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1. Introduction

Let M be an irreducible n—dimensional Hermitian symmetric space of compact type,
equipped with a canonical Kahler-Einstein metric w. Write w™ for the associated volume
form (up to a positive constant depending only on n). The purpose of this paper is to
prove the following rigidity theorem:

Theorem 1.1. Let (M, w) be an irreducible n—dimensional Hermitian symmetric space of
compact type as above. Let F = (F1, ..., Fi,) be a holomorphic mapping from a connected
open subset U C M into the m-Cartesian product M x ... x M of M. Assume that each
Fy is generically non-degenerate in the sense that F;(w™) # 0 over U. Assume that I
satisfies the following volume-preserving (or measure-preserving) equation:

W= Y ONF "), 1)

for certain constants \; > 0. Then for each j with 1 < j < m, F} extends to a holo-
morphic isometry of (M,w). In particular, the conformal factors satisfy the identity:

Z;il Aj =1

Rigidity properties are among the fundamental phenomena in Complex Analysis and
Geometry of several variables, that study the global extension and uniqueness for various
holomorphic objects up to certain group actions. The rigidity problem that we consider
in this paper was initiated by a celebrated paper of Calabi [4]. In [4], Calabi studied
the global holomorphic extension and uniqueness (up to the action of the holomorphic
isometric group of the target space) for a local holomorphic isometric embedding from
a Kéhler manifold into a complex space form. He established the global extension and
the Bonnet type rigidity theorem for a local holomorphic isometric embedding from a
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complex manifold with a real analytic Kahler metric into a standard complex space form.
The phenomenon discovered by Calabi [4] has been further explored in the past several
decades due to its extensive connection with problems in Analysis and Geometry. (See
[43], [9], [10], for instance.)

In 2004, motivated by the modularity problem of the algebraic correspondences in al-
gebraic number theory, Clozel and Ullmo [7] were led to study the rigidity problems for
local holomorphic isometric maps and even much more general volume-preserving maps
between bounded symmetric domains equipped with their Bergman metrics. By reducing
the modularity problem to the rigidity problem for local holomorphic isometries, Clozel-
Ullmo proved that an algebraic correspondence in the quotient of a bounded symmetric
domain preserving the Bergman metric has to be a modular correspondence in the case of
the unit disc in the complex plane and in the case of bounded symmetric domains of rank
> 2. Notice that in the one dimensional setting, volume preserving maps are identical
to the metric preserving maps. Thus the Clozel-Ullmo result also applies to the volume
preserving algebraic correspondences in the lowest dimensional case. Motivated by the
work in [7], Mok carried out a systematic study of the rigidity problem for local isometric
embeddings in a very general setting. Mok in [31-33] proved the total geodesy for a local
holomorphic isometric embedding between bounded symmetric domains D and 2 when
either (i) the rank of each irreducible component of D is at least two or (ii) D = B" and
Q = (B™)P for n > 2. In a paper of Yuan-Zhang [48], the total geodesy is obtained in the
case of D = B"™ and Q = BM x ... x B"» with n > 2 and N; arbitrary for 1 <1 < p. Ear-
lier, Ng in [39] had established a similar result when p =2 and 2 <n < Ny, Ny < 2n—1.
In a paper of Yuan and the second author of this paper [20], we established the rigidity
result for local holomorphic isometric embeddings from a Hermitian symmetric space
of compact type into the product of Hermitian symmetric spaces of compact type with
even negative conformal factors where certain non-cancellation property for the confor-
mal factors holds. (This cancellation condition turns out be the necessary and sufficient
condition for the rigidity to hold due to the presence of negative conformal factors.) In a
recent paper of Ebenfelt [11], a certain classification, as well as its connection with prob-
lems in CR geometry, has been studied for local isometric maps when the cancellation
property fails to hold. The recent paper of Yuan [47] studied the rigidity problem for
local holomorphic maps preserving the (p, p)-forms between Hermitian symmetric spaces
of non-compact type. At this point, we should also mention other related studies for the
rigidity of holomorphic mappings. Here, we quote the papers by Chan-Xiao-Yuan [5],
Dinh-Sibony [8], Huang [18,19], Huang-Yuan [21], Ji [25], Kim-Zaitsev [26], Mok [30,34],
Mok-Ng [35], Ng [37-39], Xiao-Yuan [45,46] and many references therein, to name a few.

The work of Clozel and Ullmo has left open an important question of understanding
the modularity problem for volume-preserving correspondences in the quotient of Her-
mitian symmetric spaces of higher dimension equipped with their Bergman metrics. In
2012, Mok and Ng answered, in the affirmative, the question of Clozel and Ullmo in [36]
by establishing the rigidity property for local holomorphic volume preserving maps from
an irreducible Hermitian manifold of non-compact type into its Cartesian products.
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The present paper continues the above mentioned investigations, especially those in
[7], [36] and [20]. Our main purpose is to establish the Clozel-Ullmo and Mok-Ng results
for local measure preserving maps between Hermitian symmetric spaces of compact type.
Notice that in the Riemann sphere setting, Theorem 1.1 also follows from the isometric
rigidity result obtained in an earlier paper of the second author with Yuan [20]. However,
the basic approach in this paper fundamentally differs from that in [20]. The method
used in [20] is to first obtain the result in the simplest projective space setting and
then use the minimal rational curves to reduce the general case to the much simpler
projective space case. On the other hand, restrictions of volume preserving maps are
no longer volume preserving and thus the reduction method in [20] can not be applied
here. The approach we use in this paper is first to establish general results under certain
geometric and analytic assumptions (i.e., Propositions (I)—(III)) and then verify that
these assumptions are automatically satisfied based on a case by case argument in terms
of the type of the Hermitian space.

We now briefly describe the organization of the paper and the basic ideas for the proof
of Theorem 1.1. The major part of the paper is devoted to showing the algebraicity for a
certain component F}; in Theorem 1.1 with total degree depending only on the geometry
of (M,w). For this, we introduce the concept of Segre family for an embedded projective
subvariety. Notice that in the previous work, Segre varieties were only defined for a real
submanifold in a complex space through complexification. Our Segre family is defined
by slicing the minimal embedding with a hyperplane in the ambient projective space,
associated with points in its conjugate space. The Segre family thus defined is invariant
under holomorphic isometric transformations, whose defining function is closely related
to the complexification of the potential function of the canonical metric. The first step
in our proof is to show that a certain component F} preserves at least locally the Segre
family. The next difficult step is then to show that preservation of the Segre foliation
gives the algebraicity of F};. To obtain the algebraicity of F;, we need to study the size
that the space of the jets of the map F} along the Segre variety directions. Indeed,
an important part of the paper is to show that the space of the jets of an associated
embedding map rp along the Segre direction up to a certain order depending only on
M and its minimal embedding spans the whole target tangent space. This is a main
reason we need to describe precisely what the minimal embedding is for each M. Once
this is done, we can then show that the map, when restricted to each Segre variety, stays
in the field generated by rational functions and the differentiations of their defining
functions as well as their inverse, and thus must be algebraic by a modified version
of the Hurwitz theorem. The uniform bound of the total degree of F} is obtained by
the fact that we need only a fixed number of steps to perform algebraic and differential
operations to reproduce the map from the minimal embedding functions. After obtaining
the algebraicity, we further show that F}; extends to a birational self-map of the space by
a monodromy argument, the geometry of the Segre foliation, an iteration argument and
the classical Bezout theorem. Finally, a simple argument shows that a birational map
which preserves the Segre foliation is the restriction of a holomorphic self-isometry of the
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space. Once F} is proved to be an isometry, we can delete F}; from the original equation
and then apply an induction argument to conclude the rigidity for other components.

The organization of the paper is as follows: In §2, we first introduce the Segre family for
a polarized projective variety. We then describe the canonical and minimal embedding of
the space into a complex projective space in terms of the type of the space. In §3, we derive
a general theorem for partially degenerate holomorphic embeddings which will play a
fundamental role in the later development. In §4, we provide the algebraicity for one of the
components of the holomorphic mapping F' under additional assumptions which include
the partial non-degeneracy condition introduced in §3, the generic transversality of the
Segre varieties and the irreducibility of the Segre family. In §5, we show that the partial
non-degeneracy holds for local biholomorphisms between any irreducible Hermitian space
of compact type. §6 is devoted to proving the generic transversality for the intersection
of the Segre varieties. We prove in §7 the irreducibility of the potential functions pulled
back to a complex Euclidean space, which has consequences on the irreducibility of the
Segre varieties and the Segre families. The argument in §5-§7 varies as the type of the
space varies and thus has to be done case by case.

We include several Appendices for convenience of the reader. In Appendix A, we give
the concrete functions for a minimal holomorphic embedding of a Hermitian symmetric
space of exceptional type into a projective space. In Appendix B, we continue to establish
Proposition (I) for the rest cases. In Appendix C, we provide the verification on the
transversality for the Segre varieties for the remaining cases not covered in §6.

Acknowledgment. The authors would like to thank A. Buch, J. Lu, L. Manivel, X. Yang
and Z. Zhang for many discussions during the preparation of this work. In particular,
the first author would like to express his gratitude to R. Bryant for answering many of
his questions on Hermitian symmetric spaces through the mathoverflow website.

2. Irreducible Hermitian symmetric spaces and their Segre varieties
2.1. Segre varieties of projective subvarieties

Write z = (21, , Zn, Zny1) for the coordinates of C"*! and [z] = [21, -+ , 2n, Zn+1)
for the homogeneous coordinates of CP". For a polynomial p(z), we define p(z) :=
gﬁ. For a connected projective variety V' C CP", write Zy for the ideal consisting
of homogeneous polynomials in z that vanish on V. We define the conjugate variety
V* of V to be the projective variety defined by Zj; := {f : f € Zy}. Apparently the
map z — Z defines a diffeomorphism from V to V*. When Zy has a basis consisting of
polynomials with real coefficients, V* = V. Also if V is irreducible and has a smooth
piece parametrized by a neighborhood of the origin of a complex Euclidean space through
polynomials with real coefficients, then V* = V.

Next for [£] € V*, we define the Segre variety Q¢ of V associated with { by Q¢ =

{[z] e V: Z?ill z;€; = 0} which is a subvariety of codimension one in V. Similarly, for
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[2] € V, we define the Segre variety Q% of V* associated with z by QF = {[{] € V* :
Z;:ll z;&; = 0}. It is clear that [z] € Q¢ if and only if [¢] € Q%. The Segre family of V'
is defined to be the projective variety M := {([2],[£]) € V x V*,[2] € Q¢}.

Now, we let (M,w) be an irreducible Hermitian symmetric space of compact type
canonically embedded in a certain minimal projective space CPY, that we will describe
in detail later in this section. Then under this embedding, its conjugate space M™* is
just M itself. Taking w to be the natural restriction of the Fubini-Study metric to M,
the holomorphic isometric group of M is then the restriction of a certain subgroup of
the unitary actions of the ambient space. Now, for two points py,ps € M, let U be an
(N +1) x (N + 1) unitary matrix such that o([z]) = [2] - U is an isometry sending p;
to pe. Then o*([¢]) = [€]U is an isometry of M*. By a straightforward verification, we
see that o biholomorphically sends @y, to Q;,. Similarly, for any qi,q2 € M*, Qq, is
unitary equivalent to ¢g,. In the canonical embeddings which we will describe later, the
hyperplane section at infinity of the manifold is a Segre variety. Since the one at infinity
is built up from Schubert cells and all Segre varieties are holomorphically equivalent to
each other, one deduces that each Segre variety of M is irreducible. This fact will play
a role in the proof of our main theorem.

2.2. Canonical embeddings and explicit coordinate functions

We now describe a special type of canonical embedding of the Hermitian symmetric
space M of compact type into CPY. This embedding will play a crucial role in our
computation leading to the proof of Theorem 1.1. See [16] for the classification of the
irreducible Hermitian symmetric spaces of compact type. See also [28], [29] on the typical
canonical embeddings of the Heritian symmetric spaces of compact type and the related
theory of Hermitian positive Jordan triple system.

&1. Grassmannians (spaces of type I): Write G(p,q) for the Grassmannian space
consisting of p planes in CP%4. (Since G(p, q) is biholomorphically equivalent to G(q,p),
we will assume p < ¢ in what follows.) There is a matrix representation of G(p, ¢) as the
equivalence classes of p x (p+¢) non-degenerate matrices under the matrix multiplication
from the left by elements of GL(p,C). A Zariski open affine chart A for G(p,q) is
identified with CP? with coordinates Z for elements of the form:

1 0 0 --- 0 Z11 12 e Zlq
(Ipxp Z)= 010 0 2 222 T *2 , where Z is a p X ¢ matrix.
0 0 0 -+ 1 2zp1 2p2 -+ 2pg

The Pliicker embedding G(p,q) — CP(APCP*9) is given by mapping the p—plane A
spanned by vectors vy, ...,v, € CP*4 into the wedge product vy Avg A ... Av, € APCPHY,
The action induced by the multiplication through elements of SU(p + ¢) from the right
induces a unitary action in the embedded ambient projective space. In homogeneous
coordinates, the embedding is given by the p x p minors of the p x (p + ¢) matrices (up
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to a sign). More specifically, in the above local affine chart, we have the following (up to
a sign in front of the components):

1 .. ik)

Z—1,2" ),
Ji o Jk

] 2)

which is denoted for simplicity of notation, in what follows, by [1,7.] = [1, ¥1, ¥, ..., ¥N].

Here and in what follows, Z( Zi) is the determinant of the submatrix of Z formed

i1

J1
bv its th ith o d ‘th -th 1 o h he indices h h
y its 21, ..., 1" rows and j;7, ..., j;  columns, where the indices run throug

k=1,2,...p,1 <41 <9< ... < <p, 1 <J1 <Jo< ... <jr <q.

In particular when k£ =1, Z (;1) = Z,;,- Notice that under such an embedding into

the projective space, (G(p,q))* = G(p,q). We thus have the same affine coordinates for
(G(p,q))":

100 - 0 &1 & - &y
(Ipxp =)= 010 0 & 522 G = is a p X ¢ matrix.
00 0 - 1 &1 & - &g

By the definition in §2.1, it follows that the restriction of the Segre family to the product
of these Zariski open affine subsets has the following canonical defining function:

(i Ty (3)

IR A

—
fu

il ik
P =1+ > Z( T
1<41<i2<...<ip <p,

1<j1<j2<...<Jr<gq
k=1,...,p
Here z = (z11, 212, -, 2pq), & = (&11,&12, ..., &pq). For simplicity of notation and termi-
nology, we call this quasi-projective algebraic variety embedded in CP? x CP4, which is
defined by (3), the Segre family of G(p,q). Our defining function p(z,£) of the Segre
family is closely related to the generic norm of the corresponding Hermitian positive
Jordan triple system (cf. [28], [29]).

&2. Orthogonal Grassmannians (type II): Write Gyr(n,n) for the submanifold of
the Grassmannian G(n,n) consisting of isotropic n-dimensional subspaces of C2". Then
S € Grr(n,n) if and only if

5( 0 Lg")ST:O. (4)

InX’ﬂ

In the aforementioned open affine piece of the Grassmannian G(n,n) with S = (1,9),

Se Gy (n,n) if and only if S is an n X n antisymmetric matrix. We identify this open
n(n—1)

affine chart A of Gyr(n,n) with C 2z through the holomorphic coordinate map:
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100 --- 0 0 Z12 ot Zin
o010 -+ 0 -z 0 S Zop
(nxn  Z):= e = (a2 2enn)-
000 -+ 1 =21y —22, --- 0
(5)
Later in the paper we will sometimes use the notation z;; := —z;; if 7 > i for this type

IT case. The Pliicker embedding of G(n,n) gives a 2-canonical embedding of Gyr(n,n).
Unfortunately this embedding is not good enough for our purposes later. Therefore, we
will use a different embedding in this paper, which is given by the spin representation
of Og,. This embedding is what is called a one-canonical embedding of Grr(n,n). We
briefly describe this embedding as following. More details can be found in [Chapter 12;
41].

Let V be a real vector space of dimension 2n with a given inner product, and let (V')
be the space consisting of all orthogonal complex structures on V preserving this inner
product. An element of (V') is a linear orthogonal transformation J : V' — V such that
J? = —1. Any two choices of J are conjugate in the orthogonal group O(V) = Os,,, and
thus IC(V) can be identified with the homogeneous space Os,/U,. On the other hand,
there is a one-to-one correspondence assigning the complex J to a complex n-dimensional
isotropic subspace W of V(= V Q C). K£(V) has two connected components Ky (V):
Noticing that any complex structure defines an orientation on V, these two components
correspond to the two possible orientations on V. Write one for K (V'), which is actually
our Grr(n,n).

Now fix an isotropic n-dimensional subspace W C V¢ with the associated complex
structure J of V¢ and pick a basis for V: {z1,...,2n, Y1, .., Yn } With J(x;) = y;, J(y;) =
—z;. Then W is spanned by {z; —/—1y; }",. Define W to be the space spanned by {z;+
vV—1y;}™ ;. As shown in [41], there is a holomorphic embedding (V) < CP(A(W)),
where A(WW) is the exterior algebra of W. This embedding is equivariant under the action
of O(V). Thus K4 (V) — CP(A(W)) is equivariant under SO(V'). Choose the open affine
cell of K, (V) such that {Y € K, (V)|Y "W = @}. Then it can be identified with (5).

We next describe the 1-canonical embedding by Pfaffians as following: Let IT be the
set of all partitions of {1, 2, ...,2n} into pairs without regard to order. An element « € IT
can be written as o = {(i1,71), (42, 72), -y (tn, Jn)} With ix < ji and 41 < is < ... < iy.

Let
1 234 ..2n
T=1. . . . .
21 J1 12 J2 -+ Jn

be the corresponding permutation. Given a partition o as above and a (2n) X (2n) matrix
A = (a;1), define

Aq = sgn(7)ai, j, igjy + i, -

The Pfaffian of A is then given by
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pf(A) = > A,.

a€cll

The Pfaffian of an m x m skew-symmetric matrix for m odd is defined to be zero.
Therefore in the coordinate system (5), the embedding of A is given by

1, pf(Z), ). (6)

Write Sy, for the collection of all subsets of {1, ...,n} with k elements. The o in (6) runs
through all elements of Sy with 2 < k < n and k even. For o = {i; < --- < ix}, Z, is

defined as the submatrix Z(Z i:) For instance, (pf(Z(,))aes2 = (2125 s Z(n—1)n)-

We also write (6) as [1,7.] = [1, 41, %2, ..., ] for simplicity of notation. We choose the
local coordinates for (Grr(n,n))* in a similar way

1 00 --- 0 0 &2 0 G

_ 010 --- 0 — 0 - Ean
(Lnscn E) = o0 e 0 ol (7)

000 --- 1 _gln _€2n 0

The defining function for the Segre family (in the product of such affine pieces) is given
by

p(z,8) =1+ Y Pi(Z)PI(E,). (8)
2ggkegsnk,’2|k

&3. Symplectic Grassmannians (type III): Write Grr7(n,n) for the submanifold of
the Grassmannian space G(n,n) defined as follows: Take the matrix representation of
each element of the Grassmannian G(n,n) as an n x 2n non-degenerate matrix. Then
Ae Grrr(n,n), if and only if,

e 0 In><n AT _
50 ) o o

In the Zariski open affine piece of the Grassmannian G(n,n) defined before, we can take

a representative matrix of the form: A = (I, Z). Then we conclude that A € Gyyr(n,n)

if and only if Z is an n x n symmetric matrix. We identify this Zariski open affine chart
n(n+1)

A of Grrr(n,n) with C™ 2 through the holomorphic coordinate map:

1 00 --- 0 Z11 Z12 R Z1n
3 010 --- 0 =z z ez
A= (Inxn Z):= 12 22 = (211, Znn).
00 0 -+ 1 z1n 22n " Znpn
Later in the paper we sometimes use the notation z;; := z; if j > ¢ for this type III

case. Through the Pliicker embedding of the Grassmannian, Gyrr(n,n) is embedded into
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CP(A"C2")(= CPY"). In the above local coordinates, we write down the embedding as

(up to a sign)

Z =1, 7"

Jr - Jk

lk),] =111, ,YN=]. (10)

Choose the local affine open piece of (Grr(n,n))* consisting of elements in the following

form:
10 0 -+ 0 &1 &0 1in
- o1 0 --- 0
(Luxn E) = 0 e g G

The defining function of Segre family in the product of such affine open pieces is given
by

11 T =/ 01 i
P8 =1+ Z Gy =G ) (11)
1<i1<i2<...<ix<n,
1<j1<j2<...<jr<n
k=1,...,n

However the Pliicker embedding is not a useful canonical embedding to us for Grrr(n,n),
due to the fact that {t);} is not a linearly independent system. For instance,

(51) 2 (33)=22)

This embedding can not serve our purposes here. We therefore derive from this embed-
ding a minimal embedding into a certain projective subspace in CP(A"C2")(= CPY").
We denote this minimal projective subspace by H = CPY, which is discussed in de-
tail below. We notice that the embedding Grrr(n,n) — CPV is equivariant under the
transitive action of Sp(n).

