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CARTAN-CHERN-MOSER THEORY ON ALGEBRAIC

HYPERSURFACES AND AN APPLICATION

TO THE STUDY OF AUTOMORPHISM GROUPS

OF ALGEBRAIC DOMAINS

by X. HUANG (*) and S. JI

0. Introduction.

It is known that for a projective compact Riemann surface S, the
number of elements in its automorphism group Aut(S) is finite (when
g ( S) &#x3E; 1), which is moreover bounded by a certain constant depending
only on the degree of the equations defining S. It would be interesting to
find an analogue of this fact for a bounded strongly pseudoconvex domain
D c C’+’ defined by a real polynomial. Motivated by this problem, we
shall prove in this paper, that for a strongly pseudoconvex domain D
defined by a real polynomial of degree ko, the Lie group Aut(D) can be
identified with a constructible Nash algebraic smooth variety in the CR
structure bundle Y of aD, and the sum of its Betti numbers is bounded by
a certain constant Cn,ko depending only on n and ko. In case D is simply
connected, we further give an explicit but quite rough bound in terms of
the dimension and the degree of the defining polynomial.

Our approach is to adapt the Cartan-Chern-Moser theory to algebraic
hypersurfaces. Since the domain under consideration is strongly pseudocon-
vex, the study of its automorphism group can be pushed to that of the CR
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automorphism group of its boundary. Applying the CR equivalence theory,
this can be reduced to investigating a certain variety in its structure bundle
defined by certain curvature equations. The precise estimate of the total
Betti number of the just mentioned variety is then obtained by making
use of a result of Milnor [M] and the specific construction of its defining
equations.

Now, we give our main result, whose statement requires some termi-

nology to be explained in §1-§3:

THEOREM 0.1. - Let D, D c (Cl+ 1, n &#x3E; 1, be bounded strongly
pseudoconvex domains defined by real polynomials of degree  ko. Then
there is a smooth submanifold V C Y such that the following holds:

(i) There exists a bijective map A between V and the collection of
proper holomorphic maps from D to D denoted by Prop(D, D).

(ii) If we equip Prop(D, D) with its classical topology, then A is a
homeomorphism.

(iii) The sum of the Betti numbers of V is bounded by a constant
0, which depends only on n and ko.

(iv) When D is further assumed to be simply connected, the above
can be taken as

From the proof of Theorem 0.1, we will see that V carries a "Nash
real algebraic structure" : It admits a finite open covering where each

Vj is diffeomorphic to a smooth piece of a Nash algebraic variety and the
associated transition functions are smooth Nash algebraic functions.

Theorem 0.1 is also in the spirit of the study of the parameterization
problem for the CR automorphisms of real analytic hypersurfaces. Along
these lines, there have recently appeared many papers (see [BER3] for a
survey and the references therein). Here, we only mention the work done
by Chern-Moser [CM], Vitushkin [V] and Baouendi-Ebenfelt-Rothschild
[BERI], to name a few.

The main idea of the proof of Theorem 0.1 can be explained as
follows (for detailed accounts of the notation and definitions, see §1-
§3) : First we consider local maps from M = aD to M = aD. Since
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M = ~r(z, z) = 01 is a real analytic hypersurface, we can define its

complexification A4 = (r(z, () = 0 1, which is called the associated Segre
family of M. Let (y, 7r, A4) be the 9-structure bundle associated with A4.
The following is the key fact for our argument: The existence of a Segre-
isomorphism 4b between and with 4l (p) = p if and only if the invariant
function spaces at certain points P C ~r-1 (p) and P E coincide:

as a lexicographically ordered set for any k (see Lemma 3.3 (ii) and
Lemma 4.2 for the notation and explanation). Here all invariant functions
are defined on the projective structure bundle y (y) associated with ./~1

(A4, respectively). Notice that the above is only an equation for the value
of the invariant functions at a point, instead of the typical version (see
Theorem 3.2) where the relations are for functions on a certain open
subset. Fix a point P E Y n y. Then the complex analytic variety
V* = {Q E y ~ I = Fk(P), Vk) is bijective to the set of all local

Segre-isomorphisms 03A6 from A4 to M. This relates the set of maps to a
complex analytic variety. To study the set of all local Segre-isomorphisms
induced by CR-isomorphisms from M to M, we need to consider the CR
structure bundle Y naturally embedded in y. We have a real analytic
variety V = V* n Y. In case M is defined by a real polynomial, the variety V
turns out to be a real algebraic variety. Next we consider global maps from
9D to aD. When OD is simply connected, a local CR isomorphism can be
holomorphically extended to a neighborhood of OD. Hence, it extends to

a proper holomorphic map from D to D. Thus, the real algebraic variety
V is the desired one in Theorem 0.1. In general, an arbitrary local CR
isomorphism is not necessarily a global CR isomorphism. We will then find
a subset Vo of V by taking certain intersections such that it represents all
global CR isomorphisms.

Once Vo is constructed, in light of the Milnor Theorem [M], the
estimate of its total Betti number can be done by studying the defining
functions of Vo.

