2? and ¢*, we get

¢ﬁ** — ¢ﬂ* 7w7

o B iuPu 68 68w
(6.14) = w“d +£wa—wu2aw+[ SRS Z”

wtpl 165 iq “uﬁv“ iv? OgP w, vk OgP
ap P i a( ¥ qn H¥y qn )} 0%
W bl

upnt1 U u 029  wur,yq 0znF1

d)a** _ (Z)a* + u_’yaa w’y
- u B

du® u*uTv uf [i6Svg  i0Fvy
6.15 =L a**———lw+~[’*—+——
( ) U i 2 u3 u n
Zvﬂpt +16a —1t

q ugv <w ‘9% B ivﬂvij 0q° )]w”.
upntl u u 02%  urpg, 027t

Now we compute ¢** from the equation dw, — PP ANwg —wa AP =
w A ¢=*. Similarly we only need to consider terms involving w:

—¢§** Awg —wa A @

iuP
iuPv
= d(va8 + v205) + ——2aw/\w5 — Wy A tw
u
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- d%/\w—l—uadﬂqtdvﬂ/\eﬁ—!—vﬂdﬂg%—

Vq
WAWE — Wa N tw

dv,, ur
=——/\w+va( wAwn+z w/\w)
U u?
Ba,Y N B vy
wluvv v ,,U

*% 2i . P
+{U'€¢g —vqub—i—[tvﬁ-k u? ]w+[— ua o ]WA’
N [iwvg ﬁ(iégva N 8y N whpr 6] gy Mtul v

—v
u v u upntl u

- " . .
(0t )y ()
u 829 UTpyy 0271 u u?

; oy =19, M n+1
1 iwept Tt iBaqWu VP
vg[;Bl — b _ 1 w(vy'f’ 1Pe )]We/\w

w2pntl 02 Pt
zu"p;,hL iB4q;h/’u3) iBsq; "Vl
+ [ Bs + prtiu? u - u?

z n+1 iuﬂva
sl +——)]w ANw+
( wT e 4 w2

Here (6.7) is used. Hence

wAwg +tw A we.

- dv, Uy man WV
O ==+ Lol - ¢+ "
UGVs [ G0yv2 5 l%va 162 vy WQP?H&W
+ u? { u _U'Y[ U + U + upnt1

iq; tu] v w¢ dq? vl dgP
16) o+ = (S 5or) | Jo
(6.16) + u uw 820 urpyq 0271 w

B

(o3

1 wep ' iBag; Wul) ol
[_Bl_ B _ 2 11’(1)“ pP )j|w9

u u2pn+1 u2 pn+l
: By uf urvB  ivu®
wau” wBuTvg 7 Ul WV uTv?  vu
g S
u u u
Bt wufpt! zB4q;Wuz, iBsq; "ul vhppt!
_va[a 3+ g2 ° R (UM et )}we
iuB
iuPy
+ “wg + twg.

We next compute ¥** from d¢ — iw™ A ¢} — 1™ Awe = w A YP*™.
We consider terms only involving w:

dp—iw® A P — ™™ A wg

— d¢ = d(—d—+t +“’"‘ a—%wa)
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dvg—vad ; du®—ucd
— dt A+t 4§ 22V oy Do e UL
U u "
u®
— —dwq
t 1 @,y
_W/\[—dt-i-t(b—&‘_wa_‘_w_“(ﬁa** U U3’U,ywa
u U
ut u®
i = 2]
U
Therefore we find
7;'[) t 7:1) uau'y,v ’U,at s
(617) 1/}** = —dt+t¢—_awa+_a¢**a_—31wa+i—wa_£¢j;*.
U u " "

According to [Ch], we put

¢ = ¢5* + bw,

P = ¢™** + bgwﬁ + cw,

bo = 5 — bBuws + dow,

P =P 4+ i{dqw® — cPwy) + ew,

(6.18)

where bg, c*,d, and e are certain uniquely determined functions, and
¢§, @“, ¢ are the uniquely determined forms as in Theorem 4.1. In other
words, we have the following relationships:

qsg*** — ¢g** +b§w, ¢g**** — (bg***»
¢a*** _ ¢o¢** + bgwﬁ, (ba**** — (z)a*** +C(1w,
N B e
w*** — 'l/)** ; w**** = ’(/}*** -+ Z.(dawa - Cawa) ;
(6.19) o5 = P,
d)a — ¢a****
o = 9753***7
17[) — w**** + ew.
LEMMA 6.7.
iué ub ius uf
US U U U Ve
. .o . +1 ;o ; ;
b [165“5 LBy tepl Ty g, M ug (ﬂ%_i’iﬁﬁ dax_ )]«
o 7w ” upn 1 u u 02% wurpqq 9znH1 '