Following the notations we set up in the Grassmannian case, we write [1, 11, -+, ¥n+]
for the map of the Pliicker embedding into CPY" . Write (¢, ..., i,,, ) for those compo-
nents of degree k in z among {wj}évz*l. Here 1 < k < n, and {i1, ..., im, } depends on k.
For instance, if k¥ = 1, then

(,(/Jila "'7,(/}im1) = (2117 seey Znn)7

(k)
1

where z;; is repeated twice if ¢ # j. Let {¢7 ", -- ,wfjfg } be a maximally linearly inde-

pendent subset of {¢;,,...,4;,, } over R (and thus also over C). For instance,

1 1
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Let Ay be the mj x my matrix such that (¢4, , ¢, ) = (wgk), e ,1/17(%) - Ag. Appar-
ently Ay has real entries and is of full rank. Hence Ay, - A, is positive definite.

Then {¢7, -, YN} = {%k)’ e 7¢£§%}1§k§n forms a basis of {¢1,- - ,¥n+}, where
N = mj + ... + m}. Moreover, if we write A as the (m} + ... + m}) x (mq + ... + my,)

matrix:
Ay
A= o ,
Ap

then A has full rank and we have a real orthogonal matrix U such that

Ui M1
U= , UYA-AHU = with each p; > 0.
U, UN

Here Ug,1 < k < n, is an mj}, x mj, orthogonal matrix. Now we define

1 1 2 2 -1
(1/)17"'71/)N13w1a"'71/}N27"'7 {L 3y N 71/}’”‘)
-1

Jii

VN

Here Ny +...4+ Np_1 + N,, = N*, where we set N,, = 1. We will also sometimes write
Yy, = ¥". As a direct consequence,

(wiw'ww]l\/lﬂp%a' 3¢N27' n 13 *y Nn 1’1/)n)
'(w—%v"'uwj\hvw%w”aw?\[wmu ;l 1 ) N 1;%/1") (12)
- (wlal o 7¢N*) : (Eu o 7%) = det(I+ZZt) = p(272)~

Moreover {1/)%,...,1/)11\]1,17&%, ...,¢?V2,..., et N, l,wn} forms a linearly indepen-
dent system; and {¢}, ...,9% } are polynomials in z of degree k for k = 1,...,n. Now our
canonical embedding of the aforementioned affine piece A of Grrr(n,n) is taken as

n(n+1)

— 1
KIS C 2 — [15¢}a"'7¢}vlv¢%7' 71/)N2 n PR ] N" 1#?”]

For simplicity, we will still denote (1, ...,w}vl,w%, ,1/1N2 et N 1,1/)”)

Ty = (¢17¢27 ’1)/}N) = (wia "'7w]1\/'1a11}%7 "'aql}J2V27 ey ?_1a ) N 17d)n) (13)

Here, for instance, (wl,...,wn<n2+1)) = (¢, ...,w}vl) = (aij2ij)1<i<j<n, Where a;; equals

to 1if i = j, equals to /2 if i < j. Hence the defining function of the Segre family, which
is the same as (11), is given by p(z,&) =1+ Zil i ()i (8).
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&4. Hyperquadrics (type IV): Let Q" be the hypersurface in CP™ ! defined by

n
{[mo, vy Tpg1] € CPHL Zx? —220Zp41 = 0} )

i=1

where [x1, ..., Tp42] are the homogeneous coordinates for CP™"!. It is invariant under the
action of the group SO(n+2). We mention that under the present embedding, the action
is not the standard SO(n + 2) in GL(n + 2). However it is conjugate to the standard
SO(n+2) action by a certain element g € U(n+2). A Zariski open affine piece A C Q"
identified with C™ is given by (z1,...,2,) = [L, 401, ccs¥ny1] = [1, 21,00 20, 5 iy 27,
which will be denoted by [1,7.] = [1,41, %2, ..., ¥n11]. Choose the same local chart for
(Q™)*: (&1,.&n) = [1,&1, ., &n, 3 21 €2]. Then the defining function of the Segre
family restricted to C™ x C™ < Q™ x (Q™)* is given by

n n

o0 =1+ z&+ (D) (14
=1

i=1 =1

&5. The exceptional manifold Mg := Eg/SO(10) x SO(2): As shown in [23], [24],
this exceptional Hermitian symmetric space can be realized as the Cayley plane. Take
the exceptional 3 x 3 complex Jordan algebra

1 T3 T
jg(@)={<$3 C2 CC1>ZC¢E(C,:L‘1‘€@}§C27. (15)

T2 T1 €3

Here O is the complexified algebra of octonions, which is a complex vector space of
dimension 8. Denote a standard basis of O by {eg, ey, ..., er}. The multiplication rule
in terms of this basis is given in Appendix A. The conjugation operator appeared in
(15) is for octonions, which is defined as follows: & = xgeq; — x1e1 — ... — xreq, if x =
Toeo+ 1€l +Toes+ ...+ 77, 2; € C. Moreover under this basis, J3(Q) = C27 is realized
by identifying each matrix

K T

& n K
X = (7_]3 &2 T) € J3(0)
&3

with the point (&1,&2,€3,M0,M1, -+ sN7, K0y K2y« -+ s K7, T0, T1s -+, T7) € C27) where n =
21‘7:0 Ni€iy K = Z::o Kie; and T = ZZ:O Ti€;.

The Jordan multiplication is defined as Ao B = 1(AB + BA) for A, B € J3(0). The
subgroup SL(O) of GL(J3(0)) consisting of automorphisms preserving the determinant
is the adjoint group of type Eg. The action of Eg on the projectivization CP J3(Q) has
exactly three orbits: the complement of the determinantal hypersurface, the regular part
of this hypersurface, and its singular part which is the closed Eg—orbit. The closed orbit
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is the Cayley plane or the hermitian symmetric space of compact type corresponding to
FEs. It can be defined by the quadratic equation

X? = trace(X)X, X € J73(0),

or as the closure of the affine cell A

1 = y
@PQ:{< xx yx):x,ye@}§C16
Yy Yy

in the local coordinates (z,z1, ..., 27, Yo, -, y7). The precise formula for the canoni-

<R

cal embedding map is given in Appendix B. We denote this embedding by [1,r.] =
[15 1/}17 wQa ceny I/JN]

To find the defining function for its Segre family over the product of such stan-
dard affine sets, we choose local coordinates for the conjugate Cayley plane to be

(HO; Kis--y K7,70, 71, "'7777)' Then

7 7 7
p(2,€) =1+ miri+ > _yimi + »_ Ai(z,y)Ai(k, 1) + Bo(z,y)Bo(k, 1) + Bi(z,y)Bi(k, ),
=0 =0 1=0

(16)

where A;, B; are defined as in Appendix A, z = (zo,...,Z7,%0,...,y7) and & =

(K‘Oa <y K7, 70, "'7777)'

&6. The other exceptional manifold My; = FE7/FEg x SO(2): As shown in [6], it can
be realized as the Freudenthal variety. Consider the Zorn algebra

2,(0) =CEH T(0) P H(0)EPC

One can prove that there exists an action of E7 on that 56—dimensional vector space (see
[13]). The closed E7—orbit inside CP Z2(Q) is the Freudenthal variety E7/Egs x SO(2).
An affine cell A of Freudenthal variety is [1, X, Com(X),det(X)] € CPZ5(0). Here X
belongs to J3(0); Com(X) is the comatrix of X such that XCom(X) = det(X)I under
the usual matrix multiplication rule. Notice that Com(X) = X x X, where X x X is the
Freudenthal multiplication defined as follows (see [40]):

1
X x X=X —tr(X)X + §(tr(X)2 —tr(X?)I.
For explicit expressions for X x X and det(X) in terms of the entries of X, see [40] or
Appendix A in this paper.
The embedding of E7/FEs x SO(2) < CPY in local coordinates z is given in Ap-
pendix A. Choose the local affine open piece for (E7/Eg x SO(2))* with coordinates

§ = (£17€27£3a 70y -5 N75 KOy -5 K7, 70, "'77-7)~
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We denote this embedding by [1,7,] = [1, %1, %2, ...,¥n]. The defining function for the
Segre family is then p(z,£) =141, - r¢, where

Ty = (L1, %2, L3, Y0, s Y7, £0y -, b7, Wo, .oy w7, A(2), B(2), C(2), Do(2), ..., D7(2),
Eo(2), ..., E7(2), Fo(2), ..., F7(2), G(2))
re = (¥1(€),¥2(8), - ¥ (€)) = (€1, €2, €3, 105 -+ 07, KOs ey K7, T0, -0, TT,
A(£), B(£),C (&), Do(§), s D7(&), Eo (&), .., E7(§), Fo (&), .., F7(£), G(£))

(17)

Here see Appendix A for the definition of the functions appeared in the formula.

Summarizing the above, for each irreducible Hermitian symmetric space of compact
type M of dimension n, we now have described a canonical embedding from M into a
projective space P, which restricted to a certain Zariski open affine piece A holomor-
phically equivalent to C™ takes the form: 2(€ C™) + [1,k121,*+ ,KiZi, *+ , knzn, O(22)].
Here k; = 1 for all i except in the case of type III where x; can be 1 or /2. This is the
embedding we will use in later discussions. Notice in our embedding, the conjugate space
M* is the same as M. For simplicity of notation, we will also write M for the restriction
of the Segre family of M restricted to A x A* = C™ x C™. From this embedding and the
invariant property of Segre varieties, we immediately conclude the following:

Lemma 2.1. Assume A and B are two distinct points of M. Then their associated Segre
varieties are different, namely, Qa # Q5.

Proof of Lemma 2.1: Since the holomorphic isometric group acts transitively on M,
we can assume A = (0,0,...,0) € C™ =2 A C M. Therefore Q 4 is the hyperplane section
of M < PV at infinity, namely, Q4 = M\A. Now if B € A, because B # (0,0, ...,0),
there are non-trivial linear terms in the defining function of @Qg. This leads to the fact
that the defining function of g has to be a non-constant polynomial in C[&y,...,&,].
Therefore Qg N C™ # () and thus does not coincide with Q4. If B € M\A, by the
symmetric property of Segre varieties, we have (0, ...,0) € Qp. Therefore Qp # Q4. We
then arrive at the conclusion. O

Finally, since in our setting, M* = M and the Segre family on M and M* are the
same. For simplicity of notation, we do not distinguish, in what follows, @* and M*
from @ and M, respectively.

2.3. Explicit expression of the volume forms

From now on, we assume that M is an irreducible Hermitian symmetric space of
compact type and we choose the canonical embedding M < CPY as described in §2.2
according to its type. We denote the metric on M induced from Fubini-Study of CPY
by w, and the volume form by dp = w™ (up to a positive constant). Notice that the
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metric we obtained is always invariant under the action of a certain transitive subgroup
G C Aut(M) (which comes from the restriction of a subgroup of the unitary group
of the ambient projective space). Hence by a theorem of Wolf [44], w is the unique G
invariant metric on M up to a scale. We claim w must be Kéhler-Einstein. Indeed, since
the Ricci form Ric(w) of w is invariant under G, for a small €, w + eRic(w) is thus also a
G invariant metric on M. By [44], it is a multiple of w, and thus Ric(w) = Aw. Write du
as the product of V' and the standard Euclidean volume form over the affine subspace
A, where V is a positive function in z. Since Ric(w) = —iddlogV, —iddlogV = Iw.
Notice that A > 0. In the local affine open piece A defined before, w = i99log p(z,2),
where p(z,€) is the defining function for the associated Segre family. As we will see later
(87), p(z,&) is an irreducible polynomial in (z,£). Then we have

001og(Vp(z,2)*) = 0.

Hence, log(Vp(z,2)*) = ¢(z) + 1(z), where both ¢ and 1 are holomorphic functions.

Therefore V = %. Because p(z,&) is an irreducible polynomial, from the way V
p(2,%)

is defined, V must be a rational function of the form PG with p, p relatively prime to

each other. Since ¢, 1 are globally defined, by a monodromy argument, it is clear that A
has to be an integer. Also both e®(*) and ¢¥© must be rational functions. Again, since
¢, are also globally defined, this forces ¢, to be constant functions. Therefore, we
conclude that V' = cp(z,z)~*. Here \ is a certain positive integer and c is a positive
constant. Next by a well-known result (see [1]), two K&hler-Einstein metrics of M are
different by an automorphism of M (up to a positive scalar multiple). Therefore, to
prove Theorem 1.1, we can assume, without loss of generality, that the Kdhler-Einstein
metric in Theorem 1.1 is the metric obtained by restricting the Fubini-Study metric to

M through the embedding described in this section.
3. A basic property for partially degenerate holomorphic maps

In this section, we introduce a notion of degeneracy for holomorphic maps and derive
an important consequence, which will be fundamentally applied in the proof of our main

theorem.

Let ¥(z) := (¢¥1(2),...,9¥n(2)) be a vector-valued holomorphic function from a
neighborhood U of 0 in C™ m > 2, into CN N > m, with ¢(0) = 0. Here we
write z = (z1,...,2m) for the coordinates of C™. In the following, we will write
Z = (z1,..y Zm—1), i.e., the vector z with the last component z,, being dropped out.
Write g% = ﬁ for an (m — 1)—multiindex «, where a = (a1, ..., m—1).
Write

glal glal el
Zott) = (Smr(a)so Soron(2)).

We introduce the following definition.
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Definition 3.1. Let £ > 0. For a point p € U, write E(p) = Spanc{%w(zﬂzzp 10 <
la] < k}. We write r for the greatest number such that for any neighborhood O of 0,
there exists p € O with dimg¢ Ex(p) = r. r is called the k—th Z—rank of ¢ at 0, which is
written as ranky (¢, ). F is called Z—nondegenerate if ranky, (¢, z2) = N for some ko > 1.

Remark 3.2. Tt is easy to see that ranky (¢, 2) = r if and only if the following matrix

0 (2)

9 (2)

has an r X r submatrix with determinant not identically zero for z € U for some multi-
indices {a,...,a*} with all 0 < || < k. Moreover, any I x [ (I > r) submatrix of the
matrix has identically zero determinant for any choice of {a?, ...,a*} with 0 < || < k.

In particular, ¥ is Z—nondegenerate if and only if there exist multiindices 5%, ..., B
such that

31’;‘ wl( ) 8121‘ sz( )

3\/31\’ aw”

O ) o ()

is not identically zero. Moreover, rank;1(¢, 2) > rank; (¢, 2) for any ¢ > 0.

For the rest of this section, we further assume that the first m components of ¥, i.e.,
(Y1, ey W) : C™ — C™ is a biholomorphic map in a neighborhood of 0 € C™. Then we
have,

Lemma 3.3. It holds that rankg (1), z) = 1,rank; (¢, 2) = m, and for k > 1,rankg (¢, 2) >
m.

Proof of Lemma 3.3: We first notice that it holds trivially that rankg(¢,2) = 1, for F’
is not identically zero. We now prove rank; (¢, Z2) = m. First notice that rank; (¢, 2) < m
as there are only m distinct multiindices § such that || < 1. On the other hand, since
1 has full rank at 0, we have,

8"[)1 31/Jm
321 e 821
o o) o0
0y Otbm
0zm 77 Ozm

This together with the fact (0) = 0 implies that the z,, derivative of
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77[11 wm
Oy OYm
82’1 o 821 (18)
our O
0Zm—1 Ozm—1

is nonzero at p = 0. Consequently, the quantity in (18) is not identically zero in U. By
the definition of the z-rank, we then arrive at the conclusion. O

We now prove the following degeneracy theorem in terms of its z-rank, which will be
used to derive Theorem 3.10.

Theorem 3.4. Let ) = (Y1, ..o, U, Yint1, -, UN) be a holomorphic map from a neigh-
borhood of 0 € C™ into CN with (0) = 0. Recall that Z = (21,..., Zm_1), i.c., the
vector z with the last component z,, being dropped out. Assume that (1, ...,0m) s a
biholomorphic map from a meighborhood of 0 € C™ into a neighborhood of 0 € C™.
Suppose

rankN_m_H(w,%) < N. (19)

Then there exist N holomorphic functions g1(zm), ...; gN(2m) near 0 in the z,—Gauss
plane with {g1(0), ..., gn (0)} not all zero such that the following holds for any (z1, ..., 2m)
near 0.

N
Zgi(zm)ll)z’(z1,m7zm) =0. (20)
i=1

In particular, one can make one of the {g;}., to be identically one.

The geometric intuition for the theorem is as follows: The space of 1-jets has dimension
m by Lemma 3.3. We expect that at least one more dimension is increased when we go
from the space of k-jets to the space of (k+ 1)-jets until we reach the maximum possible
value N. The theorem says that if this process fails, namely, the assumption in (19)
holds, we then end up with a function relationship as in (20).

Proof of Theorem 3./4: We consider the following set,
S={l>1:rank)(¢,2) <l+m—2}.

Note that 1 ¢ S, for rank; (F) = m. We claim that S is not empty. Indeed, we have
1+ N —m € S8 by (19). Now write ¢’ for the minimum number in S. Then 2 < ¢’ <
1+ N — m. Moreover, by the choice of ¢,

ranky (1, 2) <t +m — 2, ranky_1(1,2) >t +m —2. (21)

This yields that
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ranky (¢, 2) = ranky _1(¢,2) =t +m — 2. (22)

We write t :=t' — 1, n:=t +m — 2. Here we note t > 1,m < n < N — 1. Then there
exist multiindices {v1,...,4"} with each |y’| <t and ji, ..., j, such that

8|’Y1|,¢,j1 al’Yl\wjn
1 n| ) oz’ 9z ) ) . .
A e Y 1y s ) = | is not identically zero in U.  (23)
oI "y,
oz7" oz7"

Since rank; (1, 2) = m, we can choose (Y1, ...,¥"|j1, ..., jn) such that

’71 = (0, ~~a0)772 = (]-,07 "'30)7 "'7’7m = (0, "'703 ]-)

For any o', ...,a" ™! with |af| <t + 1, and Iy, ..., 11, we have

1 1
01 lyy, 91"y, 01\, yy
dzal dzat azal
Aoty ™y, ) = =0inU. (24)
+1
ol +1|1bzl 8‘“n+1‘w1n ol ‘wznﬂ
Tpze™FL T pzantl 9zon Tl

We write I" for the collection of (Y1, ...,y J1, s fin)s 1 < -on < Jn, wWith ¥4 = (0, .., 0)
and with (23) being held. We associate each (y!,...,4"|j1,...,/n) With an integer
s(YY, oY |41, s Jn) = S0 Where sq is the least number s > 0 such that

b Sm 1 . .
g1t tsma1 S Ay A Gy )
S1 So Sm—1
0271 025°...0z," 1 023,

(0) #0

for some integers s, ..., S;u—1. Then s(yY, ..., ¥ j1, ., jn) > 0 for any (v, ..., 7|71, ..., Jn)
erl.