The paper is organized as follows. In Section 1, we collect some basic
results related to the Milnor Theorem and Segre families. In Section 2,
we prepare some needed properties for algebraic functions. We review
and outline Cartan’s method on the equivalence problem in differential

geometry in Section 3. We then apply Cartan’s method to CR geometry in
Section 4. In Section 5, we shall construct the variety V in Theorem 0.1 and

prove (i)-(iii) of Theorem 0.1. We shall prove the last part (iv) of Theorem
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0.1 in Section 6 by an explicit computation, following up a procedure in
Chern’s paper [Ch]. The computation in [Ch] was carried out over the
projectivized cotangent space cn+1 x instead of over the Segre family
.A4. Computing over cn+1 X pn simplifies the computation. For our purpose
here, we will carry out the computation over A4 that seems to provide a
better degree estimate.

In this paper, all small Greek indices have the range 1  a, (3...  n,

small Latin indices have the range 1  i, j, k, ...  n + 1, and repeated
indices imply summation.

1. Preliminaries.

o Algebraic functions. - Let K be the field R or C. Let U C K"

be an open subset. We recall a smooth function g defined on U is said to be
a Nash algebraic function (or simply an algebraic function) on U if there is
a non-constant irreducible polynomial P(x, y) in (x, g) E K’ x K of degree
k such that P(x, g(x)) = 0, b’x E U. Here, k is called the degree of g.

o Betti numbers of sub-algebraic sets. - By the qth Betti
number of a topological space X, we mean the rank of the Cech cohomology
group Hq (X), using coefficients in K. In our proof, we need the following
result of Milnor:

THEOREM 1.1 (Milnor, cf.

be real polynomials (resp. complex polynomials) with k.

Then the sum of the Betti numbers of the zero locus Z(P1, ... , Pm) C R~

Then the sum of the Betti numbers of X is bounded by l)n-1,
where ko = d + 2}.

Proof of Proposition 1.2. - When m = 0, the proof was given in

[M]. The proof in the general case can be similarly done as follows:

We first let Xr = X n where is the ball in R’ centered

at the origin and with radius r. Let go = r2 - 
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For any constant e, 6 with c &#x3E; Es+2 &#x3E; 6 &#x3E; 0, let L(E, 6) denote the set
of points

Then L(E, 6) is compact, and its boundary is obtained by setting only the
last expression equal to zero. Notice that the polynomial p 2 + -.-p 2 -

+ c) - - - - - (gs + E) has degree bounded by ko.
Given a small E, we will choose 6 so that the boundary 8L( E, 8) is

non-singular. Then the argument in [M, Theorem 1] shows that

Hence by the Alexander duality Theorem (cf. [ES]), we have

We choose ej converging monotonically to zero and suitably choose 6j so
that ~(62,~2) D " - with intersection X n Bn(r). Then by the
argument in [M, Theorem 2], it follows that

Since X can be triangulated, it thus follows that rank

Similarly, we have the following:

PROPOSITION 1.3. - Let pi, - ..,pm, gl,..., g, be as in Proposi-
tion 1.2. Let

Then the sum of the Betti numbers of . " where

Proof of Proposition 1.3. - Let g1: == ~g2 ~ ~ ~ gs. For any constant
r &#x3E; 1, E, 8 with c &#x3E; E4 &#x3E; b &#x3E; 0. Denote by L (r, E, 6) the set of points

Then a similar argument as before shows that the study of H* (L~ (r, E, 6))
gives the estimate
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Vrite J

Since Xr1 C C Xr2 C C Xr3 C C ~ ~ ~ and their union is precisely X, we see
the proof of Proposition 3.1 as in [M, p. 278]. 0

9 Segre families. -
be a real analytic strongly pseudoconvex hypersurface, where U is a

neighborhood of 0 in cn+1 and r is a real analytic function on U with

r(0, 0) = 0 and dr =1= 0. Replacing z by new variables (, we obtain a
holomorphic function r(z, ) on U x Conj(U) C cn+1 X cn+1, where
Conj(U) := E We then have a complex analytic variety

:= ~ (z, ~) E U x I r(z, ~) - O}, which is called the Segre
family associated with Mr.

Suppose

Let Mr and A4 r be as above. We define a holomorphic map S : 
PTcn+1 given by

where ra = az and := . Clearly S is independent of the choiceaz- ol * 
- 

rn+l
of the local defining function r.

Since Mr is strongly pseudoconvex at p, the map S is locally biholo-
morphic at (p, p) E A4r and 0, where

is the Levi determinant of r([CJ2]). Here, we use the notation ri = a~2 , ri =

Also, when there is no confusion,
we identify M§ with its projection to the z-coordinates space. Let D

be as in Theorem 0.1 with a polynomial defining function r. Then Mi
described above is strongly pseudoconvex and forms an

open covering For simplicity, we write, in what follows, M := M:::i,
and M := Mn+1n+1
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Making use of the implicit function Theorem and (1.2), we can replace
the local defining function r(z, () near (o, 0) by 2~~ 2013p(~B(c~~+i)’
Then the functions pa in (1.3) Restricting dpa - +

to .J~1, we get

As above, we writes etc. Then we have the following
coframe (cf. p.5877]) on A4 near (0":0):

Since dp, - Paf3dzf3 = Ba on by (1.4), we see d8 = 8~ A Ba. From the
chain rule, it follows that
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2. Algebraic functions.