If we write the above as duf} = C° o*, where {¢7} = {w,w®  wa, ¢2}, then

deg, (C8 ), deg,(b°), deg,(S?7) < 16nkq + 30ky — 14n — 38,

ary ay
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degy(C2), degy(b5), degy(S57) < 2(16nko + 30ko — 14n — 38) (ko).

ay

Proof of Lemma 6.7. — The identity follows from (6.14) and (6.19).
We want to show

(6.20) deg, (b°) < 16nkq + 33ko.

Since we can easily verify that for each C%,_, deg,(C¥?.) < 16nky + 33ko.
Thus (6.20) implies the inequalities for deg,(C%.) and degy(C%,).

By [Ch, (27)], the b2 are determined by

1 1
(6.21) b = m(sﬁ Tont1)

where S := 580 and S4¢ are determined by (see Theorem 4.1)

5553),

<I>[j Sﬁ"w” A wg + other terms,
where
B8 = dg — 7 N —iwa NP il AW +idh (¢35 AwT) + %«%jw** Aw.
Let us calculate ®? in which we only consider the w” A w, terms:
B = dgl™ — T N G —iwa A P + i AW’ + 60 (45" Aw?)

1
+ §6g¢** ANw

Y iuf ) i6Pv i68v

:d{— adﬁ-l———wa— 2aw+['ya+ ot
u u u

wap”Héﬁ ig, ' u?

u 029 UTpy1 0271
. . . . . B
Y Y iud u? i6Pve 162 vy
=[(__a>‘wew9+(__a)|wewe]/\{ g w§+ui[—)‘£+—£—
u u u u U

— 3 . N
prtHéﬁ iq, Ly v (ZU)\ Ogf  iv,vy Ogf )] }
ﬁ
a
u

vy (w v 048 vk 0gf )}w"}

upn+1 m

upnti U u 029  urpyq 927t
Z(S,?'Ua 16FPv

iuPB B
iu uPv
+ (—)lmw'y/\wa%——ng”/\wv— [
u u
1t, B

wapnﬂ(sﬁ z'qp_ uy vl (ﬁ)& aqP 3 w};u‘wi aqP )]| o A w
upntl u u 029 wrpgq Ozntl/ X X
Hence
o _ (_%)baiu;‘uﬁ B (_iv(]>|w [zéﬁ05 +@
ax u u w )Ty u
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(6.22)

. 1 _ .
wipy el g, “utﬂvg (w" 9gf  iv,vk gl )}
upnti U u 029 UTpyq Oz F1

i B By X ;68 58
U uPva6 105V 16Fv
+63§(—)Iwa+ ‘;“’—[ S
u u u U
wapn+15ﬂ q liuf (2’1} aqn 3 ivuvfy‘ aqg )]|
upntl u u 829 UTpy1 Ozn+1 ) ]19x

ivB
Here the functions such as (3%&)‘ in (6.22) are covariant partial deriva-
wP

tives with respect to the coframe
(6.23) {07} = {w, 0", wa, ¢, 5™, ¢***, 917, 9™} on .

Recall that we have fixed the coframe {dZ7} = {dz*,d2"*1, d(,, du,
dug, du®, dv,, dt} on Yy, Consider dZ7 = ECia where {07} are as in
(6.23). We claim:

(6.24) deg, (C}) < 8nko + 11k — 8n — 10,

degy,(C1) < 2(8nko + 11ko — 8n — 10)(ko)2.
By Lemmas 6.3-6.6, we have
dz® = Copo® with deg(Cor) <n+1,
dz"*! = Cpyy yo* with deg(Crs1 k) <n+ko+1,
d¢y = CN'Q;CU’“ with deg(éak) <dnko + 3ko —4n + 1,
du= 5'“7’“ with deg(CN'k) <2.