Let (BY, ..., B"i1, ..., in) € I',i1 < ... < iy, be indices with the least s(y!, ..., Y"|j1, .-, Jn)
among all (v!, ...,y |51,y Jn) € T

We write {ini1,..sint = {1,...,; N} \ {i1,..,n}, where i1 < ... < iy. Write U=
{z€eU:AB,...,8"i1,...,in) # 0}. We then have the following:

Lemma 3.5. Fiz j € {iny1,...,in}. Let i € {i1,..,0n}. Write {i,....i0_1} = {i1, s in} \
{i}. There exists a holomorphic function gl (zm) in U which only depends on 2, such
that the following holds for z € U:
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1 1 1 1
818 ‘will o8 ‘wi'n,q 8'31‘111]- 918 |¢’i,1 918 ‘wiikl 3‘5”1111,
o787 o267 az7 az67 28" o387
(Z)_gi(zm) (Z)7
9" 1y, O My g1y, a—— O iy glemly,
9zB™ zP™ zB™ NG 9zP” zP™
(25)
or equivalently,
1 18 ;
1wy O Wi 018N (=gl (zm) )
az67 9287 287
“en cee .o E 0 (26)
8™ 1B™ oy n ;
o vy O Wu 0" —gl (zm)n)
9 L .. . . ) a\ﬁi\ .
Proof of Lemma 3.5: For simplicity of notation, we write 255 for P rE and for p =1
or j, write the matrix
Bwl/l 8'(#1-:171 awu 1
9z687 az6t az6t Vi
V, = ~ 1
n
Oy iy oy, Vi
ozP" 9zh™ azh™
where v}“ -+, vy, are the row vectors of V,. To prove (25), one just needs to show that,

foreach 1 <v <m —1,

0 det(V;) _

D2 det(Vy) — 0inU. (27)

Indeed, by the quotient rule, the numerator of the left-hand side of (27) equals to

det(V;) det(V;)
det (a%vdet(v )
(

i) aedet(V)
det(V;) det(V;) det (Vi) det(V})
82,, v; a(ZVQVJl‘ vi V;
= det | 4 V.? dot | V0 ARER TS [ I )
: \z 4
vy vy Vi vy

By (24) and Lemma 4.4 in [2], each term on the right-hand side of the equation above
equals 0. For instance, the last term above equals to
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31/11-/1 811}";171 oY, awi’l &pingl 0
078! 8z8! 8z8! az8! 078! 9z8"
Oy i ous k] O, oy
R 23" 9A" ozF" EEEA P
Oy Ovir_y o ovi Obir, o oy
9581 9381 9381 9281 9387 9381
9%y O, oY, i Ovi Y,
0z87 1 88" 1 8z~ 1 8z 1 az8m 1 az8m !
o (2 o (Mnay o ou | | o (2 o (Manay o (0u
Dz, N 9zPT : 9z, 9zB" 9z, ~9zP" Oz, N 9zP™ 9z, N 9zBT dzy N 9zP"
(28)
It is a multiple of the following determinant (by Lemma 4.4 in [2]):
vy Wi ow uy
azpt T pz8l 9zl 9zf!
Bwi’l 61&%71 i oY, ) (29)
9zP" 928" BZB"  9zP"
Oy Mi v _ow  _0uy
9zAT Tt gzAnTL gzAnTL gzenTl
where 825% = é%(ag%%n)7 which is identically zero by (24). This establishes

Lemma 3.5. O

The extendability of gf (zm) will be needed for our later argument:

Lemma 3.6. For any i,j as above, the holomorphic function gg(zm) can be extended
holomorphically to a neighborhood of 0 in the z,—plane.

Proof of Lemma 3.6: First, g/ is defined on the projection m,,(U) of U, where 7, is

the natural projection of (21, ..., z;,) to its last component z,,. If 0 € m,,(U), the claim
follows trivially. Now assume that 0 ¢ 7,,(U). If we write s = 5(B1, ..., Bn|i1, -, in), Dy

its definition, then there exists (a1, ..., am,_1) € C™~ ! close to 0, such that

1 1
ale lﬂ’i’l ale ‘w'iiz—l 8\51|,¢,i
0261 928t o268t
(@1, ey Gme1, 2m) = 25 + 0(Jzm|%), ¢# 0. (30)
97" 1, o1 918" 1y,
0zP™ ozP™ 0zP™

Then there exists r > 0 small enough such that for any 0 < |z, < 7, (@1, ..., Gm—1, Zm)
€ U. That is, at any of such points, equation (30) is not zero.

We now substitute (a1, ..., @m—1, 2m), 0 < |zm| < r, into the equation (25), and com-
pare the vanishing order as z,, — 0:

125 4 0(|zm|*) = g (zm) (22, + 0(|zm]®)), ¢ # 0, (31)
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for some s’ > 0. Note that 0 < s < s’ by the definition of s and the choice of
(B1s s Bnlit, ... in). The holomorphic extendability across 0 of g} (z,) then follows eas-
ily. O

We next make the following observation:

Claim 3.7. For each fized j € {iny1,...,in} and any i} < ... < i) _y with {i},...,i,_1} C
{i1,..syin}, we have:

1 Bl 1 n j
918 \wi/l 9! 7/’1'1171 98 \(wj_zkzl ggkwik)
azp! 928! azp!
: (z)=0,vz e U. (32)
n g n n .
98 Iwi,l 3! I%;’_l 918 \(d,].,zkzl ggkwik)
5557 E 9557

Proof of Claim 3.7: Note that for each ¢},1 <1 <n — 1, the following trivially holds:

1 1 :
alﬂl\wi,l a!P ‘wi;L71 a7 ‘(gz;wli)
9z8! 9z8! 9z8!
(2) =0, (33)
3'”‘%/1 amn\wi;il 3'5"‘(932%2)
W e 62571 62571

for the last column in the matrix is a multiple of one of the first (n — 1) columns. Then
(32) is an immediate consequence of (26) and (33). O

Lemma 3.8. For each fized j € {int1,...,in}, we have ¥;(z) — > F_; ggk(zm)wik (z) =0
for any z € U, and thus it holds also for all z € U.

Proof of Lemma 5.8: This can be concluded easily from the following Lemma 3.9 and
Claim 3.7. Here one needs to use the fact that ' = (0,...,0). O

Lemma 3.9. (/2], Lemma 4.7) Let by,--- , by, and a be n-dimensional column vectors
with elements in C, and let B = (b1, -+ ,by,) denote the n x n matriz. Assume that

detB # 0 and det(b;,,b;,, -+ ,b; _,,a) =0 forany 1 < iy <ig <+ <ipn—1 <n. Then
a=2>0.

Theorem 3.4 now follows easily from Lemma 3.8. O

If we further assume that v;(z),m+1 < ¢ < N, vanishes at least to the second order,

then we have the following, which plays a crucial role in our proof of Theorem 1.1.

Theorem 3.10. Let b = (Y1, ., Yimy Ymt1, -, WN) be a holomorphic map from a neigh-
borhood of 0 € C™ into CN with 1)(0) = 0. Assume that (1, ...,.,) is a biholomorphic
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map from a neighborhood of 0 € C™ into a neighborhood of 0 € CN. Assume that
¥i(2) = O(|z|?) form+1 < j < N. Suppose that ranky_,,+1()) < N. Then there exist
Am+1, ---,an € C that are not all zero such that

N

> aj(z1, e 2m-1,0) =0, (34)

1=m-+1

for all (z1, ..., z2m—1) near 0.

Proof of Theorem 3.10: We first have the following:
Claim 3.11. For each 1 <i <m, g;(0) = 0.

Proof of Claim 3.11: Suppose not. Write ¢ := (g1(0),...,gm(0)) # 0. Then
(91(2m)s s gm(2m)) = € + O(|zmm|). The fact that 1;(2) = O(|2]?),i > m + 1, implies

> gi(zm)ti(2) = O(|21%). (35)
i=1

Notice that (the Jacobian of) (¢4, ...,y ) is of full rank at 0. Hence

i(0) ... ZLm(0)
ct #0. (36)
g;{i(()) %’:(0)

This is a contradiction to (35). O

Finally, letting z,, = 0 in equation (20), we obtain (34). By Claim 3.11, (gm+1(0), ...,
gn(0)) # 0. This establishes Theorem 3.10. O

4. Proof of the main theorem assuming three extra propositions

In this section, we give a proof of our main theorem under several extra assumptions
(i.e., Propositions (I)—(IIT)), which will be verified one by one in the later sections.

Let M c CPY be an irreducible Hermitian symmetric space of compact type, which
has been canonically (and isometrically) embedded in the complex projective space
through the way described in §2. In this section, we write n as the complex dimension
of M. We also have on M an affine open piece A that is biholomorphically equivalent to
the complex Euclidean space of the same dimension, such that M \ A is a codimension
one complex subvariety of M. We identify the coordinates of A by the parametriza-
tion map with z = (21, ..., 2z,,) € C™ through what is described in §2, which we wrote as
[1,%1, ..., ¥n], where 91, ..., 9N are polynomial maps in (21, ..., 2, ) with ¥; = k,z;, where
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kj =1or+/2 for j=1,---,n. We also write F(¢) for F(€) for £ = (&1, ...,&,) € C™. We
still use p(z,€) for the defining function of the Segre family of M restricted to A x A*,
which will be canonically identified with C™ x C™. Since the coefficients of ¢, ..., ¥ are
all real, 1) = 1) and A* = A. Hence, we have

N
p(2,€) =1+ $i(2)ehi(9). (37)

i=1

Recall the standard metric w of M on A is given by
w = i00log(p(z, 2)). (38)

The volume form du = ¢, w™ associated to w, by §2, is now given in A by the multipli-
cation of V' with the standard Euclidean volume form, where

c
V=r——yrr (39)
(p(z,2))*
with ¢ > 0 and A a certain positive integer depending on M. For instance, A = p + ¢
when X = G(p, q) [15]. Here ¢, is a certain positive constant depending only on n.

Theorem 4.1. Let A C M be as above equipped with the standard metric w. Let Fj,j =
1,....,m, be a holomorphic map from U C A into M, where U is a connected open
neighborhood of A. Assume that F;(du) # 0 for each j and assume that

dp = Z /\J'F;(d:u)v (40)
j=1
for certain positive constants Aj > 0 with j = 1,--- ,m. Then for any j € {1,2,...,m},

F; extends to a holomorphic isometry of (M,w).

For convenience of our discussions, we first fix some notations: In what follows, we
identify A with C™ having z = (21, -, 2n) as its coordinates. On U C A C M and
after shrinking U if needed, we write the holomorphic map F}, for j = 1,...,m, from
U— A=C" as follows:

Fj = (Fj’hFj’g, ...,Fj’n), _] = 1,...,m. (41)

Still write the holomorphic embedding from A into CPY as 1,41, - ,¥N]. We define
]-J(z) = (fj,ly"'7-/_..j,N) = (1/)1(Fj),7/12(Fj), ,’L/}N(F])) for j = 1,...,m. Finally, all Segre
varieties and Segre families are restricted to A = C™.

The main purpose of this section is to give a proof of Theorem 4.1, assuming the
following three propositions hold. These propositions will be separately established in
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terms of the type of M in §5, §6 and §7. This then completes the proof of our main
theorem.

e , F) P2 (2,6) )
Proposition (I). Write £; = = — 52

0z; 0072(275) Ozn
vector fields (whenever defined) tangent to the Segre family M of M — CPY restricted
to Ax A* = C™ x C™ defined by p(z,£) = 0. Under the notations we set up above,
for any local biholomorphic map F = (f1, -+, fn) : U = C™ with F(0) = 0, there are
20U eQu, B, ..., BN, such that

1 <14 < n—1, which are holomorphic

op L8F .. LPFN

L (20,6% £0, AB, .., BYN)(0,0) =

o (0,6 £ 0. (42)

cANE L N FEy

Here ' = (K}, ...,kL ), Kb, ... k!, are non-negative integers, for | = 1,2,...,N; B! =
Ul gl KL

(0,0,...,0); L7 = L3 L3*L5"..L,"55 F(2) = (Fiy oo F) = (W1(F), a(F), ooy oy (F)).

Moreover, s; := Z;:ll kl (I =1,...,N) is a non-negative integer bounded from above by

a universal constant depending only on (M,w). Also, in what follows, when we like to

emphasize the dependence of A(BY,...,BY) on F, we also write it as Ap(B*, ..., BV).

Proposition (II). Suppose that £° € C™ with £° # (0,0, ...,0). Then for a generic smooth
point z2° on the Segre variety Qeo and a small neighborhood U > 2°, there is a z' €
UNQgeo such that Q.o and Q;1 both are smooth at €0 and intersect transversally at £,
too. Moreover, we can find a biholomorphic parametrization near £9: (&1,&a,...,&n) =
g(él,ég,...,én) with (51752,...,«5”) e Uy x Uy x ... x U, C C", where Uy and Uy are
small neighborhoods of 1 € C, and U; for j > 3 are small neighborhoods of 0 € C such
that (i). G(1,1,0,---,0) = &, (i). GH{& = 1} X Uy X ... x Up) C Q0,G(Uy x {& =
1} X Us X ... x Up) C Q.1 and (iii). G{& =t} x Uy x ... x Uy,) or G(Uy x {& =
s} x Us X ... x Uy),s € Uy, t € Uy is an open piece of a certain Segre variety for each
fixed t and s. Moreover G consists of algebraic functions with total degree bounded by a
constant depending only on the manifold M .

Proposition (III). For any & # 0(z # 0, respectively) € C™, p(z,£) is an irreducible
polynomial in z (and in &, respectively). (In particular, Q¢ and Q. are irreducible.)
Moreover, if U is a connected open set in C", then the Segre family M restricted to
U x C™ is an irreducible complex subvariety and thus its reqular points form a connected
complex submanifold. In particular, M is an irreducible complex subvariety of C™ x C™.

The rest of this section is splitted into several subsections. In the first subsection, we
discuss a partial algebraicity for a certain component Fj, in Theorem 4.1. In §4.2, we
show Fj, is algebraic. In §4.3, we further prove the rationality of Fj,. §4.4 is devoted
to proving that Fj, extends to a birational map from M to itself and extends to a
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holomorphic isometry, which can be used, through an induction argument, to prove
Theorem 4.1 assuming Propositions (I)—(I1I).

4.1. An algebraicity lemma

We use the notations we have set up so far. We now proceed to the proof Theorem 4.1
under the hypothesis that Propositions (I)—(III) hold.

Denote by J¢(z) the determinant of the complex Jacobian matrix of a holomorphic

map f : B — C", where B C C" is an open subset and z = (21, - ,2,) € B. For
any holomorphic map g¢(¢) from an open subset of C™ to C™, where £ € C", we define
(&) = g(&).

Now from (37)(38)(39)(40), we obtain

u |, (2)[2 1
Aj ! — = —, z=(21,...,2,) €U.
222 A+ XN, wi(E)eiF(2) (L + SN vi(2)wi(2)> ( )€

(43)

Recall that FJ = (Fj,l7Fj,27 ceny

o

in),J =1,...,n. Complexifying (43), we have

- Ir, (2) T, (§) 1 .
Aj > S = , (2,€) € Uxconj(U).
g T+ T FFH O (L+ DL i():(6)>
(44)
Here conj(U) =: {# : Z € U}. Using the transitive action of the holomorphic isometric

group of (M,w) on M, we assume that 0 € U, F;(0) =0 € A and Jg,(0) # 0 for each j.
Also, letting U = B,.(0) for a sufficiently small » > 0, we have conj(U) = U. Hence, we
will assume that (44) holds for (z,§) € U x U.

We will need the following algebraicity lemma.

Lemma 4.2. Let Fj’s be as in Theorem /.1. Then there exist Nash algebraic maps
Fi(2, X1, Xon)s ooy Fon (2, X1, ooy Xom)
holomorphic in (z, X1, ..., Xm) near (0, Jg, (0), ..., Jr,, (0)) € C™ x C™ such that
Fi(2) = Fj(2,Tp,(2), 0 5y (2)),5 = 1, .ym (45)

for z=(z1,..., 2n) near 0.

Proof of Lemma J.2: Recall that v; = k;z;, where x; = 1 or /2, for i = 1,--- ,n and
; = O(]z|?) is a polynomial of z for each n + 1 < i < N. We obtain from (44) the
following:



26 H. Fang et al. / Advances in Mathematics 360 (2020) 106885

m n

>N (Ury (2)Tr (€) = MO (Tr; (2)iFyi(2)) (T, () ki F3,4())) + By (2, Fj(€), T, (€)))

j=1 i=1

1
= ~ T (46)
(L4220 vi(2)¢i())
Here each P;(z, Fj(€), Jr, (€)) is a rational function in z, F;(§) and Jf, (€).
We now set X; = Jg,,1 <j <m. Set Y;,1 < j < m, to be the vectors:
Yy = (Yj1,....Yjn) = (k1Jr, Fjay oo inJE Fjn).
Then equation (46) can be rewritten as
< — — - = 1
Aj (X5(2)X5(8) = AY;(2) - Y5(8) + Q;(2,X;(6),Y5(6))) =
; i (X5 J J J J J i(€))) (1+Z£1¢i(z)¢i(§))/\
(47)

over U x U. Here each @; with 1 < j < m is rational in X;,Y ;. Moreover, each
Qj,1 < j < 'm, has no terms of the form Yf?és with [ < 1 for any s > 1 in its Taylor
expansion at (X;(0),Y;(0)).

We write D = % for an n—multiindex o = (g, ..., o, ). Taking differentia-
tion in (47), we obtaln for each multiindex «, the following:

m

(DX ;(2))X;(€) = M(D*Y;(2)) - Y (&) + D*Q;(2, X;(€),Y;(€)))

1
1+ Zf\il Vi(2)Ys(£))N

— )

Again each D*Q;,1 < j < m, is rational in (X;,Y,) and has no terms of the form

Yf?l with I <1 and s > 1 in its Taylor expansion at (X;(0),Y;(0)). Applying a similar
argument as in [Proposition 3.1, [20]], we can algebraically solve for F; to complete the
proof of the lemma. O

Let R be the field of rational functions in z = (z1, ..., 2, ). Consider the field extension

£ =R(Jp (2), . J5,, (2)).

Let K be the transcendental degree of the field extension £/R. If K = 0, then each
of {JF,,...,JF,, } is Nash algebraic. As a consequence of Lemma 4.2, each F; with 1 <
7 < m is Nash algebraic. Otherwise, by re-ordering the indices if necessary, we let
G = {Jr,,-, Jr, } be the maximal algebraic independent subset of {Jp,, ..., Jr, }. It
follows that the transcendental degree of £/R(G) is zero. For any | > K, there exists a
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If
e

minimal polynomial P;(z, X1, ..., X, X) such that Pi(z, Jr, (2), ..., Jre (2), J5 (2))
Moreover,

O X1 X (o T () T (20, T (2) 20

in a small neighborhood V of 0, for otherwise, P, cannot be a minimal polynomial of
Jr,(2). Now the union of the vanishing set of the partial derivative with respect to X
in the above equation for each [ forms a proper local complex analytic variety near 0.
Applying the algebraic version of the implicit function theorem, there exists a small
connected open subset Uy C U, with 0 € Uy and a holomorphic algebraic function
T, 1> K, in a certain neighborhood Uy of {(z, Jp, (2), ..., Jry (2)) : 2 € Up} in C" x CK
such that

J—Fz(z) = E[(Z,J_FI(Z), 7E(Z))7

for any z € Uy. (We can assume here Uy is the projection of UO.) Substitute this into

~ -— _

Fi(Z, JF1 (Z)a a3 JFm,(Z))7

and still denote it, for simplicity of notation, by F(z I, (2), ..., Jr (2)) with

—

Fy (2, T (2), o0y Tr (2)) = Fi(2, T, (2), o, I, (2)) for 2 € Up.

In the following, for simplicity of notation, we also write for j < K,

Py (2, T (2)s o T (2)) = T (2) o8 By X, Xic) = X,
Now we replace F5 (&) by Fi(&, T (€), ... Trg (€)), and replace Jr, (&) by (&, Tm (6),
ey IP (€)), for 1 < j < m, in (44). Furthermore, we write X = (X7, ..., Xx ), and replace
Jp, (&) by X for 1 <j <K in

F (6, T (€)s oy Tre (€))s 1y (6, Try (€)oo T (€)), 1 < j < .

We define a new function ® as follows:

S Jr, (2)hs (&, X) 1
D(z,6,X) = Aj 2 . (48
56 ; 1+ S0, Gi(E ) (E X)) (14 S0, wil2)a(€)> )
Lemma 4.3. Shrinking U if necessary, we have ®(z,£,X) =0, i.e.,

U+l 1%( ()) (EEXN T (1+ D, (=) ()
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or,

N m N
L+ D 0@ D2 | Nl By (6.X) T (14 DD wn(Fi(2))w (Fr&, X))

j=1 1<k<m,k#j i=1

= IJ « +Zm )i (F5(&, X)) (50)

for z € U and (¢,X) € U.

Proof of Lemma /.3: Suppose not. Notice ® is Nash algebraic in (£, X) for each fixed
z € U, by Lemma 4.2. For a generic fixed z = 2 near 0, since ®(z,&, X) # 0, there exist
polynomials A;(&, X) for 0 <1 < N with Ap(&, X) # 0 such that

D> A X)PN (2,6, X) = 0.