For non zero polynomials P Q, f = P/Q and deg* ( f ) := max~deg(P),
Then deg ( f )  deg* ( f ) . When P and Q have no non-constant

common factors, it then holds that deg(/) = It is clear that

deg* ( f + g)  max{ deg* (f1, deg* (g) I for rational functions with the same
denominator: f = p , g = p More generally, we have the following degree
estimates, which will be used for the proof of Theorem 0.1 (iv).

LEMMA 2.1.

(1) For any non-zero rational functions f and g in en, deg( f + g) 
deg( f ) + deg(g) - 1, and deg(fg)  deg( f ) + deg(g). If f = p, g =Q

where P, P, and Q 0 0 are polynomials on cn, then deg* ( f + g) 
max I deg. ( f ), deg* (g) 1, deg* ( f g)  deg* ( f ) + deg* (g).

(2) If f (z, t) is a rational function on an open subset ofcn’ x cm with
n’+ m - n, and I are non zero Nash algebraic
functions defined on an open subset V C en’, then f (z, r(z)) is a Nash

algebraic function satisfying

(3) If f is a rational function, then for any index a, -2f- is a rational
function with

(4) Let f be a smooth function on U c Cn given by the equation
F(x, f (x)) - 0 for a certain algebraic function F. Then f is Nash algebraic
wi th deg ( f )  deg(F).

(5) Let ( dz 1, ... , dzn ) be the Euclidean coframe in C" and ..., 

be another coframe in U c en. Suppose
with E~ and R polynomials. For any rational function f over U, write
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Proof of Lemma 2.1.

(1) Assume that f = p and g = g with deg( f ) - max{deg(P),~ Q
deg(Q) + 11 and deg(g) = + 11. Then deg( f + g) 

- . 

- - .. -. - .... -

9 = G, we have deg* (f +g) 
deg* (g) 1. Similarly, we have the inequalities for deg( f g) and deg* ( f g).

(2) Let f = ~ , where P and Q have no non constant common factors.
Take T(z, t, X) = Q(z, t)X - P(z, t). Then T(z, t, f (z)) = 0. Since r(v) (z)
is algebraic (1  v  m), there exists a polynomial X) such that
T ~v&#x3E; (z, r~v&#x3E; (z) ) = 0 with deg(T~~’~ ) = deg(r~~’~ ) . Write

where

In the following, we may shrink V if necessary. Define H(z, X) by the
expression

Clearly H(z, f (z, r(z))) = 0. We need to show that H(z, X) is a polynomial
and estimate deg(H). In fact, since Q(z, t) and P(z, t) are polynomials, by
the properties of Newton symmetric polynomials,
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Since are polynomials, H(z, X) is a polynomial. It remains to
estimate deg(H). For each j, L and (~cl, ... , Am) we have

Hence deg( (

(3) Let f = ~ , where P and Q have no non constant common factors.

(4) Since F(z, t) is an algebraic function with F(z, f (z)) = 0, there is
an irreducible polynomial P(z, t, X) = 0 such that P(z, t, F(z, t)) - 0 with

(5) The proof follows by applying
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For Nash algebraic functions, we have the following:

LEMMA 2.1 ~ .

(1) If f, g are two Nash algebraic functions, then

(2) If f (z, t) is a Nash algebraic function on an open subset ofcn’ x C’
with n’ + m = n, and r(z) = (r (1) (z), . - ., r~"2~ (z)) are non zero Nash
algebraic functions defined on an open subset V c C"’ , then f (z, r(z)) is

a Nash algebraic function satisfying

(3) If f == G is a Nash algebraic function, then for any index (
is an algebraic function with

(4) Let f, g be Nash algebraic functions near p. If Da f (p) = D~g(p)
for any

then f - g.

Proof of Lemma 2.1’. - We only explain (4). The others can be
done as in Lemma 2.1.

Assume that p = 0. Suppose 0. Since f - g is algebraic,
there is an irreducible polynomial R(z, X) such that R(z, f (z) - g(z)) -

where ao(z) =1= 0. Notice that deg(ao)
deg( f) . deg(g)(deg( f ) + deg(g)) by (1). Applying the differential operator

) and letting z = 0, we conclude
that = 0, for deg(ao). Hence, ao(z) - 0. This is a

contradiction. 0

LEMMA 2.2. - Let . L be a Nash

algebraic biholomorphic mapping, where U C en is an open subset. Then

every component of its inverse map = ( f ~ 1, ... , f n 1 ) is Nash

algebraic on f (U) with
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Here I

- j 
, , - " .. -

. By the implicit function Theorem for algebraic functions (cf.
without loss of generality, we can assume that
I. By Lemma 2.1 (4), An is Nash algebraic and

tion again, we can still assume ; »

By Lemma 2.1 (4) and Lemma

Repeating this process, we can assume that wl = fi (z) = fi (zl, A2,...,
An) with zl - wn), where A1 is a Nash algebraic function
and deg(. 1 Since A, = it follows that deg( fg) 

Similarly, we can get the same estimates for deg(f 3 -’) for

3. Cartan’s method on equivalence problems.

o Cartan’s Theorem on equivalence problems. - We will

restrict ourselves here mainly to the real category. However, we emphasize
that the results in this section can be stated in a parallel manner in the
complex setting.