(6.25)

It remains to consider dug, du®, dv, and dt. By (6.14),

w+tu

iuPu, «[00Va i8R,
2 o [— =y
u

i B

U

dug = —u§¢§** + ug‘Twa —uy
wPvs vl 9gp vl §aP

t Yo y q,; _ Ky q}g w'y
up"+1 u '

u

it pp el A "

u 02%  wurpyy Ozntl

—1t, B,k m
q uy v v, oq? . .
—Zp Ttla Ty 94 _
" Wy OzniT 1S equal to the restric

By (6.3), (6.5), (6.19),
tion on Y of a rational function

P PiufuPivuPt 9 ( PL )
Q" uQsQuQrayy 9zt \pnFi(r, )3
where P, Q are polynomials of Y in C("+2)” with degree deg(P),deg(Q) <
4nko + 9%y — 3n — 9. Then deg (2) < 4dnko + 9o — 3n — 8. If we write

dug = Cﬂka it is easy to check that any other Cﬁk is the restriction
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of a rational function g with deg (g) < 4nky + 8ko — 3n — 8. Applying
Lemma 2.1 (2),

(6.26) deg, (C%) < (4n +9)ko — 3n — 8.

By (6.15), we have

iuCuv 16%v 10Gv
— —ug™™ — et — L s [_W_E 4B

u
+15a

whp} iq, Mtugvs (ii,(;(?q—g vk 9P )]w"’

upnt! u u 92°  wur,y; 0zntl

If we write du® = C{07, we similarly get

(6.27) deg(CY) < (4n +9)ko — 3n — 8.
By (6.16),
e = —udy + v, = v+ T2
N v, {i”vﬂ’g ~ vﬁ[iézva vy whpptte)
u u "Low u upnti

~ Z'qp liu? (’LU#) 8ql’ n ivuvg aq,’; )} }ww
U u 0z° UTpqq Oz 1
. +1 . -1, K n+1
1P’ 1Bog; *Yu
_ ’Uﬁ Bl _ B _ 2 P v, + pP we
a upn+1 U H pn+1

_ivgu” oot [tuvﬂJr wPuv, ] i WV, [_ vl v u¥ ] .
K K ¥
U U
6,n+1 ; =1, K n+1
u’p 1Bsq;  Yu v Py
I¢] B -1 ¥ P W
— b [Bg + ———an iBag, Y S — (v# + o+l )]we
iuPu,

+ wg + tuwg .

Write dv, = NMU”’. As we did for (6.26), from the definition of B; in (6.7)
it follows that

(6.28) deg, (Cary) < 8nkq + 11k — 8n — 10.
By (6.17), dt = —** 4t — Lateo 4 B o — Kot 4 M2, — 12 g,

If we write dt = C,ya , then
(6.29) deg, (C,) < 4.
Therefore from (6.25) to (6.31), Claim (6.24) follows.
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With (6.24) and (6.22), by Lemma 6.2, we see that deg, (— ﬁ) lwe s

iéfv(,

deg, ()], and deg, ([ +

v, oM
w,v

— ;«%Z?rr)} |wx) are less than 16nko + 30ko — 14n — 38. Hence deg, (S59),

deg, (b2) < 16nky + 30ky — 14n — 38. The last inequality in Lemma 6.7
follows from (6.1). 0

21 4 x4+

u upntli u

62 it pP TP iq;“ufv: (ivz dq°

With a similar calculation as in the proof of Lemma 6.7, we also
obtain the following:

LEMMA 6.8. — We have
u*urv
du® = —up™ —u ¢ — (72—7 —uc® — Ubg)w
. . . +1 -
+ {uba + uf’[wﬁvﬂ + W5 + N P
Y u upn+l u
(Ba2e vy O ),
u 029  ur,yq 927t '
VeV
dva = _u¢a + 'U'y(bl — Vo + L
L R T
u u o U u up"+1

N iy M s (ﬂ% vy, 9P )]}w‘/’
u u 020 wurpyq 0271

_wf [ (” 5 wop ' igg)lwoay Vuy vEPp N o
Wa |7, pn+l)|wo T wpntt 02 (Uu+ Pt )}w
. B,y K . 8 e )
WU wluv s v 1, U
_ wn+[tvg+———72 a]iugwn—i- ’BK{— a_ ¥ }w,,
U U U
n+1 .60, n+1 Pl —-1v,,0 (Y -1, K
— P {l (pﬁ ) Wpg Z(Qﬂ)lw% Uy Z(qﬁ)lwgq'y Uy
« U pn+1 |we pn+1u2 u u2
14 n+1 . :8
WP P v,
. (Uu + W)Jwg + " wp + tuwe — ubgw,g + udow — vyblw.