0<I<N

As ®(20,&, Jr, (€), ..y Tpy (€)) = 0 for € € Uy, then it follows that Ag(&, Jr, (€), ..., Jry (€))
= 0 for £ € Up. This is a contradiction to the assumption that {Jg, (£), ..., Jr (€)} is an
algebraic independent set. O

Now that ﬁj(f,X),l < j < m, is algebraic in its variables, if ﬁj,l < j < m,is
independent of X, then Fj is algebraic by Lemma 4.2. This fact motivates the remaining
work in this section.

4.2. Algebraicity and rationality with uniformly bounded degree

In this subsection, we prove the algebraicity and rationality for at least one of the
Fis. We start with the following:

Lemma 4.4. Let Fj(z),j € {1,...,m}, be a local holomorphic map defined on a neigh-
borhood of 0 € U as in (44). Suppose that there exist 2° € U and £° € Q.o such that
A(BY, ..., BY)(29,€0) is well defined and non-zero with ' = (0,0,...,0). Then there is
an analytic variety W C U such that when z € U\W, A(BY, ..., BN)(z,€) is a rational
function in & over Q. and A(B,...,8N)(2,€) Z0 on Q..

Proof of Lemma /./: By the assumption, %(zo, &) # 0 and

8 Fi .. LPFN
A(Blv .“75N)(ZO’£O) = N N (20750) (51)
L8 Fin . LPFin

is non-zero with 8! = (0,0, ...,0).
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. z . l 1 ] L
By the definition, £; = Bj — (7?) 82 and 28 = £?1£§2£§5521—11 for
3 dzL 3 n
Bt = (KL, kL)), KL kL . Hence A(BL, ..., 8Y)(z,£) can be written in the form

AT, V)2 €) =S58 THore Gy(2,€) = TMLy @1 ()€, Gz, ) = M2 Wy (),
with ®; and ¥ ; being holomorphic functions defined over U C C". In fact, Ga(z,&) is
Op

Ozp *

By our assumption, we have Gi,Gs not equal to zero at (z°,¢Y). Hence, Gy, Gy are

simply taken as a certain sufficiently large power of p,, =

not zero elements in O(U)[¢, ..., &,], the polynomial ring of £ with coefficients from the
holomorphic function space over U.

By Proposition (III), the defining function of the Segre family p can be written in
the form p(z,¢£) = Z\]\gf’:o O (2)€*, which is an irreducible polynomial in (z, ). And for
each fixed z, by Proposition (III), we also have p(z, &) irreducible as a polynomial of £
only.

Then the set of z € U where A(B!,..., 3Y)(z, &) is undefined over @, is a subset of
z € U where G2(z, ), as a polynomial of £, contains the factor p(z, £) as a polynomial in &.
We denote the latter set by Wy. Similarly, the set of z € U with A(8, ..., 8V)(z,£) =0
over @, is a subset of z € U where G;(z,£), as a polynomial of £, contains a factor p(z, ),
which we denote by Wj.

Notice that p(z,£) € O(U)[&q, ..., &n] depends on each §; for 1 < j < n. Also notice
that Ga(z,£), as a certain power of p, (z,€), depends on &,.

We next characterize Wa by the resultant Rs of Go(2,€) and p(z,€) as polynomials
in &,. We rewrite Go and p as polynomials of &, as follows:

Zaz 2,81, Eno1)Ehs P Zb (2,615 En1)8)-

Here the leading terms ay,b; # 0 with k,I > 1. We write the resultant as
Ro(z,&1, ... 6n-1) =D c1(2)€"", where ¢}s are holomorphic functions of z € U.

For those points z € Wa, Ra(z,-) = 0 as a polynomial of &;,...,&,—1. Then Wy is
contained in the complex analytic set WQ ={c; =0,VI}. If Mf\/; = U, then we can find
non-zero polynomials f,g € O(U)[1, ..., En—1][En] such that fp 4+ gGo = 0, where the
degree of g in &, is less than the degree of p in &,. Hence {Go =0} U {g =0} D {p =
0} N (U x C™). Again by the irreducibility of {p = 0} N (U x C™), since {g = 0} is a
thin set in {p = 0} N (U x C™), Gy vanishes on {p = 0} N (U x C™). This contradicts
Go(2°,£%) # 0. Hence W5 C W and W, is a proper complex analytic subset of U.

By a similar argument, we can prove that W is contained in Wl that is also a proper
analytic set of U. Let W = Wl U WQ. Then when z € U\W, A(B,...,Y)(z,€) is
well-defined over Q. as a rational function in & and A(B%, ..., V) (2,€) Z00on Q.. O

Lemma 4.5. Let (&, X) be a non-zero Nash-algebraic function in (£, X) = (&1, ..., &n, X1,
Xm) € C" x C™. Write E for a proper complex analytic variety of C™ x C™ that

contains the branch locus of ¥ and the zeros of the leading coefficient in the minimal

polynomial of 1. Then there exists a proper analytic set Wy in C™ such that
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{¢] 3X°, (¢, X%) ¢ E} D C™\Wj.

Proof of Lemma /.5: Since 1 is algebraic, there is an irreducible polynomial
B(E,X;Y) = N8 6i(6, X)Y such that (&, X, (¢, X)) = 0. If k = 1 then 1 is a
rational function and thus F is just the poles and points of indeterminacy. The proof is
then obvious and we hence assume k > 2.

Define ¥(¢,X,Y) = g-f;. Since k > 2, the degree of ¥ in Y is at least one.
Consider ®, ¥ as polynomials in Y, and write R(, X) for their resultant. Then the
branch locus is contained in {(¢, X)|R(¢, X) = 0}. Notice that R # 0, for ® is irre-
ducible. Write R = >, r7(£) X! with some r; # 0. Write ¢x (£, X) = > ¢5.:(€) X and
Wy = {ri(§) =0 ,VI} U{¢x:(§) = 0,V i}, which is a proper complex analytic set in
C™. Then {¢| 3X°,(£,X%) ¢ E} D C"\W;. O

Let E be a proper complex analytic variety containing the union of the branch loci
of Ej,ﬁj for j = 1,--- ,m and the zeros of the leading coefficients in their minimal
polynomials. For any point (2°,¢% X%) € U x ((C™ x CK)\E), we can find a smooth
Jordan curve v in U x ((C™ x CX)\E) connecting (2°,£%, X°) with a certain point in
U x (Uy \ E). We can holomorphically continue the following equation along ~:

m N
P (A @R X)) TI (0+S da(F() (Fule, X))

j=1 1<k<m,k#j i=1

(52)

N

= I @+ wiF@)aFiE X)) €U, (€X) e,
1<j<m =1

to a neighborhood of (29,£Y, X9). For our later discussions, we further define

dp .
Msing,z = {(276) : a = Oavj}aMreg,z = M\Msing,z;
J
0 .
Msivg = {(2,6) 1 52 = 0,9} U{(2.€) : =2 = 0,Yj}, Mrgc = M\Msi;

5

Pr,:C> = C" (2,6) — (2) and Pre : C?" = C"  (2,€) — ().

Notice that Mgrgc is a Zariski open subset of M and the restrictions of Pr,,Pr¢ to
MREgc are open mappings. Also, for (22,£%) € Mggg, Q.o is smooth at ¢°, and Qeo is
smooth at z°. By Proposition (I11), Myeg , N (Qeo,£°) is Zariski open in (Qgo, £°).

0%;

Lemma 4.6. With the notations we have set up so far, there exists a point (2°,£°, X0) €
(UxC"xCE) with (2°,£%) € MrpagN(UxC™) and (€2, X°) ¢ E. Moreover, for each j =
1,...,m, we can find ﬂ]l, ,ﬂJN with ,3]1 = (0,...,0) such that AFJ( e ,BN)(zo,fo) #0.

Proof of Lemma 4.6: This is an easy consequence of Propositions (I), (IIT), Lemma 4.4
and the Zariski openness of Mrgg in M. 0O
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Let (2°,£°, X0) be chosen as in Lemma 4.6. We then analytically continue the equation
(52) to a neighborhood of the point (2°,£% X?) through a Jordan curve « described
above. We denote one of such neighborhoods by Vi x Vo x V3, where V;,V5 and V3
are chosen to be a small neighborhood of 2°,£%, and X°, respectively. It is clear, after
shrinking V3, Vo, V3 if needed, that there exists a jo € {1,...,m} such that

N
1+ > i(Fjy (2))0i (Fy, (€, X)) = 0, for (2,€) € MN (V4 x V2), X € Vs
=1

We next proceed to prove the algebraicity for Fj,(z).

Theorem 4.7. F‘;)(f,X), for £ € Vo, X € Vs, is independent of X and is thus a Nash
algebraic function of §. Hence Fj, is an algebraic function of z. Moreover, the algebraic

total degree ofﬁj\o(& X) = Fj, (&), and thus of Fj,(2), is uniformly bounded by a constant
depending only on the manifold (X,w) and the described canonical embedding.

Before proceeding to the proof, we state a slightly modified version of a classical result
of Hurwitz. We first give the following definition:

Definition 4.8. Suppose F' is an algebraic function defined on & € C™. The total degree
of F is defined to be the total degree of its minimum polynomial. Namely, let P(£; X) be
an irreducible minimum polynomial of F', the total degree of F is defined as the degree
of P(&; X) as a polynomial in (£, X).

We next state some simple facts about algebraic functions, whose proof is more or
less standard (see, for instance, [12]):

Lemma 4.9. 1. Suppose ¢1,¢p2 are algebraic functions defined in & € U C C™ with total
degree bounded by N. Then ¢1 £+ ¢o, 102, 1/01 (if ¢1 Z 0) are algebraic functions and
their degrees are bounded above by a constant depending only on N, n.

2. Suppose ¢1(z1, ..., 2n) 18 an algebraic function of total degree bounded by N, and sup-
pose that ¥1(&1, .., &m)y -y Un (&1, ..., Em) are algebraic functions with total degree bounded
by N as well. Let

AO = (g?afgv ’ggn) € Cm’

where Y1, ..., Py, are holomorphic functions in a neighborhood of Ay and let ¢1 be a holo-
morphic function in a neighborhood U C C™ of (¢1(Ao), ¥2(Ao), .., Ym(Ao)). Then the
composition ®(&1,....6m) = G1(Y1(E1, -, &m), Y2(E1s s Em ) V3 (€1 s &) s voes Y (1,5 oo
&m)) 1s an algebraic function with total degree bounded by a constant C(N,n,m) de-
pending only on (N, n, m).
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3. SUppOS@ Pl(zlv 225 ey My 517 627 . 7677,) ey (217 22y 05 Zmyy 617 627 ceey gn) are a’lge'
braic functions with total degrees bounded from above by N which are holomorphic in
a neighborhood U x V.C C™ x C™ of Ag = (29, ...,20,,€0, ..., £2). Suppose that

Pl(zly'ZQa '~'azm7§17 75”) =0

PQ(ZlazQa"'7Zm7£1a 761’7,) =

Pn(zlyzQa sy Zmagla 7§n) =0

has a solution at Ag = (2°,£%) = (29,...,20,,€%,...,€%) and %(z?,zg,...,za,f?,
0 &9) # 0. Then we can solve & = ¢1(21, 22, 2m), €2 = G2(21, 22, s Zm) 5, &n =
On(21, 29, ey 2m) with ¢;(2°) = €0 in a neighborhood of 2° € U C U C C™, where

@1y ..y O are algebraic functions with total degree bounded by C(N,n,m).

We now state the following modified version of the classical Hurwitz theorem with a
controlled total degree [3].

Theorem 4.10. Let F(s,t,&1, &2, ..., Em) be holomorphic over UxV x W C C™+2. Suppose
that for any fized s € U C C, F is an algebraic function in (t,&1,...,&n) with its total
degree uniformly bounded by N; and for any fixedt € V C C, F is an algebraic function
of (8,&1,...,&m) with its total degree uniformly bounded by N. Then F is an algebraic
function with total degree bounded by a constant depending only on (m, N).

The proof of Theorem 4.10 is more or less the same as in the classical setting [3]. (See,
for example, the Ph. D. thesis of the first author [12].)

Proof of Theorem /.7: By the choice of (2°,£%, X©), there exist 3}

Joo

JN such that
0

N LPoFj1 .. LO0Fjn L
AF (JOV"7 jo)('z 75) N"' (Z 75 )7&0 (53)
ﬁBJO jo,1 - ,CBJO jo,N

We can also assume that (zq, o) satisfies the assumption in Proposition (II) after a
slight perturbation of 2o inside Q¢, if needed. By Proposition (II), we can find 2! € V1 N
Q¢o such that Q.o intersects @1 transversally at £. Moreover there exists a neighbor-
hood B of £ and a biholomorphic parametrization of B: (£1,&s, ..., &) = G(€1, &a, ..o, &)
with (51,52,...,§:n) e Uy x Uy x ... x U, C C™. Here Uy, U, are as in Proposition (IT).
Moreover, G({& =1} X Uy X ... x Up) C Q40,G(Uy x {& =1} x Uz x ... x Uy,) C Q1.
Also, for s € Up,t € U, G({& =t} x U x ... x Uy), G(Uy x {&; = s} x Us x ... x U,,) are
open pieces of certain Segre varieties. Here G consists of algebraic functions with total
algebraic degree uniformly bounded by M and the canonical embedding. Consider the
equation:
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1+ Fjy(2)  Fy(6,X) =0, (2,6, X) € Vi x Vo x V3, (2,6) € M. (54)

Since the holomorphic vector fields {Ei}?z_ll are tangent to the Segre family, we have

—

L0 Fjy(2,8) o LP0Fjn(28)\ [ Fion(&X) (—1>
] (55)

. . -
LO0Fjo1(2,8) .. LP0F;,n(z8)) \FnEX) 0
where (z,&)(~ (2°,£°)) e M, X ~ X".

By the Cramer’s rule, we conclude that {Fj, ;(&, X))}, are rational functions of &
with a uniformly bounded degree on an open piece of each Segre variety Q. for z ~ 2°. By
the previous modified Hurwitz Theorem (Theorem 4.10), we conclude the algebraicity

of .}{j;l(f,X) for I = 1,...,N. Since in (55) the matrix (,CBJHG.FJ»O,,,(Z,EDK v and
SHVS
the right hand side are independent of X, these functions must also be independent of

the X-variables. Moreover, by Lemma 4.9 and Theorem 4.10, the total algebraic degree
of Fj, (&) = .}{j:l(f,X), for | = 1,...,n, is uniformly bounded. Since F is obtained by
holomorphically continuing the conjugation function F' of F', we conclude the algebraicity
of Fj, for each 1 <1 < n. Also the total algebraic degree of each F}, ; is bounded by a
constant depending only on (M,w). O

Theorem 4.11. Under the notations we have just set up, Fj, is a rational map, whose
degree depends only on the canonical embedding M — CcPV.

For the proof Theorem 4.11, we first recall the following Lemma of [22]:

Lemma 4.12. (Lemma 3.7 in [22]) Let U C C™ be a simply connected open subset and
S C U be a closed complexr analytic subset of codimension one. Then for p € U\ S, the
fundamental group 71 (U \ S, p) is generated by loops obtained by concatenating (Jordan)
paths vy1,7v2,73, where y1 connects p with a point arbitrarily close to a smooth point
qo € S, Y2 is a loop around S near qy and 73 is y1 reversed.

Proof of Theorem 4.11: We give a proof for the rationality of F},. Once this is done,
we then conclude that the degree of F}, is uniformly bounded, for we know the total
algebraic degree of F' is uniformly bounded by Theorem 4.7.

Suppose that Fj, and thus Fj, is not rational. Write E C C™ for a proper complex
analytic variety containing the branch locus of Fj,, Fj, and the zeros of the leading
coefficients of the minimal polynomials of their components. We first notice that for
A # B e C" @) # Qp, by Lemma 2.1. Hence, for any proper complex analytic
variety V1, V2 € C™ and any point (a,b) € M, we can find (a',b') ~ (a,b) such that
al € Qp \ V! and b! ¢ V2.

We choose (2, £%) as above and assume further that 20,0 ¢ E (after a small perturba-
tion if needed). We choose a sufficiently small neighborhood W of (2%, £%) in Mggg such
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that for each (2!, £') € W, we can find, by Lemma 4.12, a loop of the form v = ~; *oyp07;
in C™\ E with v(0) = v(1) = £',41(1) = ¢. Here 71 is a simple curve connecting £* to ¢
with ¢ in a small ball B, centered at a certain smooth point p of E such that the funda-
mental group of B, \ E is generated by 72; and v, 1 is the reverse curve of ;. Moreover,
when FTO is holomorphically continued along 7, we end up with a different branch FTO* of
Fj, near £'. We pick p such that there is an X, ¢ E with (X,,,p) € Myeg,,. (This follows
from Proposition (IIT) and Lemma 2.1 as mentioned above.) Take a certain small neigh-
borhood W of (X, p) in Mg ,. We assume, without loss of generality, that the piece
W of Mg, is defined by a holomorphic function of the form 2z = ¢(z2, -, 2, §).
In particular, writing X, = (2}, -+ ,2), we have 2z = ¢(z%, - ,22,p). Make B,
sufficiently small such that it is compactly contained in the image of the projection
of W into the &-space. Write X, = (¢(25,---,2F,q),25,--- ,2F) and define the loop
V() = (p(25, -+, 2P, y2(t)), 25, -+, 2P). Then 73 is a loop whose base point is at Xj.
Also, we have (v3(t),v2(t)) € M.

Notice that X, ¢ E. After shrinking B, if needed, we assume that 75 stays sufficiently
close to X, and is homotopically trivial in C™ \ E.

Now we slightly thicken 71 to get a simply connected domain Uy of C™ \ E. Since
M is irreducible over C™ x Uy, we can find a smooth simple curve 7, = (11%,%1) in
M\ ((E x C") U (C™ x E)) connecting (z',&1) to (X, q). Then 47 is homotopic to v
relatively to {¢!, ¢} and 71*(1) = X,. Now replace v by its homotopically equivalent
loop ﬁfl 07207, and define 4* = 4*7* 045 0o~4*,. Define I' = (v*,v). Then the image of
T lies inside M\ ((E x C™)U(C™ x E)). Continuing Equation (54) along I" and noticing
that it is independent of X now, we get both

*

L+ Fjo(2) - Fio(€) =0 and 14 Fj,(2) - Fj(§) = 0¥(2,€) € MN (Vi \ E) x (V2 \ E).
Now as before, applying the uniqueness for the solution of the linear system (55) (with
an invertible coefficient matrix), we then conclude that F_]O* = Fj,. This is a contradic-
tion. O

4.3. Isometric extension of F

For simplicity of notation, in the rest of this section, we denote the map Fj, just
by F. Now that all components of F' are rational functions, it is easy to verify that F
gives rise to a rational map M --» M. By the Hironaka theorem (see [17] and [27]),
we have a (connected) complex manifold Y of the same dimension, holomorphic maps
7:Y - M,o0:Y — M, and a proper complex analytic variety E; of M such that
o: Y\ o YE)) — M\ Ej is biholomorphic; F : M \ E; — M is well-defined; and for
any p € Y \ o~ (E1), F(o(p)) = 7(p).

Let E2 be a proper complex analytic subvariety of M containing F;, M \ A and
let E3 C Y be the proper subvariety where 7 fails to be biholomorphic. Write E* =
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T(oc™ 1 (EB2) UE3) U (M \ A) and E = o(r7}(E*)). Then F : A\ E — A\ E* is a
holomorphic covering map. We first prove

Lemma 4.13. Under the above notation, F: A\ E — A\ E* is a biholomorphic map.

Proof of Lemma /.13 We first notice that since F' is biholomorphic near 0 with
F(0) = 0. We can assume that 0 ¢ E. Consider F2 = FoF. Then F?2 = F~. Since (F,F)
maps M into M whenever it is defined, it is easy to see that (F, F)o (F, F) = (F2,F2)
also maps M into M at the points where it is well-defined. Hence, we can repeat a similar
argument for F' to conclude that F2, as a rational map, also has its degree bounded by a
constant independent of F2. Similarly, we can conclude that for any positive integer m,
F™ is a rational map with degree bounded by a constant independent of m and F'. Now,
as for F', we can find complex analytic subvarieties E(™, E*(™) of C™ such that F™ is
a holomorphic covering map from A\ E(™) — A\ E*("™). Suppose F : A\ E — A\ E*
is a k to 1 covering map. It is easy to see that F™ : A\ E(™ — A\ E*(™) is a k™ to
1 covering map. However, since the degree F is independent of m, we conclude that
k =1 by the following Bezout theorem:

Theorem 4.14. ([42]) The number of isolated solutions to a system of polynomial equations

fl(xlv axn) = fZ(xlv 7xn) == fn(xlv 7xn) =0
is bounded by dids - - - d,,, where d; = deg f;.