Let Y, V C R" (or C") be open subsets with p E V and p E V.
Let 8v =t (80 , ... , Bv) and 8g =t (81 , ... , 8n ) be coframes on V and V,v v v v

respectively. (In the complex setting, they are assumed to be holomorphic
one forms.) Let G C GL(n, R) (or GL(n, C), in the complex setting) be a
connected linear subgroup. With the natural left action of G on the product
space V x G (resp. V x G) :

we say that

be the natural projection. We then obtain 1-forms on

defined by
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LEMMA 3.1 (Cartan, cf. [Ga, p. 11]). - There exists a diffeomor-

phisna 4l : V - v satisfying

if and only if there exits a diffeomorphism ( such that

where P is in V x G such that = p and P is a certain point in V x G
such that p.

Let dim G = r. Then dim(V x G) = n+r. With the forms c,~l, ... , Wn,
we would like to add r more 1-forms w’+1 ... , cvn+T on V x G to form a
coframe SZ such that the induced group becomes the trivial group {e} from
G. Such a Q is called an e-structure. Consequently, there exists 4) satisfying
(3.2) if and only if there exists a diffeomorphism 
satisfying

Suppose the existence of such an Q and write

For a differentiable function -y defined on we define its

covariant partial derivative: (

are invariants with respect to such For each integer s
with 1  s  n -)- r, we define

which is ordered lexicographically. Define

to be the dimension of the span of the differentials of functions in the

ordered set V x G). The order of the e-structure at p C V x G is the
smallest jo = jo (p) such that
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In this case, the rank of the e-structure at p is defined to be

We say that the e-structure is regular of order jo and rank po at
p E V x G if there exists a neighborhood Up of p in V x G such that
jo (q) -= jo (p) po (q) = po (p), Vq E Up. Suppose 0 is regular with order jo
and rank po. Then we can find po functions Igi, - . - , rjo (0, V x G),
and a certain neighborhood UP of p in V x G, so that
I- -.1 B

Notice that 1  jo  n + r. The case jo = 1 occurs when the functions

Clk == constant for all i, j and k. And the case jo = n + r occurs if and
only if one invariant function is added at each jet level.

Notice that 0  po  n + r. When po = n + r, we say that V x G)
is of maximal rank.

In what follows, we always assume that po &#x3E; 1.

Notice that these gl , ~ ~ ~ , gPo can be extended to a coordinate system
in a neighborhood UP of p in V x G. Namely, we can define a coordinates
map at p by adding some new functions hpo+,, ..., hn+r (if po  n + r) :

with

THEOREM 3.2 (Cartan, [Ga, p. 59]). - Let Q and Q be regular
e-structures of order jo and rank po. Let h and h be defined near p and p,
respectively, as in (3.12). Assume that (’91,... , are the corresponding
invariant functions with the identical lexicographic order as for (gl,..., 
in the corresponding set of invariant functions. Then there exists a diffeo-
morphism 4l such that (3.2) holds if and only if

o Equivalence between analytic e-structures. - Suppose that
Q and Q are regular with rank po and order jo at p and p, respectively. Let
us consider the analytic case (i.e., all coframes, ~y~~, ... , are real analytic).
Take gl , ... , gp E V x G) as in (3.11 ) :
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Notice that

, , - 

-..J ,- - , _ ,

for a certain uniquely determined real analytic function Ag near (p),...,
gPo (p)), which is called the relation function of g with respect to f gi,
gp0}

LEMMA 3.3. - Let Q and Q be analytic regular e-structures of
order jo and rank po at p and p respectively. Let gl,..., gPo be as in (3.14).
Let gl, ... , ~,Q be the corresponding set with the same lexicographic order
as for gl,..., Then the following statements are equivalent:

(i) There exists a C~ diffeomorphism 4P’ : V x G ---7 V x G with

(iii) ~j (p-) = holds for _l  j  po, and for any function

g E rjo+1(D, V x G) and ~ E V x G) with the same lexicographic
order, it holds that A-.g

Proof of Lemma 3.3. - We only explain the implication: (ii) # (i).
For f gi, ... , and ~gl, ... , we take h and h as in (3.12),

respectively.

Use_x = h and x = h for the coordinates on V x G and v x G near
h(p) and ~(p-), respectively. Under the assumption of (ii), it can be verified
that the Taylor coefficients of g with respect to the coordinates x at h(p)
is equal to the corresponding Taylor coefficients of ~ in the coordinates x

This D

~ Equivalence between two e-structures with algebraic rela-
tion functions. - For any g c V x G), still write I

xPo ) for the relation function of g such that g - Ag (gl, - - - , Here jo
is the same as in (3.14). Let us consider the real algebraic case (i.e., all

..., are real algebraic). Let lo be the smallest integer satis-
fying

Then by Lemma 3.3 and Lemma 2.1’ (6), we can easily obtain the following:

LEMMA 3.4. - Let nand n be real algebraic regular e-structures
of order jo and rank po. Let lo be given as in (3.16) with respect to both Q
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and 6. Then there exists a real analytic diffeomorphism 1&#x3E;1 :
with

if and only if

We now give a rough estimate of the lo in (3.16). Assume, without
loss of generality, that

Lemma 2.2,  ( Applying Lemma 2.1’ (2),
we get Hence

where T := V x G)~.
As we mentioned before, Lemma 3.4 and (3.18) hold in the complex

algebraic setting, which will be extensively used in the later discussion.