Write the above as du® = C¢'o? and dv, = Cyjo?, where {07} = {w,w?,
Wy, G, ¢$v¢a}' Then

deg*(CJ‘?‘), deg*(caj)’ deg*(ca)7 deg*(da)’ deg*(ng)’
deg, (T7) < 3(16nko+31ko—14n—38), degy(Cy'), degy(Ca;), degy(c®),
degy(da), degy(R§,), degy(TS7) < 6(16nko + 31ko — 14n — 38)(ko)*.
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LEMMA 6.9. — We have
. e . t . b/B
dt = —1) + w—a¢a—£‘¢a+ (t¢_w_"‘_z_vﬁ_a+ida)wa
u u u u
. 0 B . c .
a, Y a uPb o' u®
T UL T L ) W R T
u u u u u

Write dt = Y Cro®, where {o*} = {w,w® wa, ¢, 95, ¢, da,¥}. Then
deg,(Cy), deg,(Q) < 9(16nko + 32ko — 14n — 38),
degy(Cy), degy(QF) < 18(16nko + 32ko — 14n — 38)(ko)*.

COROLLARY 6.10. —  Let (dZ7) := (dz*,dz""',d(y,du, du,
du®, dvg, dt) and (07) := (w,w®, Wy, , $3, %, das) be two coframes on
Yl Write dZ7 = Co*. Then

deg, (CY) < 9(16nk + 32ky — 14n — 38).

LEMMA 6.11. — On )Y we have
deg, (S%7) oy < 16nkq + 30kg — 14n — 38,
deg, (R3,), deg(Ty") < 3(16nko + 31ko — 14n — 38),
deg, (Q?), deg(L*?) < 9(16nko + 32ko — 14n — 38),
deg, (Pap) < 27(16nko + 33ko — 14n — 38), deg(H,),
deg, (K*) < 81(16nko + 34ko — 14n — 38).

Proof of Lemma 6.11. — The first five inequalities follow from Lem-
mas 6.6, 6.8 and 6.9. To study FP,g, notice that ®, = ngm N wg +
Popw AwP — 1QBw N ws, where &, = dpo — ¢4 A ¢p + 21 A ws. Then,
by Corollary 6.10 and by the same argument as in Lemma 6.9, we find
deg, (Pag) < 27(16n+32)ko. To study H, and K, we consider the formula:
U = QBw Awg+ How Aw® + KW Awy, where U = dip — p A1) — 2ip* A g
Similarly, we can get the desired estimates. O

Proof of Theorem 6.1. — From Lemma 6.11, for any g € I'1(Q2,)),
we have deg, (g9) < T := 81(16nkg + 34ko — 14n — 38). By Lemma 6.2, for
any g € I'5(,)), we have deg,(g) < T» := 3°(16nky + 35k — 14n — 38).
By induction on k, for any g € T'x(Q,)), we have deg,(g9) < Ty :=
33*Tk[16nko + (33 + k)ko — 14n — 38]. Assume jo + 1 = dimY. When
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k = Jo+1 = (7’L + 2)2a for any g € Fjo-i-l(Qay)a deg*(g) < Tjo+1 =
842 16k + (33 + (n + 2)%)ko — 14n — 38]. By (6.1), degy(g) <

2. g3+(n+2)? [mnko + (33 4 (n + 2)2)ko — 1dn — 38] (ko)?. Then by (3.18),

A

. 24+3.5(+% -1

lo < [(n+2)%—1] [54 3D (32 4 90y 4 37)/93}

Therefore, Vg € I'y3(€2,Y), deg(g) < Ty3. The proof of Theorem 6.1 is
complete. a

Proof of Theorem 0.1. — 1t remains only to prove Theorem 0.1 (iv).
We assume that 0D is simply connected and algebraic.

By (5.5), each V} is sub-algebraic. To find a bound for the sum of
the Betti numbers of the smooth manifold V, by an inductive use of the
Mayer-Vietoris sequence [BT], it suffices to bound the Betti numbers of
Vg =VN }~’jj C )N/'jj and those of their intersections. Making use of (5.5},
Theorem 6.1, Proposition 1.3 and the Mayer-Vietoris sequence [BT, p. 22],
it can be easily seen that an upper bound C,, , of the sum of the Betti
numbers of V can be taken as the one in Theorem 0.1 (iv). O
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