This proves the lemma. O

Now we prove that F' extends to a global holomorphic isometry of (M, w).
Theorem 4.15. F' : (U,w|y) — (M,w) extends to a global holomorphic isometry of (M,w).

Proof of Theorem /.15: By what we just achieved, we then have two proper complex
analytic varieties Wy, Wy of C™ such that F : C"\W; — C™\W> is biholomorphic.
Similarly we have two proper complex analytic subvarieties W7, W5 of C" such that
F:C"\ Wy — C™\ W5 is a biholomorphic map. Hence

§=(FF):C"\ W, x C"\ W} — C"\ Wy x C" \ W

is biholomorphic. Let p be the defining function of the Segre family as described before.
Since p is irreducible as a polynomial in (z,&), M is an irreducible complex analytic
variety of A. Since § maps a certain open piece of M into an open piece of M, by the
uniqueness of holomorphic functions, we see that § = (F, F) also gives a biholomorphic
map from (C™\W; x C"\W;)NM to (C™\ Wy x C™"\ W5 )NM. Hence pr = p(F(z), F(£))
defines the same subvariety as p does over C™ \ Wy x C™ \ W7. Since pp is a rational
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function in (z, ¢) with denominator coming from the factors of the denominators of F'(z)
and F (), we can write

131le (Zag)PZW(Zaf) e PiT(Zag)

2,6) = (p(z,6) — .

(56)

Here the zeros of Q;(z) and R;(§) stay in Wi and WY, respectively. All polynomials
are irreducible and prime to each other. By what we just mentioned P;(z,£) can not
have any zeros in C™ \ Wy x C™ \ W7, for otherwise it must have p as its factor by the
irreducibility of p. Hence the zeros of Pj(z,€) must stay in (W3 x C™) U (C™ x WY).
From this, it follows easily that P;(z,&) = P;1(z) or P;(2,&) = P;2(§). Namely, P;(z,¢)
depends either on z or on €. Since § is biholomorphic, we see that [ = 1. Thus replacing
¢ by z and taking i00log to (56), we have i00log pr(z, Z) = i0dlog p(z, Z). This shows
that F*(w) = w, or F is a local isometry. Now, by the Calabi Theorem (see [4]), F'
extends to a global holomorphic isometry of (M,w). This proves Theorem 4.15. O

We now are ready to give a proof of Theorem 4.1. By what we have obtained, there
is a component F}; for F' in Theorem 4.1 that extends to a holomorphic isometry to
(M,w). Hence F}(du) = du. Notice \; < 1 due to the positivity of all terms in the
right hand side of the equation (40). After a cancellation, we reduce the theorem to the
case with only (m — 1)-maps. Then by an induction argument, we complete the proof of
Theorem 4.1. O

5. Partial non-degeneracy: proof of Proposition (I)

In this section, we prove Proposition (I) for irreducible compact Hermitian spaces of
compact type. Since the argument differs as its type varies, we do it on a case by case
base. For convenience of the reader, we give a detailed proof here for the Grassmannians
and Hyperquadrics. We will include the rest arguments in Appendix B.

5.1. Spaces of type 1

With the same notations that we have set up in §2, Z is a p x ¢ matrix (p < q);

(j1 ]Z) is the determinant of the submatrix of Z formed by its ztlh, ...72};‘ rOWS
1 cee
and 7,50 columns; 2 = (211, .y Z1gs 221, ey 22q, -+ Zpls -y 2pg) 1S the coordinates

of CP1 = A C G(p,q). Let 0 € U be a small neighborhood of 0 in CP? and F be a
biholomorphic map defined over U with F(0) = 0. For convenience of our discussions,
we represent the map F': U — A as a holomorphic matrix-valued map:

<f11 flq)
F=1 .. .. .. 1.
o1 oo Jog
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;1 ;i), F (;1 denotes the determinant of the submatrix

formed by the (%, ...,it" rows and ji%, ..., it columns of the matrix F. Recall in (2),r,

Similar to Z( ;:)

is defined as

(wlaw%“'awl\/):(”' aZ(i'l Zk)

g lS i< i Sl << < e <4,

1<k<np.

Similarly, we define:

rp o= (,F(“ ik)

g1 jk7)a1S711<<Zk§pa1S]1<<.]k§qa1§k§p

Notice that rp = (¢1(F(2)), ..., N (F(2))). We define

Z 1= (211, vy Z1qs 2215 ons 225 ooy Zpls ooy Zp(g—1) )

. ~ . . . . lal
i.e., Z is obtained from z by dropping the last component z,,. Write g? =
alel .
PYCTTRITEn) for any (pg—1)—multiindex o, where o = (11, ..., Q1p, Q215 ..o, Qg oy Ap1
11 " *p(g—1)
...,Oép(q,l)).

We apply the notion of the partial degeneracy defined in Definition 3.1 of §3 by letting
1) = rp and letting z be as just defined with m = pq. We prove the following proposition:

Proposition 5.1. rp are Z-nondegenerate near 0. More precisely, ranky |y _pq(rr,Z) = N.

Proof of Proposition 5.1: If p = 1,g = n > 1 i.e., the Hermitian symmetric space
M = P™, then it follows from Lemma 3.3 that rank;(rp,z) = N = n. In the following
we assume p > 2.

Suppose the conclusion is not true. Namely, assume that rankiyn_pe(rr,2) < N.
Since the hypothesis of Theorem 3.10 is satisfied, we see that there exist cpg+1,...,cxy € C
which are not all zero such that

N

Z CiQZJi(F)(le,...,qu,hO) =0. (57)

1=pq+1

The next step is to show that (57) cannot hold in the setting of Proposition 5.1. This
is obvious if we can prove the following:

hll hlp
H=| .. .. .. ],
hpt . hpg

Lemma 5.2. Let
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be a vector-valued holomorphic function in a neighborhood U of 0 in Z = (211, ..., Zp(g—1))
€ CP=1 with H(0) = 0. Assume that H is of full rank at 0. Set

(D1, es ) =11 = <(H<;l ;k> > ) . (58)
o R i< <ingp << <ik<a) gcpep

Here - @ @ ot (ﬁ) (Z)

Let aq, ..., a., be complex numbers such that
> aidi(2) =0 forall z€ U. (59)
i=1

Then a; =0 for each 1 < i < m.

Proof of Lemma 5.2: We start with the simple case p = ¢ = 2, in which m = 1. Then
by the assumption (59), a;¢1 = 0. Here

P11 hao
o1 = ’h21 hao

Note that H = (h11, hi2, ho1, hoo) is of full rank at 0. We assume, without loss of
generality, that H := (hi1, 12, ha1) is a local biholomorphic map from C? to C3. Af-
ter an appropriate biholomorphic change of coordinates preserving 0, we can assume
h11 = 211, h12 = 212, ho1 = 221, and still write the last component as hos. Then we have

a1¢1 = a1(z11hoe — z12221) =0,

which easily yields that a; = 0.

We then prove the lemma for the case of p = 2,¢g = 3, in which m = 3. As before,
without loss of generality, we assume that H = (h11, h12, h1s, ho1, hoo) is a local bi-
holomorphic map near 0 from C® to C°. After an appropriate biholomorphic change of
coordinates, we assume that H = (211, ..., 220). By (59), we have

12 213
22 has

211

211 212 13
Zo1  hos

z
a1¢1 + ... +azps = aq 201 2o + as + as 5 (60)

The conclusion can be easily proved by checking the coefficients in the Taylor expan-
sion at 0. Indeed, the quadratic terms 213291, 213220 only appear once in the last two
determinants. This implies as = az = 0. Then trivially a; = 0.
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We also prove the case p = ¢ = 3. In this case m = 10. As before, without loss
of generality, we assume that H = (h11, ..., h32) is a biholomorphic map from C® to
C8. After an appropriate biholomorphic change of coordinates, we can assume that

H = (211, .., 232). Then by assumption, we have

a1¢1 + ... + a0 =

211 %12 211 213 Z12 %13 211 12 211 %13
a1 + as + as +a + as h
Z21 222 221 %23 Z22 223 Z31 % 231 33
Z12 213 221 %22 221 %23 222 %23 (61)
+ ag h +ar + ag h +a h
232 33 Z31 232 231 33 232 33
Z11 212 213
+aio 221 222 223 | =0.
231 232 a3z

We then check the coefficients for each term in its Taylor expansion at 0. First it is easy
to note that a5 = ag = ag = ag = 0 by checking the coefficients of quadratic terms

2137315 213232, 223231, 223732,

respectively. Then by checking the coefficients of other quadratic terms, we see that
a1 = az = az = a4 = a7y = 0. Finally we check the coefficient of the cubic term z13292231
to obtain that a9 = 0.

We now prove the general case: ¢ > p > 2. As before, we assume without loss of
generality that H = (h11, ..., hpg—1y) is a biholomorphic map from Cre~1! to CPa—L,
Furthermore, we have H = (2115 -y Zp(g—1)) after an appropriate biholomorphic change

of coordinates. We again first consider the coefficients of the quadratic terms in (59). For

that, we consider the 2 x 2 submatrix involving h,,, i.e., H (]lg g) A <l<p,1<k<q.

Note that z;42,1 only appears in this 2 X 2 determinant, which yields that the coefficient
a; associated to this 2 x 2 determinant is 0, for any 1 < i < p,1 < j < q. Then by

checking the coeflicients of other quadratic terms, we see that all coeflicients a}s that

are associated to 2 x 2 determinants H (Il{jll Z) 1<l <p, 1 < ki, ke <gq, are 0.

We then consider the coefficients of cubic terms in (59). We first look at those 3 x 3

submatrix involving hyq, i.e., H (11611 11422 g) 1<l <ly <p,1 <k <ky <gq. Note

that 2, 421,k, 2pk, ODly appears in this 3 x 3 matrix, which yields that the a; associated
to this 3 x 3 determinant is 0. Furthermore, we see that all coefficients a;’s that are
associated to 3 x 3 determinants are 0.

Now the conclusion can be proved inductively. Indeed, assume that we have proved
that all coefficients a;’s that are associated with the determinants of order up to puxpu,3 <
u < p are zero. Then we will prove that the coefficients associated with (p+1) x (p+1)
determinants are also 0. For this we consider all such determinants which involve A,
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ie., H(kll k:/; 5 where 1 < I} < ... <, <p,1 <k < ... <k, <q We

conclude the a; associated to it is 0 by noting that 2,42,k ---21,k, 2pk, Only appears in
this (u+1) x (4 1) determinant. Then we can show all coefficients that are associated
with other (i + 1) x (1 + 1) determinants, i.e.,

H(lill ::: ]i/; éﬁ;ﬁ)@gll<...<1H+1gp,1§k1<...<ku+1gq,

(l,u+la k,u—i—l) # (pa q)

are 0 by checking a term of the form z;,, ...21, ,,,, that only appears once in the Taylor
expansion of the left hand side of (57). This proves the lemma. O
We thus get a contradiction to the equation (57). This establishes Proposition 5.1. O

Remark 5.3. Let F' be as in Proposition 5.1. There exist multiindices £, ..., 3V with
67| <1+ N —pq and

0 0

21 e Zig
V= #0
Z0 e 2
such that 20 is near 0 and

918" 1y, (F)) 018 (g (7))
AB, L BN = = %) #0 62
(B, ...,BN) = T SR (%) # 0. (62)

9% (i (F)) A" (N (F))

0z8N 9z8N

Perturbing 20 if necessary, we can thus assume that zgq # 0. Moreover, we can replace
one of the A',....8Y by g = (0,...,0), because (¢1(F),...,1n(F)) are not identically
zero (see also the proof of Theorem 3.4). Without lost of generality, we can assume that

Bt =(0,...,0).
The defining function of the Segre family now is

o6 =143 3 Z(in o yzh ®y 1 (63)

o ) o ) Jr o Jk Jr o Jk
k=1 \1<i1<i2<...<ixp<p,1<71<j2<...<jr <q

It is a complex manifold for any fixed & close enough to the point

0 0 0 1
£=10 0 0 Jecrs, ¢ —__— |
0 .. 0 & T

Write for each 1 < i <p,1<j<gq,(i,7)# (p,q),
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o (=8 o
Dz 20 (z,) Ozpq’

Ozpq

Lij =

(64)

which is a well-defined holomorphic tangent vector field along M near (z°,¢°). Here

we note that %ﬁq(z,f) is nonzero near (z°,¢%). For any (pg — 1)-multiindex B =

(B11s -+ Bp(g—1)), We write

B _ pbB11 Bp(a—1)
£ = Ly,

Now we define for any N collection of (pg — 1)—multiindices {3, ..., BV},

LO(W(F)) o L ($n(F))

ABY .y B (2,6) = N S (2,6). (65)
LPZ(p1(F)) o L (Yn(F))
Theorem 5.4. There exist multiindices {3*, ..., N}, such that
A(BY, ., BY)(2,6) # 0, (66)

for (z,€) in a small neighborhood of (2°,£°). Moreover, we can require B* = (0, ..., 0).

9
82ij :

More generally, for any (pg — 1)—multiindex 3, by an easy computation, £° evaluating

Proof of Theorem 5./: First we observe that £;; evaluating at (2°,¢") is just

at (29,£%) coincides with %. Therefore, we can just choose the same 3',..., 8N as in
Remark 5.3. 0O

5.2. Spaces of type IV
In this subsection, we consider the hyperquadric case M = Q™. This case is more

subtle because the tangent vector fields of its Segre family are more complicated. Recall
that Q" is defined by

{[zo, vy Zng1] € CPHL. sz — 220241 = 0} )

i=1

where [2g, ..., Zn+1] is the homogeneous coordinates of CP"™"!. The previously described
minimal embedding C"(A) — Q™ is given by

Z = (Zla ,Zn) — [171/)1(2)7 "'71/)71-4—1(2)] = [17213 ey Bmy % ;Z?]

The defining function of the Segre family over A x A is p(z,§) = 1+ r, - r¢, where
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re = (21, .. Z = (&1, 6y 5 252 (67)

Let F be a local biholomorphic map at 0 with F'(0) = 0. We write

F:(fla7fn)a TF:(fhzfn,%ZfE) (68)
i=1
Notice that

= (1/11(2)7 ...,1/Jn+1(2:)),7‘p = (¢1(F)a '-'7wn+1(F))'

We will need the following lemma:

Lemma 5. 5 For each fixed py, ..., pin—1 with (Z?;ll p2)+1=0 and each fived (21, ..., 2n)
with (37—, ' j1izi) + 20 # 0, we can find (€4, ..., &,) such that

n

14+ 218 +...+ 2,6, = 0; 2(51)2 =0, gj = Mjfn,l <j<n—-1, & 7é 0. (69)

i=1
Proof of Lemma 5.5: We just need to set

-1
fn: n—1 ’ g]:/ngnalS]Sn—l
(21:1 Mizi) + zn

Then it is easy to verify that (69) is satisfied. O

Recall that in the type I case, the vector fields % in CP? are tangent vector fields
of the particular hyperplane {z,, = 0}. We can formulate the result in §3 in a more
abstract way and extend it to a more general setting. For instance, it can be generalized
to the complex hyperplane case. We brieﬂy discuss this in more details as follows:

First fix p1,..., -1 with (312 ,ul) + 1 = 0. Take the complex hyperplane H :
Zn + Z?:_ll iz =0in (21, ..., 2,) € C™. Write

A 0 2
62’1 H1 aZn 9 e Hn—1 32:

n

L, = = —
! O0zn_1

Then {L;}?~' forms a basis of the tangent vector fields of H. For any multiindex

87
a= (al,..,an_l),we write L% = L{*...L,"]

. We define L—rank and L—nondegeneracy
as in Definition 3.1 by using rr in (68) and by using L® instead of Z* with m = n. We
write the kth L-rank defined in this setting as ranky (rp, L). We now need to prove the

following

Proposition 5.6. ranks(rp, L) =n + 1.
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Proof of Proposition 5.6: Suppose not. By applying the same argument as in Section 3
and a linear change of coordinates, we can first obtain a modified version of Theorem 3.10:

Lemma 5.7. There exist n+1 holomorphic functions g1(w), ..., gn+1(w) which are defined
near 0 on the w—plane with {g1(0), ..., gn+1(0)} not all zero such that the following holds
forall zeU.

n+1
D 9i(zn + 2+ o+ pno1201)0i(F(2)) = 0. (70)

i=1

Then one shows with a similar argument as in Section 3, by the fact that F' has full
rank at 0, that ¢1(0) =0, ..., g, (0) = 0. Hence we obtain,

Lemma 5.8. There exists a non-zero constant ¢ € C such that

n

cvnir(F(2) = 5D F2(2) =0, (71)

i=1
for all z € U when restricted on z, + 2?2_11 wizi = 0.

We then just need to show that (71) cannot hold by applying the following lemma
and a linear change of coordinates.

Lemma 5.9. Let H = (hq, ..., h,) be a vector-valued holomorphic function in a neighbor-
hood U of 0 in 2 = (21, ..., 2n—1) € C" 1 with H(0) = 0. Assume that H has full rank at
0. Assume that a is a complex number such that,

ai h?(%) =0, (72)
i=1

then a = 0.

Proof of Lemma 5.9: Seeking a contradiction, suppose not. Notice that H has full rank
at 0. We assume, without loss of generality, that (hq, ..., h,—1) gives a local biholomorphic
map near 0 from C"~! to C"~!. By a local biholomorphic change of coordinates, we
assume (hq,...,hp—1) = (21,...,2n—1), and still write the last component as h,,. Then
equation (72) is reduced to

a(zi+ ...+ 22 +h2)=0.

To cancel the 2%, 25 terms, it yields that h, has linear 21, z2 terms. But then h2 would
produce a z;zo term, which cannot be canceled out. This is a contradiction. O
This also establishes Proposition 5.6. O
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Remark 5.10. By Proposition 5.6, there exist multiindices ﬁl - B"‘H with | Bj | <2 and

n—1

20 = (29, ..., 20) with Zuiz? +20 40
i=1
such that
L (Wn(F) o L (W (F)
e e (z%) #£ 0. (73)
L@ (F) e L7 (W (F)

We then choose €9 = (€9,....£9) as in Lemma 5.5. That is

n

L+2060 + 42060 =0, Y (€))7 =0, & =p&n1<j<n—1, & #0.
=1

It is easy to see that (2°,£%) € M. We now define

1)
0 559 g)ai 1<i<n-—1 (74)

0z an( 5)

L=

for (z,£) € M near (2°,£%). They are well-defined holomorphic tangent vector fields
along M. Moreover, aa (2,€) is nonzero near (2°,¢°).

We define for any multiindex o = (ay,..,ap_1), L = L5*...L;"7". Then for any
(n + 1) collection of (n — 1)—multiindices, set {5%, ..., V1,

1 1 TWiE) e L (na ()
A(B L )(z,€) = (2,8). (75)
T (F) o L W (F))

By the fact that > . ,(¢7)> = 0, one can check that, for any multiindex o =
(a1, .., an), L% = L* when evaluated at (29,£%). Then we get the following:
Theorem 5.11. There exist multiindices {8, ..., BN} such that
A'(/Bl’ ""ﬁN)(Z’ g) # O’
for (z,€) in a small neighborhood of (2°,£°), where B = (0,0,...,0).

Proofs for the other types are similar and will be left to Appendix B.
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6. Transversality and flattening of Segre families: proof of Proposition (II)

In this section, we prove Proposition (II). We still use the notations we have set up
so far. We equip the space M with the canonical Kéhler-Einstein metric w as described
before. We start with the following lemma:

Lemma 6.1. Let ¢ : (M,w) — (M,w) be a holomorphic isometry. In the affine space A,
its components consist of rational functions with its degree bounded only by a constant
depending on (M,w).