4. Equivalence problems in CR geometry.

. Equivalence between Segre families. - Let ~8, be the

coframe (1.5) on A4. Let

BB-u; 
- 

"o’/ i

be a connected linear subgroup of G(2n + 1, C). Then M x g is a !9-space
by (3.0). Similarly, let be the associated Segre family of M with the
corresponding coframe as in (1.5).

It is easy to verify that there exists a biholomorphic mapping
4l(z, () = ( f (z), g(~)) from an open subset in cn+1 x onto an open

subset in cn+1 x such C M with 4J(0) = 0 if and only if
there is a biholomorphic mapping 4J : .M, with ~(0) = 0, satisfying
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where the (2n + 1) x (2n + 1) matrix defines a holomorphic map-
ping from A4 into 0. The mapping 03A6 satisfying (4.2) is called a Segre-
isomorphism. Then by Lemma 3.1, there exists such a Segre-isomorphism

: A4 - M if and only if there exists a biholomorphic mapping
In &#x26; f1 T5 f1 .,’

where were defined as in (3.1), i.e.,

where the matrix

, ,

By [CM] and [Ch], the lifting of the 

can be expended to an e-structure on x 9 (see Theorem 4.1 below). To
see that, we shall replace A4 by E and replace 9 by another linear subgroup
91 as follows.

Let

w is globally defined on ~. We consider dw = + w n 00, where
Then we get a coframe (u8, ()0152 , () 0152, 00) on .6. Let

be a connected linear subgroup of G(2n + 1, C). As in (3.0), E x 91 is a

91-space. Now we write dw = A w, + w A 0. Similarly, let ~ be the
associated bundle over M with the coframe which has the

same properties as 

- ( f (z), g(~)) : A4 - A4 be a Segre-isomorphism. It is easy
to verify that 4l induces a unique biholomorphic mapping, still denoted as
-4~, from E to E, satisfying
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where the (2n + 2) x (2n + 2) matrix defines a holomorphic mapping
from E into G1. Then by (3.2) and (3.3), there exists a Segre-isomorphism
4l : M if and only if there exists a biholomorphic mapping

such that

7r : y ---7 £ is called the projective structure bundle of Any map 4l~

satisfying (4.7) is called a G1-isomorphism.

THEOREM 4.1 [Ch]. - Let M be strongly pseudoconvex real ana-
lytic hypersurface. From as in (4.4), one can construct holomor-
phic 1-forms 0, cp3, 0", on y such that

forms an e-structure on y and these 1-forms are uniquely determined by
the following structure equations:

where 

Theorem 4.1 was proved in [Ch] over S(M) C PTcn+1, where S is
defined in (1.3). By our choice of the coframes (1.5), all computation over
S(M) can be identically passed back over M. A biholomorphic mapping
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~ 1 : JJ - y is a 91-isomorphism if and only if = Q. When M is, in
addition, real algebraic, since all the functions SO’, T~ ~, Lc)3, ... , are
obtained by operating the addition, subtraction, multiplication, division,
partial differentiation (cf. [Ch], or see the proof of Theorem 6.1) to the
defining function, they are all algebraic functions. Hence from Lemma 3.4
and Theorem 4.1, we get the following.

LEMMA 4.2. - Lest 0 and Q be holomorphic algebraic regular e-
structures of order jo and rank po over Y and Y, respectively. Then there
exists a Segre-isomorphism 03A6 : A4 - A4 with 4l (p) = )5 if and only if

where lo is as in (3.16), 7r(P) = p and 7r(P) == p.

~ Equivalence between CR hypersurfaces. - Let M be as

before. For the moment, let 8 = and 8a = dza . We have a coframe

{9,6~~} on M. Let

be a connected linear subgroup of G(2n + 1, R). M x G is a G-space.
Similarly, let M be another real analytic hypersurface as in §1 with a similar

coframe {03B8,03B803B1,03B803B1}
It can be verified that there exists a biholomorphic mapping 4l (z) from

an open subset in cn+1 onto an open subset in cn+1 such that C M
if and only if there is a Cw diffeomorphism 4) : M - M satisfying

I I , N 
I I I ,

where the ( 2n + 1) x ( 2n + 1) matrix defines a real analytic mapping
from M into G. Such a mapping b is also called a CR isomorphism. By
(3.2) and (3.3), there exists a CR isomorphism 4D : M - M if and only if
there exists a CW diffeomorphism such that

where are defined as in (4.4).
Define
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Choose 0’ : - + u3dzf3 for some real analytic functions ua , u3
so that d8 = A 8" , We obtain a coframe (w, 00, Oa, ~o ) on E,
where . Let

N B - - -- ii - - -/i ~/ ’

be a connected linear subgroup of G(2n + 1, R). E x G1 is a GI-space.
Let E be the associated bundle over M with the corresponding coframe

f~D, o-, W-, &#x26; 1.
Let 4D : M be a CR isomorphism. It is easy to verify that

4D induces a unique CW diffeomorphism, still denoted as 4D, from E to E*
satisfying 

-

where the (2n + 2) x (2n + 2) matrix defines a real analytic mapping
from E into G1, Ocl, etc. By (3.2) and (3.3), the existence of a
CR isomorphism 03A6 : M ---7 M is equivalent to the existence of a CW
diffeomorphism 1 such that

(Y, 7r, E) is called the CR-structure bundle over M.

The fundamental Theorem proved by Cartan-Chern-Moser [CM] as-
serts that from úJ a, one can construct 1-forms 0, r/J3, 0’, ocl, 0 on Y,
with w such that

forms an e-structure on Y, and they are uniquely determined by certain
structure equations. These structure equations are the restriction of those
in Theorem 4.1 from y to Y, together with several other reality conditions

(see [Fa, Theorem 5.5, p. 151] [BS]). Now from Lemma 3.4, we get the
following:

LEMMA 4.3. - Let Q and n be real algebraic regular e-structures
of order jo and rank po over Y and Y, respectively. Then there exists a CR

isomorphism (D : M - M with 4D(p) = j5 if and only if
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where lo is as in (3.16), and = p and 7r(.P) = p.

Now, we let 0, 0, be again as defined in (1.5). Since we have the
embedding A~ -~ A4, by mapping z ---7 (z, z), we can regard the bundles
E, Y as the subbundles of S, Y, respectively, as follows (cf. [Fa, (5.9)], [BS]):
Let

- - 

,. , ,

over M. On E*, we see cJ* = W* := u8. Let Y* be the collection of the
frames in y restricted to E* such that úJ~ = fl, 0* = 0* over E*.
Since úJ* == c~*, c~a - w*a and 0* ~)* hold on Y*, one can check that
the structure equations defining Q* over Y* are the same ones defining Q
on Y. Hence, Y and Y* are G1-isomorphic. From now on, we identify E
and Y with E* and Y*, respectively. Then the restriction of a function
g E F(Q,Y) on Y equals to the lexicographically corresponding function

°

5. Construction of V in Theorem 0.1.

From the procedure in Chern’s paper [Ch], any g C &#x3E; 0,
is a combination of addition, multiplication, division, covariant partial
derivations of (defined in (1.6)), with rational functions in the
variables (u, uí3, ua , Va, t). (Also see the proof of Theorem 6.1. In passing,
we mention that when n = 1, the specific formulas for a basis g E Y)
were given in [HJY, Theorem 3.1]). Since r is a polynomial, it follows that

(5.1) g is the restriction of a rational function

in Z : (~, (n+ i , u, uí3, va, t) to the hypersurface given by the
equation r(za, zn+l, ~a, ~n+1) = 0.

--- 

covers MD - covers

MÎ5 = aD. Fix a point po E MD such that (i): po E Mj for any i and j;
(ii): SZ is a regular e-structure with order jo and rank po at a generic point
Po in the fiber of Y C Y over po. We can also assume that jo is the largest
possible value.

When 9D (hence is spherical, it was shown that D (hence D’)
must be biholomorphic to the unit ball C cn+1 [HJ 98]. In this case,
Theorem 0.1 holds trivially. Hence, in what follows, we shall assume that

and aD are non-spherical.
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Step 1. Construction when 9D is simply connected. - We
first construct V when 9D is simply connected. Define a subset V* in y by

where 9 E rk(r2, JJ) is the lexicographically corresponding function for g,
and lo is as in (3.18) with jo = (n + 2)2 - 1. Since D is not spherical, V is
a proper subvariety of y. We also define

Notice that all g are holomorphic. V* is a complex analytic subvariety.
Since D and D are algebraic, V* is an algebraic complex subvariety. Since
Y C y is real algebraic (see (4.19)), V is a real algebraic subvariety of Y.

(i) We claim that there is a bijective map A:

(5.4) A : Prop(D, holomorphic maps f : D - D ~ -~ V.
In fact, if f E Prop(D, D), f extends holomorphically to a neighborhood
of D, for aD is strongly pseudoconvex and real analytic. Since both aD
and aD are strongly pseudoconvex, the restriction of f to 0D is a local
CR equivalent mapping from 0D onto aD. Hence, there is a unique lifting,
a local 91- isomorphisms near Po, F : Y ---7 y, such that its restriction
: Y - Y is a local G1-isomorphism near Po from Y to Y. Define
A(f) Po := -F(PO) E Y n Y. Then by Lemma 4.2, A( f ) E V. Conversely,
for any point Po _E V. By Lemma 4.2, there exists a local biholomorphic
map J~ from y to y with 0(Po) = Po such that 0* Q = Q. By the discussion
in §4, the restriction Fly must be a local Gl-isomorphism from Y to Y with
0)y (Po) = Po. Therefore, the local isomorphism Fly is uniquely induced
by a local CR-isomorphism f from 0D to 0D near the point po.

Since aD is not spherical and since 9D is simply connected, we can
apply an extension Theorem of Pinchuk ([Pi]) to conclude that the local
map f extends into a CR map from onto By the Bochner extension
Theorem [Bo], f extends to a holomorphic map from D onto D’. Also, f
must be proper. Thus we have well defined := f. Claim (5.4) is

proved.

(ii) Let us show that the variety V is smooth. In fact, suppose not.
Take any two points there is a unique local G1-isomorphism

from an open subset of Y to Y such that P2. Since V is

invariant under the action of gi-isornorphisrns, this implies that if Pl E V
is a singular point, then P2 (hence every point of V) must be singular, too.
This is impossible. Also it implies that V is purely dimensional.
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Since D and D are not equivalent to the ball, it is known (see [Be])
that a sequence of proper holomorphic maps from D to D converges
uniformly on compact subsets if and only if it converges in the C° (D)-
topology. From this fact, it is clear that with the natural topology equipped
to Prop(D, D’), A and are continuous.