Proof of Lemma 6.1: Notice that M has been isometrically embedded into CP™
through the canonical map defined before. Hence & is the restriction of a unitary trans-
formation. Hence & can be identified with a map of the form:

N N N
(0,1, P2y s ) = (O @055 0 D @ity ey D anjthy),
=0 =0 =0

where 19 = 1 and (a;;) is a unitary matrix. Write
\II(Z) : Z(G A) = [17 K121,y KiZiy =+, KnZn, 0(22)} € (CPN

for the embedding, where k; = 1 or V2. & induces a birational self-action o of A~such

_ = : _ Y1 P2 Vn
that \Il(o(z))~— (¥ (z)). Then, from the special form of ¥, o(2) = (m% RS ml%).
Apparently g Z 0. O

Theorem 6.2. Suppose €° € C™ \ {0}. Then for a generic smooth point z° on the Segre
variety Qgo and a small neighborhood U C C™ of 29, there is a point 2z € UN Qeo, such
that Q.o and Q.1 are both smooth at £° and intersect transversally there. Moreover, there
is a biholomorphic parametrization Q(él,ég, ,én) = (&1, .., &n), with (51,52, ,én) €
Uy x Uz x ... x U, C C". Here when 1 < j < 2, Uj is a small neighborhood of 1 € C.
When 3 < j < n, U; is a small neighborhood of 0 € C with G(1,1,0,---,0) = £°, such
that G{&, = 1} x Us % ... x Up) C Q.0,G(Ur x {& = 1} x Us x ... x Up) C Q.1 and
g({g} =t} x Uz x ... x Uy),G(U; x {52 = s} xUs X ... x Uy),s € Uy, t € Uy are open
pieces of Segre varieties. Also, G consists of algebraic functions with total degree bounded
by a constant depending only on (M,w).

We first claim that, due to the invariance of the Segre family, we need only to prove
the theorem for a special point 0 # ¢ € C® C M. Indeed, by the invariance property
mentioned in §2, for an isometry o, (0,7) preserves the Segre family M C M x M.
Here for p € CPY, @ (p) := o(p) as before. Here, we mention that in the statement of the
theorem, we assume that 2z is a generic smooth point because under this transformation,
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some smooth points on Q¢o may be mapped into the hyperplane of M at infinity, which
can not be chosen as our 2°.

We now proceed to the proof of Theorem 6.2 by choosing a good point £°. We only
carry out the proof for the case of hyperquadrics and Grassmannian spaces here. The

proof for the remaining cases is similar and will be included in Appendix C.

Proof of Theorem 6.2: Case 1. Hyperquadrics: Suppose M is the hyperquadric. Then
the defining equation for the Segre family is

p(2 ) =1+ w4+ 2 A& =
=1 =1 =1

We choose £ = (1,0,0, ...,0). Hence Qeo = {2 : p(2,£%) = 1+zl—|— L0 l) =0}. We
compute the gradient of p(z,£%) as follows: Vp(z,£%) = (14 32, 522, ..y 32,). Notice
that Qo is smooth except at (—2,0,...,0), namely, we have Vp(z,£°) # 0 away from
(=2,0,---,0). For a smooth point z°(# (—2,0,---,0)) of Q¢o, we choose a neighborhood
U of 2% in C™ such that U N Qo is a smooth piece of Qgo. Pick also 2! (# 2%) € UNQg,
and compute the gradient of the defining function of Q.0 and Q.1 at £ = (1,0, ...,0),
respectively. Recall

Q.s = {&|p(z° —1—&—223& Z 29) )(255)20}, for s =0, 1.

i=1 i=1
Vp(%,8)leo—ro,.0 ) _ (A3 Xim(@)? 8 8 .2
V(2" €)leo—(1,0.....0 A+A>r () 2 23 . 2L
(A
B 2—21 24 2 2L

The second equality is 81mphﬁed by making use of the fact that 20, 2! € Qeo—(1,0,...,0)s
which implies that 0 = 1420 + 23" (29)2 =1+2{ + 13" | (2})2. Hence,

0 0 0
rank Vp(zo leo=10,..0) | _ = rank w2 Zl Z? 2711
Vp(z! §)|§o,(1,0,.. —2—2t 24 .. 2
_ -2- Z? zS 22
= rank < AZ% AZ% AZ}l = I‘ank AZ% AZ% AZ}L ’
where Az} = z! — 2. Notice that z° is a smooth point on Qg,. Hence Vp(z,£°) is

transversal to the tangent space of Q¢o at 29, If we choose z! € Q¢o close enough to 29,
which ensures (Az{, ..., Az}) close enough to tangent space of Qo at z¥, we then get
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0
rank (vp(z ’§)|EO:(1707""0)> = rank (A 1

1 1 V,O(Z,fo)‘zo 1) —9
vp(z 7£)|50:(1,O,...,0) 21 AZQ Azn

0 1
We assume, without loss of generality, that W £ 0 at £€°. Now we introduce

new variables £~1, e fn and consider the following system of equations:

P14+ Y0 (a6 + 10 () (DN, ) =0
Py 14300 (Gzh)é + (i ()2 (D)) (X, 62) =0

Ps f3-& =0
P, : gn —&n =0
O(Py,...,Py) 9(Py,...,Pp)

Then we have mLA # 0 and W‘A §£ 0 where

A= (&, . &ni €1y 6n) = (1,1,0,...,0; 1,0, ..., 0).

By Lemma 4.9, we get the needed algebraic flattening with total degree bounded only
by (M, w). This completes the proof of Theorem 6.2 in the hyperquadric case.

Case 2. Grassmannians: Pick &° = (£7,,£0,,...,6),) = (1,0,...,0). The defining func-
tion for the Segre family associated with this point is as follows:

p(z,€) = 1+ 211811 + 212&12 + oo + 214819 + 221801 + oo+ 2p1&p1 + 205 i %65 T
Doigmalznizi — zinz) (§n &y — Enay) + 220y k2, (Zig 2e — zazn) (&€ — &ajk) +
higher order terms.

Then Qe = {z]p(2,£°) = 14 z11 = 0},Vp(2,£") = (1,0,0,...,0). Hence Q, is
smooth. For z € Qgo, we have 2z = (—1, 212, .., 21g, 2215 -y Zpls oo Zijs ooy Zpq)- Pick 20, 21 €
Q¢o. Then Qzo = {£[0 = p(2*,€) = 1+ 211811 + 215812 + . + 2061 + 251821 + . +
2p1€p1 + 205 e 255605+ 2o oo (21125 — 201 21) (€1 &y — &inuy) + 2o ) k2, (520 —
25231) (&ij€kt — k) + highorder terms}, for s = 0,1. We then compute their gradients

as follows:

Vo0, e

VP(Z ,£)|EO
9p(z°8)  9p(z°.6) op(z°8)  9p(z°.6) 9p(z°,€) op(z°,8)

_ 911 0¢12 914 921 ép1 Epq
op(z1.8)  9p(z'.6) op(z18)  9p(z1.8) dp(z1.€) op(zt8) | 1€°
0811 0&12 0¢14 021 0€p1 0&pq

_ -1 292 z?q zgl 221 —z?lz?j
—1 zly o 2y 2 o 2y —ZhZy

Thus, we have
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V(26| o
rank (w@%e)!;)

0 0 0,0
_ rank -1z . oz —Z1%1
= 1 1 0 ’
0 Azjy ... Az (—2)Az; — 200z — AzhAzy) .
where Az- zllj zgj. Hence, if we choose z! such that 2}, # 2Y,, then the rank equals

to 2. Hence Q.0 and @1 are smooth and intersect transversally at £°.

A(p(2°,8),p(z"

Without loss of generality, assume Wm)’g)) £ 0 at €. Now we introduce new

variables £11, ..., épq and set up the system:

P p(2°,€16) =
Pia:  p(2', €128 )
Pi3: &3—&i=

Ppg: &pg —E&pg =0
a(Py1, A(Pi1,...,Ppq _ ¢F z _
Then grgi=sgthle Seggle # 0 whee A = (Gl o by) =
(1,1,0,...,0,1,0,...,0). By Lemma 4.9, we get the needed algebraic flattening.

The proof is similar in the other cases. We include a detailed argument for the re-

maining cases in Appendix C. O
7. Irreducibility of Segre varieties: proof of Proposition (III)

In this section we will establish Proposition (IIT). We prove results on the irreducibility
of the potential function p, Segre varieties and the Segre family. We still adapt the
previously used notation and assume that M is an irreducible Hermitian symmetric space
of compact type of dimension n, which has been minimally embedded into a projective
space as described before.

Lemma 7.1. Each Segre variety is an irreducible algebraic subvariety.

Proof of Lemma 7.1: For a minimally embedded Hermitian symmetric space, since
all Segre varieties are unitarily equivalent, it suffices to prove the lemma for a single
Segre variety. Without lost of generality, we take z = (0,...,0) € A C M. Therefore,
the corresponding Segre variety Q% is the hyperplane section M \ A, which is of pure
dimension. From the classical algebraic geometry [14], when M is an irreducible Hermi-
tian symmetric space of compact type, the hyperplane section at infinity in the minimal
canonical embedding case is a union of Schubert cells. Moreover as shown in [6], the top
dimensional piece is equivalent to C™~! and the others are of codimension at least two.
Hence, the smooth points of (), are connected and thus @, is irreducible. O
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As a corollary of this lemma, we conclude that for each z € C™, the defining function
p(z,-) of Q. has to be a power of one irreducible factor. However, as in the proof of
Theorem 6.2, for some a(# 0) € C”, dep(a, €) is not identically zero along Q,. Next, we
use this property and the symmetric property of M to prove the following:

Proposition 7.2. For any b € A with b # (0,...,0), p(b,&) (p(z,b), respectively) is irre-
ducible as a polynomial of & (as a polynomial in z, respectively).

Proof of Proposition 7.2: Since p(z,&) = p(&, z), we need just to verify the first state-
ment. Let a be as above. For b € A, there is ¢ € Isom(M,w) N SU(N + 1,C) such
that o(a) = b. (Notice that ¢ is represented by a unitary action.) By Lemma 6.1, let

o= (#1[0, ey nl:lo) be the representation of & in A with Z;S polynomials in z. Write

U = [1,7,] for the embedding of A in PY. Then from the definition of p(z,%), we have
. —t et
p(2,2) = [[P)? =¥ ¥ = (G0) (G7) .
~ ==~ -
Lemma 7.3. (G0) - (G¥) = [lo(¥)]? - [[¥(a(2))[]* = [lo(V)[* - p(o(2), 0(2)).

Proof. Writing ¥(z) = [1,7,] = [1,¢1(2), - ,¥n(2)]. Then the identity ¥(o(z)) =
(¥ (z)) obtained in the proof of Lemma 6.1 yields that,

Gi(¥(G) | zgmw)))_
Fo(0(=) " (W (2))

Here ¢p; = ; for 0 < j < n and 5(z) = [fo,- -+ ,dn] as in the proof of Lemma 6.1. Then

(1(0(2)), U (o(2)) = (

@9)- GO = B EE)E = [ 1+ 3 W@ | ¥ )

lo(D)|* - [ (a(2))]*-

This establishes the lemma. O

The Lemma 7.3 yields p(z,2Z) = [lo(¥)|? - p(0(2),0(2)). Complexifying the identity
and substituting z by a, we have:

lo(¥)(a) - 1o(¥)(E) - p(b,5(€)) = pla,§), (76)

where lo(¥)(a) # 0, Io(P)(£), p(a, &) are polynomials in £ and o (§) is a rational map in &.
Now supposing p(b, &) = f1(€),1 > 2, we have p(b,5(£)) = (f(7()))! = (£§)", where fi
and fy are coprime polynomials. Since a,b # (0, ...,0), f1 is a non-constant polynomial.
Therefore in (76), even after cancellation, we still have a factor f!(¢). However as shown
in §6, the right hand side of the identity (76) must be an irreducible polynomial, which
is a contradiction. O
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Proposition 7.4. p(z, &) is an irreducible polynomial over C™ x C™. Thus, the Segre family
M restricted to C* x C" = A x A C M x M is an irreducible subvariety of dimension
2n — 1.

We also have the following slightly strong version of the above proposition, which was
used for applying a monodromy argument:

Proposition 7.5. Suppose U is an connected open set in C™\ {0}. Then the Segre family
M restricted to U x C™ or restricted to C™ x U is an irreducible analytic variety.

Proof of Proposition 7.5: We need only to prove the first statement. Recall the no-
tations we defined before: Mging = {(2,€) : 8'” =0,Y} U{(%¢) : Bp = 0,Yj}, and

Mrec = M\Mging. Since p(z,§) is an 1rredu01ble polynomial and 2 65 , gzp jg=1,...,n

are polynomlals with lower degrees, 885” , az ,j = 1,...,n are not identically zero on

= {p(z,€) = 0}. Each of 2 65 ,8
sition 7.2, for each Z(# 0) € C™, there is a certain point § on (); such that a partial

£ defines a proper subvarlety inside M. By Propo-

derivative of p(Z,€) in € at (Z,€) does not vanish. Hence Mging does not contain any
Segre variety. Also the standard projection from Mggg into the z-space is a submersion.
Since @, is irreducible for z € C™\(0, ...,0), Q. N MRggq is connected. To prove the the-
orem, we just need to show that Mgrgg|uxcn is connected. Write the above projection
map to the z-space as ® : Mggg|uxcr — U. Since it is a submersion, it is an open

0is a point in U. As mentioned above, we know that each fiber of ®

mapping. Suppose z
is connected. For any (2°,£%) € Mggg in the fiber above 2", we can choose a connected
neighborhood V of (29, £%) on Mrgc|yxcn such that ®(V) is neighborhood of zg. Hence,
for any z € ®(V), any point in @, N Mgrgg can be connected by a smooth curve inside
Mgec|vxcn to (2°,€°). Since U is connected, by a standard open-closeness argument,

we see that Mrgg|yxcn is connected. O

Appendix A. Affine cell coordinate functions for two exceptional classes of the
Hermitian symmetric spaces of compact type

Define the multiplication law of octonions with the standard basis {eg = 1,e1,--- ,er}
by the following table:

€1 €2 €4 €7 €3 €6 €5
€1 —1 €q —€2 —€3 er —E€s5 €6
€2 —€4 —1 €1 —€p €5 €er —€3
€4 () —e1 —1 —es —eg es er
€er €3 €6 €5 —1 —€1 —€2 —€4
€3 b rd —E€s5 €6 €1 —1 —€q €2
€6 €5 b rd —€3 €2 €4 —1 —e€1
€5 —€p €3 —er €4 —€2 €1 —1




H. Fang et al. / Advances in Mathematics 360 (2020) 106885 51

&1. Case Mi4: Define

xr = (xo,xl,$2,$3,$4,$5,$6,$7),
y = (Yo, Y1, Y2, Y3, Y4, Y5, Y6, Y7)-

Define A;(z,y),j =0,...,7, such that

7 7 7
Ty = ZAj(x,y)ej, where z = ijej and y = Zyjej.
j=0 j=0 §=0
Define B;(z,y),7 = 0,1 such that

zx = By(z,y)eo and yy = Bi(x,y)eo.

Then by computation, we have the following formulas:

Ag = Ao(z,y) YoTo + Y171 + Y2T2 + Y323 + YaTa + Ys5T5 + YeTe + Y77,
A= Ai(z,y) = — yox1+ 1o — Yoa + Yaka — Y327 + Y723 — YsTe + Y6 s,
Ay = As(z,y) = — yoZa + Yoo — YaZi + Y1%4 — Y325 + Ys&3 — Y67 + Y7,
A3 = As(z,y) = — wyoxs+Ysxo+ Y127 — Yr&1 + Y25 — YsT2 — Yale + Yea,
Ay = Ay(z,y) = — yoxa + YaTo — Y122 + Y21 + Y3Te — Y63 — YsT7 + Yrs,
As = As(z,y) = — yo¥s + YsTo + Y16 — Y1 — Y23 + Y3 + Yaly — Y74,
As = As(z,y) = — yoTe + YeTo — Y125 + YsT1 + Y27 — Y72 — Y3T4 + Y43,
Ar = A7(z,y) = — yoxr + Y7o — Y123 + Y3T1 — Y2T6 + Y6T2 — Yals + Y524,
By = DBo(r,y) = of + 27 + 23 + 23 + 2f + 2f + 2F + 27,

By = Bi(z,y) Yo+ s+ us i +udud e

Then the embedding functions of a Zariski open subset A, which is identified with

C'6 with coordinates z := (zo, - ,T7,%0, " ,y7), of Myg := into CP?¢

Eg
SO(10)xSO(2)
are given by:

Z = [15 Lo, L1,L2,T3, T4, L5,T6,L7,Y0, Y1, Y2, Y3, Y4, Y5, y67y77A07 A17A27A37 A47A5a A67
A77 BO, Bl]

&2. Case Mo7: Similarly we define

(xla T2, 333),
(Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7),
(thtlatQat37t4at5;t6at7)7
(OJO,Wl,W27LU3,UJ4,OJ5,OJ6,OJ7).

€ sw gy
\

Define functions A, B,C, Dy, ..., D7, Ey...,E7, Fy..., F; and G such that,

Com(X)=Xx X = , G =det(X),

G-
(s e
Q=
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where D = Z;:o Djej, E = Z;—:O Ejej, F = 2]7:0 Fje; and the matrix X correspond-
ing to the point (z,y,t,w) € C?7 is given by

x1 oy t
X=(7 z2 w|]eTs0).
t w x3

Recall the formulas in [40], we have

ToTy — WW Wt — 23y Yyw — Tot
XxX=| wt—a3y x301—tt ty—xw | € J3(0),
yw —xet  ty— W T122 — YY

det(X) = z129w3 — TWW — Xotl — x3y7Y + 2R (wiy),

where R¢(z) = xg for any x = ZZ:O zie; € O.
By further computation, we have the explicit expressions as follows:

Yots — Ysto + Yi1te — yet1 — yats + ysta + yatr — yrta — T1Ws,
Yote — Yeto — Y1ts + yst1 + Y2tz — yrta — ysta + yats — T1ws,
Yotr — yrto — y1ts + yst1 — yate + Yela — yats + ystsa — T1007.

F5 = F5(z,y,t,w)
F6 :FG x>y7t7w)
Fr = Fr(z,y,t,w)

A=Az, y,t,w) = Tarz — (Wi + Wi + w3 + w3 + Wi + wd + wd + w),

B = B(z,y,t,w) = r1xs — (8 + 13 + 13+ 15 13 + 13 + 13+ t3),
C=C(z,yt,w) = zixy — (Yo +uf + 93 +y3 + i + 3+ s + v,
Do = Do(z,y,t,w) = towo + tiwr + taws + 3wz + taws + tsws + tews + trwr — T3Yo,
Dy = Dy(z,y,t,w) = —  towi + tiwo — tows + tawz — tawr + trws — tswe + tews — T3y,
Dy = Do(z,y,t,w) = —  tows+ towo — tawr + tiws — taws + tsws — tewr + trws — T3y,
D3 = D3(z,y,t,w) = —  tows~+ tswo + tiwr — trwr + tows — tswa — tawe + tewa — T3Ys,
Dy = Dy(z,y,t,w) = —  tows~+ tawo — tiws + towr + taws — tews — tswr + trws — T34,
Ds = Ds(z,y,t,w) = —  tows+ tswo + tiws — tewr — tows + taws + tawr — trws — T3Yys,
D¢ = Dg(z,y,t,w) = —  tows+ tewo — tiws + tswi + towr — trws — taws + taws — T3Yys,
D7 = Dy(z,y,t,w) = —  towr+ trwo — tiws + tawr — tows + tews — taws + tswa — T3Y7,
Ey = Eo(z,y,t,w) = Yowo — Y1W1 — Yawz — Y3ws — YaWs — Ys5Ws — YeWwe — Yrwr — Talo,
Ei = Ei(z,y,t,w) = Yow1 + Y1wo + Yawa — Yawz + Yawr — yrws + Yswe — Yews — Tat1,
Er = Ex(z,y,t,w) = Yow2 + Yowo + Yaw1 — Y1wa + Y3ws — Ysw3s + Yewr — Yrwe — Tatez,
E3 = E3(x,y,t,w) = Yows + Y3wo — Y1w7 + Yrw1 — Yows + Yswa + Yaws — Yews — Tats,
Ey = Ey(z,y,t,w) = Yows + Yawo + Y1w2 — Yow1 — Yswe + Yews + Yswr — Yyrws — Tala,
Es = BE5(z,y,t,w) = Yows + Yswo — Y1we + Yew1 + Yaws — Yswz — Yawr + Yrwa — Tals,
Ee¢ = Es(z,y,t,w) = Yows + Yewo + Y1ws — Yswi — Yowr + Yrw2 + Yswa — Yaws — Tals,
Er = Eq7(x,y,t,w) = Yow7r + Y7wo + Y1ws — Y3w1 + YaWe — YeW2 + Yaws — Yswa — Talz,
Fo = Fo(x,y,t,w) = Yolo + y1t1 + yot2 + y3ts + yata + ysts + ysle + yrt7r — T1Wo0,
o= FR(rytw) = yot1 — y1to — yota + yatz — ystr + y7ts — yste + yets — T1wi,
= F(z,y,t,w) = Yotz — y2to — yali + y1tsa — ysts + ysts — yet7r + yrte — T1W2,
F3 = F3(z,y,t,w) = Yotz — ysto + y1lr — yrt1 + yats — ysta — yate + Yyela — T1ws,
Fy = Fy(z,y,t,w) = Yota — yato — y1la + y2t1 + yste — yets — yst7 + yrts — T1wa,

G = G(z,y,t,w) = 212223 — T1(WE + Wi + w2 + w3 + w? +w? + Wi + w?)
— B+ B+ 12)
—w3(yo +yi T3+ s+ i+ uE +uE +yr)
+ 2{(yowo — Y1w1 — Yawa — Y3ws — Yaws — Ysws — YeWe — Y7wr)to

+ (Yowr + y1wo + Yows — Yaws + Y3wr — Yrws + Yswe — Yews )t1
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Yowz + Yawo + Yawi — Y1wa + Ysws — Ysws + Yewr — Yrwe )tz
Yows + Yswo — Y1wr + Yyrwi — Yaws + Yswa + Yawe — Yewa)t3
Yowsa + Yawo + Y1w2 — Yow1 — Y3we + Yew3s + Ysw7 — Yrws )4
Yows + Yswo — Y1We + Yew1 + Yawz — Yswa — Yawr + yrwa)ls

+
+
+
+
+ (Yows + Yewo + y1ws — yswi — Yowr + yrwa + yzwa — Yyaws)te
+

( )
( )
( )
( )
( )
( )

Yowr + Yrwo + Y1ws — Y3wi + Yows — Yew2 + Yaws — Yswa)l7 ).