(iii) Let Yji be the CR-structure bundle over M~ . We can regard Yj’
as one coordinate patch of the bundle Y.õ’ From the construction, we know

Making use of Proposition 1.3, (5.1) and (5.5), we get a uniform bound
for the sum of Betti numbers for v;:ti. Similar procedure works for vf
for any i, j  n + 1. Hence, applying the Mayer-Vietoris sequence [BT,
p. 43], we see the uniform boundedness for the sum of the Betti numbers
of V - 

Step 2. The construction in the general case. - We choose
the same po E 0D and Po E Y n y as above. Define the complex variety Vo
and Vo as in (5.2) and (5.3), respectively. Now Vo gives the set of local CR
isomorphisms f near po from aD to aD. Clearly, Prop(D, D) is a subset of
vo .

Our argument goes as follows. First, we notice that there is a number
co (see [Hu2, Chapter 1]), depending only on the degree of the defining
functions of D and D such that any local CR diffeomorphism between their
boundaries is algebraic and has degree bounded by co. Hence, its lifting to
the algebraic map between their structure bundles also has a fixed degree
depending only on the degree of D and D.

We take a Jordan loop 11 (t) E aD, 0  t  1, with 11 (0) == 
po. We want to define the subset V, c Vo which will be bijective to the
set of local CR isomorphic maps f that are initially defined at po and then
extend holomorphically along the loop 11 with 

D f ,yl (-yl (o) ), with lal bounded by a certain fixed constant c (in fact, we
can take c = 2). We shall explain that V, is a real algebraic variety defined
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by algebraic functions of degree less than a certain constant depending only
the degrees of D, D.

Let be a finite set of Jordan loops with qj (0) = -yj (1) = po, which
generates the fundamental group of aD. For each qj, we shall similarly
define a real algebraic subvariety Vj as above. Hence we have a real algebraic
subvariety defined by

This V therefore represents the set of all local CR isomorphism f with
Ob such that limt-l- =  c for

all j. Therefore for any other point q E 0D and a path a connecting po
and q, the extension value will be independent of the choice of a.
Hence, such an f extends into a well defined CR map from aD to aD.
By Bochner’s extension Theorem [Bo], f extends into a holomorphic map
from D to D. By the same arguments as in Step 1 above, we see that V is
bijective to the set Prop(D, D). Now, we turn to the construction of We

lift -yl into a Jordan loop 11 in Y with "Yí (0) = Po. Take Q’ E Vo. Then there
is a local isomorphic map such that (Po) = Q’. Notice that Q’ is
determined by the second jets of the induced underlining CR diffeomorphic
map FQ, and the initial fixed point Po. By slightly modifying the proof of
Proposition 3.1 of [BERI] , one can see that depends algebraically
on Z and Q’ and smoothly on (Z, Q’ ) for (Z, Q’ ) near a small neighborhood
of (%y1 (t), Q’) with Q’ E Vo. (We leave out such a modification). Moreover,
the total degree of 0Q, is bounded by the degree of D and D’, for it can
be obtained with a fixed number of algebraic preserving operations to the
defining equations of the domains. By the persistence property of algebraic
functions, := (11 (t) ) is also an algebraic
function of Q’ whose degree depends only on the total degree of 
Next, we get a Nash algebraic variety
- ... - - , , - -. , . , .. ,

The uniform estimate of the sum of the Betti numbers of V, follows from
an algebraic version of Proposition 1.3, which can be also done as in the
polynomial case in [M]. The rest of the arguments is similar to the simply
connected case. 0
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6. Completion of the proof of Theorem 0.1.

In this section, we use 1

for the coordinates in

is the Segre family with r a polynomial defining function of degree ko. Let

h(Y) = be a holomorphic rational function on c(n+2)2. We denote
by deg(h) the degree of h = R as the rational function of Y, and denote
by degy (h) the degree of the restriction of h on y as an algebraic function
of Z. By Lemma 2.1 (2),

(6.1) 2deg(h)(ko)2 :s 2 deg*(h)(ko)2,
where deg* (h) = + 11 as in §2. For simplicity of
notation, we also use h for its restriction on y, if there is no confusion

from the contexts. We observe that any CR curvature function g over y is
the restriction of a certain rational function defined in c(n+2)2.

THEOREM 6.1. - Let M be algebraic with degree  ko. Then for

any function g E r2lo (0, Y) where lo is as in (4.9), g is algebraic and satisfies

For the proof of Theorem 6.1, we can apparently focus on the
calculation in the chart Let be an e-structure on y. For a
function h defined over we have dh = == Lz hlidZi.
Suppose dZi = where Ck is the restriction of a rational function
2 ,

with E’ and T polynomials in the variables Y. The following
lemma will be used to compute the covariant derivatives of a CR

curvature function h.

LEMMA 6.2. -
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Proof. We have

by Lemma 2.1 ( 1 ) .
Let us denote by DYZ the partial differential operator with respect to

Yi. We have
, ~. ~.

Consider k = a E ~ 1, ... , ?~}. Applying Lemma 2.1, we get

A similar consideration for the other terms hlk completes the proof of
Lemma 6.2. D

From (1.5), (1.6) and (4.4) notice that
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Hence

Recall that (23 ) = are the coordinates

in Write fl _ for those forms as in (4.8), and write dZj = 
In the following Lemmas 6.3-6.9, we shall estimate the degrees degy (C~ ) .

Proof of Lemma 6.3. - The identity can be easily derived from (4.4).
Since 6$u = can be written as a rational function

where Q is the Jacobian of the matrix (u~ ), which has degree n, and P~
is a polynomial of u~ with degree n - 1. Applying Lemma 2.1, we obtain
the desired inequalities. 0

LEMMA 6.4. -

Proof of Lemma 6.4. - The identity follows from (4.4), (1.5) and
and Lemma 2.1, deg* (
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Proof of Lemma 6.5. - The identity can be derived from (4.4), (1.5),
(1.6). By the definition of qa (see (6.2)), (1.6) and Lemma 2.1, we have

where P a is a polynomial of Y of degree 4ko - 5. Hence we get the inverse
matrix

where Po and Q3 are polynomials of Y with degree 4nko - 5n + 1 and
4nko - 5n, respectively. The desired inequalities now follows. D

From Lemmas 6.3, 6.4 and 6.5, for any differentiable function on A4 ,
we can write i

Applying (6.2), (6.6) and Lemma 6.5, we obtain the following:
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LEMMA 6.6. - du =

Proof of Lemma 6.6. - Since

we get

The identity follows.

In order to prove Lemma 6.7, we need some preparation. We shall
follow the procedure in [Ch] to partially determine the forms 0’, cpa, 0,
and 0 as follows.

From
- 

. I , -,

we obtain
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These ø3* and ø0152* are not uniquely determined yet. Indeed we should (cf.
[Ch] or see (6.19) below) add a term to ø3*. This same term 
must be added to ø0152*, and we should add a term with a /3 = a,3
to 0*0, too. Here are determined by the following equation:

We compute the left hand side of the above equation:

Notice that du in (6.12) can be expressed in terms of 0, w, w’, w, by (6.8);
and that dus in (6.12) can be expressed in terms of O’Y*, Wa and w by (6.9).
Notice that we need only to consider terms involving wf3 A w,y, we find

(6.13)

Now we compute 0** from the equation (
Similarly we only need to consider terms involving c,~:
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Here (6.7) is used. Hence

We next compute from 4

We consider terms only involving w:
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Therefore we find

According to [Ch], we put

where and e are certain uniquely determined functions, and
are the uniquely determined forms as in Theorem 4.1. In other

words, we have the following relationships:

LEMMA 6.7.

If we write the above as where then
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Proof of Lemma 6.7. - The identity follows from (6.14) and (6.19).
We want to show

Since we can easily verify that for each 16nko + 33ko.
Thus (6.20) implies the inequalities for and 

By [Ch, (27)], the ba are determined by

where ~ and are determined by (see Theorem 4.1)

other terms,

where

Let us calculate in which we only consider the A cJa terms:

Hence
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Here the functions such as ( o 

in (6.22) are covariant partial deriva-
tives with respect to the coframe 

I

Recall that we have fixed the coframe

We claim:

By Lemmas 6.3-6.6, we have

It remains to consider du3, dua, dv~ and dt. By (6.14),

By (6.3), (6.5), (6.19), is equal to the restric-
tion on y of a rational function

where P, Q are polynomials of Y in C(n+2)2 with degree deg(P), deg(Q) 
... , _ _ __ - 

If we write

it is easy to check that any other C’¡3k is the restriction
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of a rational function ~ with deg Applying
Lemma 2.1 (2),

By (6.15), we have

If we write dua = we similarly get

By

Write dv~ = As we did for (6.26), from the definition of Bj in (6.7)
it follows that

If we write dt = then

Therefore from (6.25) to (6.31), Claim (6.24) follows.
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With (6.24) and (6.22), by Lemma 6.2, we see that deg*

are less than 16nk0 + 30ko - 14n - 38. Hence deg.
The last inequality in Lemma 6.7

follows from ( 6 .1 ) . D

With a similar calculation as in the proof of Lemma 6.7, we also
obtain the following:

LEMMA 6.8. - We have

Write the above as
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LEMMA 6.9. - We have

Wri te dt

COROLLARY 6.10. -
, " ’ ~ 

~’

) be two coframes on

LEMMA 6.11. - On Y we have

Proof of Lemma 6.11. - The first five inequalities follow from Lem-

by Corollary 6.10 and by the same argument as in Lemma 6.9, we find
, and K0152 , we consider the formula:

Similarly, we can get the desired estimates.

Proof of Theorem ~.1. - From Lemma 6.11, for any,

By induction on k, for any
Assume jo + 1 = dim y. When
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Then by (3.18),

ThereforE The proof of Theorem 6.1 is

complete.

Proof of Theorem D.1. - It remains only to prove Theorem 0.1 (iv).
We assume that aD is simply connected and algebraic.

By (5.5), each Vij is sub-algebraic. To find a bound for the sum of
the Betti numbers of the smooth manifold V, by an inductive use of the

Mayer-Vietoris sequence [BT], it suffices to bound the Betti numbers of

vj := V n Y~ C Y~ and those of their intersections. Making use of (5.5),
Theorem 6.1, Proposition 1.3 and the Mayer-Vietoris sequence [BT, p. 22],
it can be easily seen that an upper bound of the sum of the Betti

numbers of V can be taken as the one in Theorem 0.1 (iv). 0
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