Hence the embedding functions of a Zariski open subset A, which is identified with
C?" with coordinates z := (z,y,t,w) = (21,2, 23,Y0" "+ ,Y7,t0, -+ ,t7,Wo, "+ ,wr), Of
Moy = Eg%b(z) into CP5 are given by: z — [1,z,y,t,w, A, B,C, Dy, D1, Da, D3, Dy,
Ds, Dg, Dy, Ey, By, Eo, Es, By, Es, Eg, By, Fo, Fy, Fy, Fy, Fy, Fs, Fg, Fr, G]. The detailed
discussions related to this Appendix can be found in [6], [13] and [40].

Appendix B. Proof of Proposition (I) for other types

In this Appendix, we complete the proof of Proposition (I) for spaces of the other
type.

B.1. Spaces of type II

In this subsection, we establish Proposition (I) for the orthogonal Grassmannians
Grr(n,n). As shown in §2, we have a Zariski open affine chart A C Grr(n,n) of elements
of the form:

1 0 0 0 0 Z12 ctt ZIn
(o Z)= 01 0 0 mme B o
000 -+ 1 =z, —22, -+ 0

Here 2z = (212,213, -+ Z(n—1)n) 1 — Tts conjugate

n(n

A* C (Grr(n,n))* is also a copy of C . We write the local coordinates for A* as

g = (5127 ~'~af(n—1)n)'

The canonical embedding is given by

(1, ... pE(Z,), ...).

The defining function for the Segre family (in the product of such affine pieces) is given
by

p(z,6) =1+ Y Pi(Z,)P(E,)
c€Sk,
2<k<n,2|k
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Write

ry = (Pf(ZU)gegk> (77)

2<k<n,2lk

The local biholomorphic map F defined near 0 € U with F(0) = 0 can be represented
as a matrix:

0 fio o fin
po | e 0 f
—Fin 0

Let rr be

re = (PE(F)o)oes: ) (78)

2<k<n,2|k

Under the notation of §2, it is easy to see rz = (Y1, ..., ¥n), rr = (V1 (F), ..., N (F)).
We write z for the z with the last component z(,_1), dropped. More precisely,

Z = (212, 0y Z1ny 2235 0y 2215 0y Z(n—2) (n—1)s Z(n—2)n)- (79)

Recall z has n’ = n(n —1)/2 independent variables. Thus Zz has (n’ — 1) components. We
define the Z—rank and Z—nondegeneracy as in Definition 3.1 using 1) = rp in (78) and
Z as in (79) with m = n/, respectively. We now prove the following:

Proposition B.1. rp is Z—nondegenerate near 0. More precisely, ranky 4+ y—n/(rp,z) = N.
Proof of Proposition B.1: Suppose not. Without loss of generality, we assume that
rankyy N/ (T7,2) < N.

As a consequence of Theorem 3.10, there exist ¢, € C,4 < k < n,2|k,0 € Sk, which
are not all zero, such that

> > ok E((F)o) (212, s Z(n-2)ns 0)) = 0. (80)

4<k<n,2|n oc€Sk
However, (80) cannot hold by the following lemma, which gives a contradiction:
Lemma B.2. Let

0 hig ... hip
—hia 0O

R e e O
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be an anti-symmetric matriz-valued holomorphic function in a neighborhood U of 0 in
Z = (212) -, Z(n—2)n)) € C™' =1 with H(0) = 0. Assume that H is of full rank at 0. Set
rg similar to the definition of rp,

= (pf(H,), ) . 1
" (p( Joes 2<k<n, 2|k (81)
Assume that aq 5,0 € S, 4 < k < n, are complex numbers such that

> > ok DE(Hy) (212, s Zn—2)n)) = 0 for all Z € U. (82)

4<k<n,2|k 0ESk

Then

agk:O

)

forallo € Si,4 <k <n,2|k.

Proof of Lemma B.2: Suppose not. We will prove the lemma by seeking a contra-
diction. Note that H has full rank at 0. Hence there exist (n’ — 1) components H of
H that forms a local biholomorphism from C" =1 to C"'~!, We assume that these
(n’ — 1) components H are H with hi,j, being dropped, where ig < jo. Without
loss of generality, we assume ig = n — 1,jo = n. By a local biholomorphic change of
coordinates, we assume H=z= (212, -+, Z(n—2)n). We still write the missing compo-
nent as h(,_1),. Now we assume 2(m + 1),m > 1, is the least number k& such that
{ao,k}oecs, are not all zero. We then consider {ag72(m+1)}0652(m+1). We first claim that
Ug2(ms1) = 0 for those o € Sy(nq1) such that pf(H,) involves h(,_1),. More pre-
cisely, if pf(Hy),0 € So(y41) involves h(,_1y,, then o = {i1, ..., i2m, (n — 1),n} for some
1 <141 < ... <igm < m—2. Suppose its coefficient is not zero. Then pf(H,) will produce
the monomial 2;, i, Zi54, -+ Ziom _ 3i2m—2Zism—1(n—1)Zizmn- Lhis term can only be canceled by
the terms of form: z;, . (n—1)Pn—1)n@ OT Ziy,, nh(n—1)n@. But neither of them can ap-
pear in any other Pfaffians. This is a contradiction. Once we know there are no hA(,_1y,
involved, then the remaining Pfaffians have only terms consisting of the product of some
of 212, ..., 2(n—2)n. Their sum cannot be zero unless their coefficients are all zero. This is
a contradiction. We thus establish Lemma B.2. O

We thus also get a contradiction to equation (80). This establishes Proposition B.1. O

Remark B.3. By Proposition B.1, there exist multiindices 3, ..., 3V with all |B]| <
1+ N —n’/, and there is a point
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0 2% 2(1)(”_1) 2
—2% 0 Zo(n-1)  “2n
ZO = ’Z?n—l)n 7£ 0;
*Z?(n—n *Zg(n—n 0 Z?n—l)n
_Z?n _Zgn _Z?n—l)n 0
near 0 such that
917"y (F)) 17 (g ()
az67 az87 0
L L (z") £ 0. (83)
o1F (v (1) o1F (¢ (F))
az8N az8N
We set
00 .. 0 0
0 0 .. 0 0 1
2
60 = | ... . ... = (Cn 75(0’”’71)“ = —ZO .
0 5?n71)n (n—1)n
0
00 ..-€, ), 0
Then it is easy to see that (22,£%) € M = {p(z,£) = 0}.
Write for each 1 <i < j <n,(i,5) # (n—1,n),
9p
d 52 (2:€) d
Li; = (84)

5'zij

% _(2,€) 02(n-1)n

62(n—l)n

which are holomorphic tangent vector fields along M near (2°,£%). Here we note that

Op
0Z(n_1)n
we write

L8 =i,

Bn—2)n
Ll

(2,€) is nonzero near (2°,£%). For any (n/ — 1)-multiindex 8 = (812, ..., Bin—2)n),

Now we define for any N collection of (n’ — 1)—multiindices {3, ..., 3V},

ABY ., BY)(2,6) =

L8 (1 (F))

L% (1 (F))

L8 (YN (F))

L8 (¢ (F))

(2,€). (85)

Note that for any multiindex 3, £? evaluating at (22, £°) coincides with %. We thus

again have

Theorem B.4. There exist multiindices {3', ..., BN}, such that

A(BY, -, BY)(2,6) #0,
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for (z,€) in a small neighborhood of (2°,£°) and B* = (0, ...,0).
B.2. Spaces of type IIT

Let F be a local biholomorphic map at 0. In this case, both Z and F are n x n
symmetric matrices. We write

Z11 212 .-+ Z1n

212 222 ... Z22n
Z - , = (21132125213,“'7znn)~
Z1n 22n -+ Znn

Similar notations are used for F'.
Recall from (13) of &3 in §2:

re = (BHE) o 08, (2 0302, o 0 (), 1), WL, (20,07(2) ), (86)

where w;“ is a homogeneous polynomial of degree k,1 < j < Ni. ¥™ is a homogeneous
polynomial of degree n. Moreover, the components of r, are linearly independent.

We write the number of components in r, to be N = Ny + ... + N,,, where we set
Ny = 1. We will also sometimes write ¢}, = ¢™.

We emphasize that for each fixed k, ¥, ...,wjli,k are linearly independent. Moreover,
each 1/15? is a certain linear combination of the determinants of k x k submatrices of Z.
This will be crucial for our argument later.

We define rp as the composition of r, with the map F’:
P = (VHE), e 0, (F) O(E), e 03, (F)o s 0T (B, o 0 (F), 07 (F) ) . (8T)

In what follows, we write also z;; = z;;. We write det(A) as the determinant of A when

A is a square matrix.
!
ij

numbers. In the following lemmas, when we say h always has the terms a P, bIS, we mean
h has the term aP if and only if it has the term bP.

Let P, P be monomials in z s, and h a polynomial in zgjs. Let a,b be two complex

Lemma B.5. Fizing 1 <i,5 <n, let P = z,2,;Q and pP= Zij2nn @ with @ a monomial
mn zgjs. The following statements are true.

o Let A be a square submatriz of Z. If z;; { Q, then det(A) always has monomials of
the form cP, —cP for some ¢ € C depending on the submatriz A. (If det(A) does
not have any multiple of P, it does not have any multiple of ]3, either; vice versa.)
If z;;|Q, then det(A) always has monomials cP, —(¢/2)P for some ¢ € C depending
on A.
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o Let k> 1. Let ¥F(2) be as defined in (86), 1 <1< Ny. If ;1 Q, then 1y (z) always
has monomials AP, —=\P for some X € C. If z;;|Q, then 1F(z) always has monomials
AP, —(A\/2)P for some A € C.

Proof of Lemma B.5: The first part is a consequence of the Laplace expansion of a
determinant by complementary minors. The second part is due to the fact that w;-“ isa
linear combination of the determinants of submatrices of Z of order k. O

Similarly, one can prove in a similar way Lemmas B.6-B.8.

Lemma B.6. Fizing 1 < j <n—1, let P = 2j,2(n—1)(n—1)@ and P = Zj(n—1)Z(n—1)n®@
with Q a monomial in z[;s.

o Let A be a square submatriz of Z. If zj, 1 Q, then det(A) always has monomials
cP, —cP for some c € C. If z,|Q, then det(A) always has monomials cP, —2¢P for
some c € C.

o Letk > 1. Let ¥F(2) be as defined in (86), 1 <1< Ny. If zjn 1 Q, then ¥F(2) always
has monomials AP, —A\P for some A € C. If 2;,,|Q, then zlzlk (2) always has monomials
AP, —2\P for some A € C.

Lemma B.7. Fizing 1 <i <n—1, let P = 2j(n,_1)20:Q and P = 2iiZ(n—1)n@ with Q a
monomial in z;;s.

o Let A be a square submatriz of Z. If z(n—1)n 1 @, then det(A) always has mono-
mials cP,—cP for some ¢ € C. If 2(,—1)n|Q, then det(A) always has monomials
cP,—(c/2)P for some c € C.

o Letk > 1. Let ¥F(2) be as defined in (86), 1 <1 < Ny. If Z(n-1)n 1 Q, then VE(2)
always has monomials AP, —AP for some A € C. If Zn-1)n|Q, then ¥ (z) always
has monomials AP, —(\/2)P for some \ € C.

Lemma B.8. Fizing 1 < i <n—1,1<j <n—11i#j, let P = 2j(—1)2jQ, P2 =
ZinZ2j(n—1)Q, and P = zij2(,_1)n Q with QQ a monomial in zgjs,

o Let A be a square submatriz of Z. If z;; 1 Q, 2(n—1)n 1 @, then det(A) always has terms
1P+ caPy,— (1 —‘ng)ﬁ for some ci,co € C. If 25 1 Q, z(g,l)n|Q, or 2ij|Q, Z(n—1)n 1
Q, then det(A) always has terms c1 Py + CQPQ,_CI;CQP for some c1,co € C. If
2ij|Q; Z(n—1)n|Q, then det(A) always has terms c1 Py + co P, —Clz‘”];.

o Let k > 1. Let ¢f(z) be as defined in (86), 1 <1 < Ny. If z;; 1 Q and 2(n—1yn 1
Q, then wl’“(z) always has terms A\ Pp + AaPa, — (A + )\2)15 for some A, 3 € C.
If zij 1 Q, 2(n—1)nl@, o7 2i4|Q, 2(n—1)n 1 Q, then VF(2) always has terms A\ P +
)\2P27_>\1-5/\2ﬁ for some A1,y € C. If 25|Q, 2(n—1)n|Q, then YF(2) always has

terms M Py + Ao P, 7/\1:)\215 for some A\, Ay € C.
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We write Z for z with the last components z,, being dropped. More precisely,

Z = (2115 o0 Z1n» 222, 0y 22005 0y Z(n—1) (n—1)1 Z(n—1)n)- (88)

Recall z has n' = n(n+1)/2 independent variables. Thus Z has (n’ — 1) components. We
define Z—rank and zZ—nondegeneracy in the same way as before, using rp in (87) and z
in (88) with m = n’. We now need to prove the following:

Proposition B.9. rr is Z—nondegenerate at 0. More precisely, rankyy y_n/(rp,z) = N.

Proof of Proposition B.9: Suppose not. Then one easily verifies that the hypothesis
of Theorem 3.10 is satisfied. As a consequence of Theorem 3.10, there exist cé? eC,2<
k <mn,1 <j < N, which are not all zero such that

n Nk

ZZC?’L#?(F(ZH,...,Z(nfl)n,())) = 0. (89)

k=2 j=1
Here as before, we write N, = 1,¢% = ¢".
Then we just need to show it can not happen by the following lemma:

Lemma B.10. Let

hi1 hio ... hiy

o= h12 h22 hQn
hin oo oo hpn

be a symmetric matriz-valued holomorphic function near 0 inzZ = (211, -+, Z1n, 222, -, Z2n,

vy Zn—1)n) € C™' =1 with H(0) = 0. Assume that H is of full rank at 0. Set rg in a
similar way as in (36):

rit = (HO), s ke () 03 (H) o 0, (H), e 6 (H), o 5 (H), 0 ()
Again we write Ny, = 1,9™ = ¢}, . Assume that a?,? <k<n,1<j3<n are complexr

numbers such that

n Ng

ZZafzﬁf(H(%’)) =0 for zeU. (90)

k=2 j=1

Then

foreach 2 <k <n,1 <j<Npg.
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Proof of Lemma B.10: Suppose not. We will prove the lemma by seeking a contradic-
tion. Notice that H has full rank at 0. Hence there exist (n/—1) components H of H that
gives a local biholomorphism from C n'=1 {60 C™ 1. We assume these (n’—1) components
H are H with hi,j, being dropped, where iy < jo. Then we split our argument into two
parts in terms of ig = jg or ig < jo-

Case I: Assume that ig = jo. Without loss of generality, we assume ig = jo = n.
By a local biholomorphic change of coordinates, we assume H=7%= (2115 ) Zn(n—-1))-
We still write the last component as h,,. Now we assume m > 2 is the least number &
such that {a}, ..., a}, } are not all zero. For any holomorphic g, we define Tj(g) to be the
homogeneous part of degree [ in the Taylor expansion of g at 0. Now the assumption in
(90) yields:

If
o

(91)

N,
> af i (H(2)
j=1

We first compute

zamw zamw St 2ty )

formally. Namely, we regard h,,, as a formal variable and only conduct formal cancella-
tions. We write formally

Nm
> @Y (2115 s Zn—1yns honn) = Pi 4 hon Pa. (92)

J=1

Here Pi = Pi(211,..+, 2(n—1)n) i @ homogeneous polynomial of degree m, and P, =
Py(211, -y Z(n—1)n) is a homogeneous polynomial of degree m — 1. We claim P, # 0.
Otherwise,

Za;‘nw;ﬁ(zll, "'az(n—l)n,hnn) = Pr.

This implies that Z] " @ (2115 -+ Z(n—1)n> hnn) does not depend on hy,, formally.

Then we can replace h,,, by z,,. That is,

N N
Za;nw (2117 s Z(n—1)n> Znn) = Za;nw (2117 < Z(n—1)n> hnn(g)) =P (93)
Jj=1 Jj=1

By (91), we see that (93) is identically zero. This is a contradiction to the fact that
{¥7, ..., ¥R} is linearly independent.
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Now since P2 # 0, thus by (92), Z] 1 aP T (211, o Z(n—1)n, Pnn) has a monomial of

the form ,uP = pzijhnn@ of degree m for some 1 < ¢,j < n,u # 0 and some monomial
Q). By Lemma B.5, we get that ZJ " @Y (2115 -+ Z(n—1)n, hnn) has also the term —pP
or —2uP, where P = Zin#n;Q. This is a contradlctlon to (91). Indeed, P can be only
canceled by the terms of the forms: zmhnn@ or znjhnn@, where Cj is of degree m — 2.
But they cannot appear in determinant of any submatrix of H as z;,(or z,;) can not

appear with h,,,.

Case II: Assume that ig # jo. Without loss of generality, we assume i = (n —
1), 70 = n. Then H = (h11, ooy h(n—1)(n—1)> hnn) is a local biholomorphism. By a local
biholomorphic change of coordinates, we assume H=7= (2115 -, Z(n—1)n ). We will still
write the remaining component as h(,_1), = hy(n—1). Note that the fact we are using
only is that {211,...,2(n—1)n} are independent variables. Hence, to make our notation
easier, we will wrlte

~

H= (2117 ~'~7Z(n—1)n) = (wlla ooy Win, W22, -.., W2n, "‘7w(n—1)(n—1)7wnn)

such that they have the same indices as h’s in H. Now we assume m is the least number
k such that {a}, ..., aé“vk} are not all zero. Then again assumption (90) yields that

N,
> al i (H(Z) | =0 (94)
j=1
Again we formally compute that
Nm
> @ (Wi, o hn—1yns Wan) = Q1+ hin_1)n Q2. (95)
j=1

Here Q1 = Q1(w11, .., Wn—1)(n—1)> Wnn) is a homogeneous polynomial of degree m. Sim-
ilarly, we can show that Q2 # 0. We claim that (95) does not have a monomial of the
form A (—1)nh(n-1)nQ. Otherwise, by Lemma B.5, we get that (95) has also a monomial
of degree m of the form: w(,—1)(n—1)wnn@. But note that in (95) it can be canceled
only by h(n—1)nh(n-1)n@- Then h(,_1), will have a linear term w,_1)(n,—1). But then
hn—1)nh(n-1)n@ will produce the term w,_1)(n-1)Wn-1)(n—1)&- This cannot be can-
celed out by any other terms.

Now since Q2 # 0, (95) has a monomial of the form w;;h(,_1),@, where @ is another
monomial in w’s. Here 1 <4, j < n. Moreover, (i,j) # (n—1,n—1),(n—1,n),(n,n—1)
or (n,n). We first assume 1 < 4,j <n—1,7 # j. Then by Lemma B.8, (95) has either P;
or P, where Pi = w;(n—1)Wn;Q, P2 = winw;jn—1)Q. Note P1, P, can only be canceled
by the terms w;(,—1)hn—1)n@, Wnjhn—1)nQ, Winhn—1)nQ, Wjn-1)h(n-1)nQ- So one of
them will appear in (95). Whichever case it is, by Lemmas B.5, B.6, (95) will have either
P = wipwm—1)(n-1)@, or P= Wi(n—1)WnnQ for some 1 < [ < n. We assume, for instance,
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(95) has the monomial P. Then it also has the monomial P = Win—1)Pn—1)n@ by
Lemma B.6. Note that the only term that can cancel P and appear in some determinant
is winhp(n-1)Q. Hence hy,,_1) has a linear w(,_1)¢,—1) term. Then P will have the
monomial wy(, —1)W(,—1)(n—1)&, which can not be canceled by any other terms. This is
a contradiction. The other cases can be proved similarly. O

This establishes Proposition B.9. O

Remark B.11. By Proposition B.9, there exist multiindices 51, ..., 3V with |37 < 1+
N — pq, and there exist

0 0
0 211 “1n 0
Zln Znn

near 0 such that

018 (4 (F))
VAR

9™ |y (7))
azZBN

218" (o ()

018 (g (7))
FYAiE

(%) # 0. (96)

0z

Here we simply write rp = (¢1(F), ..., ¥n (F)).

‘We then set

0 .. 0 0 , 1
=0 .. 0 0 )JeCm, & =——.
. 0 &,

0 €0 Zpn
It is easy to verify that (20,50) e M ={p(z¢&) =0}
Write for each 1 <i < j <n,(i,5) # (n,n),

o 2226 9

~ 9, 0 )
821] azfn (Z7 é.) 8znn

Lij (97)

which are holomorphic tangent vector fields along M near (2°,£). Here we note that

stn (2,€) is nonzero near (2°,£0). For any (n’ — 1)-multiindex 8 = (511, ..., Bin-1)n), we

write

B _ pB Bn—1)n
£ =Ly

Now we define for any N collection of (n’ — 1)—multiindices {5%, ..., ™},
L7 (¢ (F))

L8 (Yn(F))
LPY (41 (F))

ABY, .., BN (2,€) = L
L8 (Y (F))

(2,6). (98)
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Note £” evaluating at (z°,£0) coincides with %. We have

Theorem B.12. There exist multiindices {8, ..., BN} such that A(B, ..., BV )(z,€) # 0 for
(2,€) in a small neighborhood of (2°,£°) and B* = (0,0, ...,0).

B.3. The exceptional class Mo
In this setting, we use the coordinates
= (.’131, XT2,T3,Y0, -+ Y7, t07 ceey t7a Wy eey ’11)7) € 627'

The defining function of the Segre family described in (17) is:

N
p(z,€) =147 e =1+ > 1i(2)1hi(€), where N =55 and
1=1

Tz = (x17$27$37y07 "'7y7at05 "'7t77w07 ey Wr, Aa B7 Ca D07 "'D77 E07 "'7E77F05 "'7F77 G)
(99)

Here A, B,C, D;, E;, F; are homogeneous quadratic polynomials in z and G is a homo-
geneous cubic polynomial in z:

7 7 7
A=x2x3—Zw?,B:xlxg—Zt?,szlxg—Zy?. (100)
=0 =0 =0

For the expressions for D;, E;, F;, G, see Appendix A. Let F be a local biholomorphic
map near 0. We write

F= (¢17 ¢27 ¢37 f107 sy f17a f20a ey f277 f307 ey h37)~

Also define rr to be the composition of r, with F":

rrp =1, 0F = (¢1,02, 03, fi0, -, f17, f205 - for; [305 -y f37, A(F), B(F'), C(F), ...., G(F)).

(101)
Notice that r has 55 components. We will also write
rp = (Y1(F), .. 55 (F)).
We write z for z with 23 being dropped. Namely,
Z = (1,22, 90y +ey Y75 L0y oo T7, Wy <vy W7 ). (102)

We define the Z—rank and @¥—nondegeneracy as in Definition 3.1 using rr in (101)
and z in (102) with m = 27.
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Proposition B.13. F is Z—nondegenerate near 0. More precisely, ranksg(F,Z) = 55.

Proof of Proposition B.13: Suppose not. As a consequence of Theorem 3.10, there
exist cy,...,co8 € C that are not all zero, such that

clA(F(‘rthv 07 Yo, -5 ’ll)?)) +o+ CQSG(F(xthvOa Yo, ...,U}7))

0. (103)
We will show that (103) cannot hold by the following lemma:

Lemma B.14. Let H = (1, %2, 3, hio, --., R17, h20, .o, a7, R3o, ..., hgy) be a vector-valued
holomorphic function in a neighborhood U of 0 in Z = (21,22, Y0y -+, Y7, L0y -vs b7, W0, «ny W)
€ C26 with H(0) = 0. Assume that H has full rank at 0. Assume that ay, ..., ass are com-
plex numbers such that

a1 A(H(Z)) + ... + a2sG(H(Z)) =0 for all Z € U. (104)
Then a; =0 for all 1 < i < 28.

Proof of Lemma B.1/: Suppose not. Notice that H has full rank at 0. Hence
there exist 26 components H of H that give a local biholomorphism from C26 to
C?6., We assume these 26 components H are the H with n dropped, where n €
{1, 2,13, hio, ..oy R17, h20, .oy a7, B30, .., ha7}. By a local biholomorphic change of co-
ordinates, we assume

~

H= (1‘15 x2,Y0, -+ y77t03 "'at77w07 ...,”LU7)-

We still write the remaining components as 1.

Case I: If n € {¢1,42,13}, without loss of generality, we can assume n = 3. We
first claim that the coefficients of A, B, i.e., ay,as are zero. This is due to the fact
that 2, w?,0 < i < 7 can only be canceled by t;13,w;13, which do not appear in the
expressions of A(H), ..., G(H). We then claim the coefficients of C' are zero, for x5 can
not be canceled. Then the coefficients of all D’s have to be zero, for each ¢;w; is unique
and can not be canceled. Then it follows trivially that all other coefficients are zero.

Case II: If n € {hyg,..., h17, h2o, ..., hor, h3o, ..., har }, without loss of generality, we
assume 7) = hg7. Notice that the only fact we are using about H is that its components
are independent variables. For simplicity of notation, we will write

H = (Il,xz,xg,yo, Y7, to, ...,t7,w0, veey wﬁ).

We first claim that the coefficient of A is zero. This is due to the fact that zsx3 cannot
be canceled. We also claim that the coefficient of B is zero. Suppose not. Notice that ¢
can only be canceled by t;h37. Then the coefficient of each D; is non zero for 0 < i < 7.
Moreover, x1x3 can only be canceled by x1hs7. This implies h3; has a linear xs-term.
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Then, in particular, the tyhs7 term in Dy will produce a tyxs term. It cannot be canceled
by any other terms. This is a contradiction. Similarly, one can show that the coefficient
of C is zero. Then we claim the coefficient of Dy is zero. Otherwise, to cancel the x3yg
term, h37 needs have a linear x3 term. Then the term t7hsy in Dy will produce a trxs
term, which cannot be canceled by any other term. By the same argument, one can
show that the coefficients of all D;,0 < ¢ < 7, are zero. Similarly, we can obtain the
coefficients of all E;,0 < i < 7, are zero. Then we claim the coefficients of all F’s have
to be zero. This is because each y;t; is unique. It can not be canceled out. Finally we
get the coefficient of G to be zero. O
This also establishes Proposition B.13. O

Remark B.15. By Proposition B.13, there exist multiindices 3, ..., 3% with \53\ <29,
and there exist

0_ /.0 .0 .0.0 ) 0.0 0 0
20 = (27, Tgy T3, Y s oovs Y75 £ oy by Wy ooy W7 ), Xy # 0,

such that
018" (g, (1)) 018" (55 (F))
9zP! 9zh*
(2°) #0.
1™ (g () 9187 (4p55 (1))
9zA%° 9zP%
Then we set €2 = (0,0,£9,0,...0,0,...,0,0,...,0), £y = —2. It is easy to see that

x

W

(22,£%) € M = {p(z,£) = 0}. Write

Op
L= 290 gy
aiL'i 8_;3,(’275) 8%3
dp P
Liy; = 9 _Mivoﬁiﬁﬁ
yi 5 (2,€) Oxs
Op
L= B9 0 iy
8ti 88953 (276) 8563

P i G
P w22 (z,¢) O

For any 26-multiindex 8 = (i, ..., Bag), we write £F = Efl...ﬁggﬁ. Now we define for
any 55 collection of 26—multiindices {3, ..., 3%},

L (Pr(F)) o L (455(F))

ABY, ..., %) (2,€) = L Lo
L7 (1 (F)) o L7 (¢s5(F))

(2,6). (105)
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Note that for any multiindex, £? evaluating at (22, £°) coincides with %. We have,

Theorem B.16. There exist multiindices {3, ..., 3°°}, such that
A(BY, .., B7)(2,6) #0

for (z,€) in a small neighborhood of (2°,£°) and p* = (0, ...,0).
B.J. The exceptional class Mg

This case is very similar to the hyperquadric setting. In this case, we write the coor-
dinates of C'6 as

Z = ($0, <y LT, Y05 -0y 97)
The defining function of the Segre family as described in (16) is
N
p(z,8) =141, -1e = 1+Zz/)i(z)1/1i(§), where N = 26 and
i=1

T, = (1‘0, s 75 Y0y -5 Y7y 1407 ...A7, BO7 Bl) (106)

Here A;,0 < i <7, By, B; are homogeneous quadratic polynomials in z. For instance,

7 7
By = Zw?,Bl = ny
i=0 i=0

For the expressions for A;, see Appendix A.
Let F be as before. We write

= (fo, ceey f77 ]?0, f~'7)

And define rr as the composition of r, with F:

rp =71.0F = (fo, o, f1: for o fr:s Ao(F), ... A7 (F), Bo(F), By (F)). (107)

Notice that rr has 26 components.
We will need the following lemmas:

Lemma B.17. For each fized po, ..., g with (Z?:o p2)+1=0 and fized (yo,...,y7) with
(Z?:o wiyi) +y7 # 0, we can always find (o, ..., &7) such that

7

Ltyobo+ . +urlr=0; Y (&) =0, & =p;&,0<5<6, & #0.
=0
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Proof of Lemma B.17: The proof is similar to that as in the hyperquadric case. O

Take the complex hyperplane H : y7 + Z?:o wiy; =0 in (2o, ..., x7, Yo, ..., y7) € CO.
Write Ly = 8%,...,& = 6‘%;L8 = 8% — Mla%v e Lig = 8%6 — uﬁaim.

Then {L;}}2, forms a basis of the tangent vector fields of H. For any multiindex
a = (ao, .., a14), we write L% = Ly°...L{}*. We define the notion of L—rank and L—non-
degeneracy as in Definition 3.1 using 7 in (107) and L® instead of z¢. We write the kth

L-rank defined in this setting as ranky (rp, L). We now need to prove the following:
Proposition B.18. F' is L—nondegenerate near 0. More precisely, rankyq (rp, L) = 26.

Proof of Proposition B.18: Suppose not. As in the hyperquadric case, by a mod-
ified version of Theorem 3.10, we have that there exist 26 holomorphic functions
go(w), ..., ga5(w) defined near 0 on the w—plane with {go(0), ..., g25(0)} not all zero such
that the following holds for z € U:

25

Zgi(y7 + poyo + - + peye )i (F(2)) = 0. (108)
i=0

Then since F has full rank at 0, one can similarly prove that go(0) =0, ..., g15(0) = 0.
Hence we obtain:

Lemma B.19. There exist cg,...,cg € C that are not all zero such that
Cvo(F(Z)) + ...+ C7A7(F(Z)) + CgBo(F(Z)) + CgBl(F(Z)) = 07 (109)
for all Z € U when restricted on y7 + Z?:O wiy; = 0.

We then just need to show that (109) can not hold by the following lemma after
applying a linear change of coordinates.

Lemma B.20. Let H = (ho, ..., h7, go, .., g7) be a vector-valued holomorphic function in a
neighborhood U of 0 in 2 = (x¢, ..., 07, Y0, ---,Ys) € C® with H(0) = 0. Assume that H
has full rank at 0. Assume that ag, ...,aq are complex numbers such that

agA1(H(Z)) + ... + a7 A7(H(2)) + asBo(H(2)) + agB1(H(2)) =0 for allZ € U. (110)
Then a; =0 for 1 <i < 10.

Proof of Lemma B.20: Suppose not. Notice that H has full rank at 0. Hence there exist
15 components H of H that gives a local biholomorphism from C!5 to C!5. We assume
these 15 components H are H with 71 being dropped, where n € {ho, ..., h7, go, ..., g7}. By
a local biholomorphic change of coordinates, we assume H= (0, e, 7, Y0, -, Ys ). We
still write the remaining component as 7. Without loss of generality, we assume 1 = g5.
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First we claim the coefficient ag of B; is zero. Suppose not. Note that y?, 43 can be
only canceled by g2. Then g; will have linear y1, y2 terms. Hence g2 will produce a 192
term. It cannot be canceled by any other terms. This is a contradiction. Now we consider
the coeflicients of Ay, ..., A7. We claim a; = 0,0 < i < 7. Suppose not. We write

y7(Z) = Xoyo + ... + Ae¥s + poxo + ... + prrr + 0(2),

for some A;, pu; € C,0 <4 <6,0<j <7. By collecting the terms of the form xoy; in the
Taylor expansion of (110) we get

a; +az)\; =0,0<1i<6. (111)
By collecting the terms of the form z1y;,0 < i < 6, we get,

a1 +agzhg =0, —ag + az 1 =0, —ag + azhy =0, —ay + azA3 =0,
as + asAys =0, —ag + azAs = 0,a5 + azhg = 0.

By collecting the terms of the form z9y;,0 <7 < 6, we get,

as + aﬁ>\0 = 0,&4 + aﬁ)\l = 0, —ap + (Lg)\g = 0, —as + a6)\3 =0.
—aq + aghg = 0,a3 + aghs = 0, —ar + aghg = 0.

One can further write down all the coefficients for z;3;,0 <7 < 7,0 < j < 6. Once this
is done, one easily sees that a; # 0 for any 0 < i < 7. Otherwise, all a; =0, 0 <¢ < 7.
Then by the above equations, we see that the matrix

ap ai a2 a3 a4 as Qe
a1 —ag —aq4 —a7 a2 —ag as (112)
az Qa4 —Gp —as —ap az —arg

is of rank one. Then one can get a contradiction by, for instance, carefully checking the
determinants of its 2 X 2 submatrices. Hence a; = 0,0 < i < 7. Finally we easily get the
coefficient ag of By is zero. 0O

This then establishes Proposition B.18. O

Remark B.21. First fix ug, ..., ug with (Z?:o p?) + 1 = 0. By Proposition B.18, there
exist multiindices £, ..., 5% with |37| < 11, and

6

ZO = (1‘8, ~-~733(7),y8, -~-,y9) with Zuiyi + Y7 7é O,
=0

such that
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L7 (1 (F)) .. LP (tag(F))
W0 (F) . L7 (dool(F))

We then let €Y = (0,...,0,&5, ...,£9), where (&), ...,£?) is chosen as in Lemma B.17
associated with (3, ...,42). That is

(2°) # 0.

7
L4Hy080 + 4+ 9980 =0; Y (€))7 =0, & = p;80,0<5 <6, & #0.
i=0
It is easy to see that (z°,£°%) € M
We now define
L-—a— )io< <T (113)
2_833,» )8 -
7
9
9 (2.8 9
L i:——y7—0<'<6; 114
8+ E ,,( &) Oy St (114)

for (2,€) € M near (2°,£°). They are tangent vector fields along M. Moreover, ;Tp(z, €)

is nonzero near (2, ¢Y).
We define for any multiindex o = (v, .., a14), £* = L{°...LT}*. Define for any 26
collection of 15-multiindices {3, ..., 326},

L (1(F)) o L7 (26(F))
A(BY, ..., 3%)(z,6) = e S (2,6). (115)
LI (1(F)) oo L5 (a6 (F))

By the fact that Z:=o(f?)2 = 0, one can check that, for any multiindex o =
(ag, .., a14), LY = L® when evaluated at (2°,£0). Then as before, we get the follow-
ing:

Theorem B.22. There exist multiindices {3, ..., 3?5} such that
A(BY .., B7)(2,€) # 0,
for (z,€) in a small neighborhood of (2°,£°) and B* = (0,0, ...,0).
Appendix C. Transversality and flattening of Segre families for the remaining cases

In this appendix, we will complete the proof of Theorem 6.2 for the remaining cases.

Continuation of the proof of Theorem 6.2: By the same method used before, we first
establish the second part of Theorem 6.2 by assuming the first part of Theorem 6.2 is true.
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Namely, suppose £° € C™\ {0} and 2° and 2! are smooth points on the Segre variety Qo
such that Q.0 and Q.1 are both smooth at £° and intersect transversally there. We shall
prove that there is a biholomorphic parametrization G(&1, &, ..., &) = (&1,&2, . &n), with
(51,52, ,fn) € Ui xUsx...xU, C C". Here when 1 < j <2, U; is a small neighborhood
of 1 € C. When 3 < j < n, U; is a small neighborhood of 0 € C with G(1,1,0,---,0) =
€9, such that G({&; =1} x Uy X ... x Up) € Q40,G(Uy X {€o =1} x Uz x ... x U,,) C Q.1,
and Q({él =t} xUs x ... x Uy),G(U; x {52 = s} xUs x ... xUy),s € Up,t € Uy are
open pieces of Segre varieties. Also, G consists of algebraic functions with total degree
bounded by a constant depending only on (M,w). By the first part of Theorem 6.2, we
have

V(22 €)leo | _

Without loss of generality, we assume W £ 0 at ¢€°. Now we introduce

new variables &, ..., &, and set up the system:

P p(°,6€) =0
P2: p(zl,&g)zo
Py: &-&=0

P,: & —-§=0

Then %((’2:::32)) 4, %((Igzji::g‘)) A #0, where A= (£1,...,60, 61, ., 6,) = (1,1,0,...,0,1,0,

...,0). By Lemma 4.9, we get the needed algebraic flattening with the bound total degree.

Next, we proceed to prove the first part of Theorem 6.2. It suffices to find a sufficiently
close point 2! to 2% such that

ram VP(ZO,€)|5O> _
ank (vmzl,mgo =2

We shall establish the above equation case by case as follows:

Case 3. Symplectic Grassmannians: Pick £, = (1,0,0,...,0). The defining equation of
the Segre family is p = 1+ > | 2 +2 ZKj zii&ij+2 Zzgi<j(zllzij —z152i1) (€165 —
inkij) + 2iso(zi1zi — 233)(En&i — &) + Xk j<r iz (Fiizn — zazg)(Eiiér —
&i1&k;) + high order terms, where z;; = z;; for j > 4.

Qeo = {z|p(2,€%) = 14 z11 = 0},Vp(2,£%) = (1,0,...,0). Hence Qo is smooth,
and for z € Qg we have z = (=1, 212, 222, 213, -+, Z(n—1)n). Pick N2 € Q¢o. Then
Qzr = {€10=p(2%,8) = 1430 25&i+2 305 255605 +2 Yacicj (21125 — 2127 (Endij —
§ir1j) + Z;L:Q(Zflzfi - (Zfi)Q)(fllﬁiz‘ - f%i) + Zi<k,j<l,(i,j)¢(1,1)(ijzil - Zislzlzj)(gijfkl -
&i1&k;) + high order terms}, for s =0, 1.
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op(z°,6)  9p(z%8) ap(=°,8) ap(2°,6) Ap(2°,8)
Vp(2%8)leo ) _ [ 2 dEa D& 0&,; v OEan |
Vp(zh,€)]eo 9p(z".8)  9p(z",8) 9p(2".€) 9p(z",€) op(z'.8) | 1€
0€11 0&12 91n 0&ij O&nn
-1 228y 2203 .. 220, —(20y)® —22Dh2fs .. —(2—dy)2d;e) .
I . 221y 2213 . 221, —(219)% —22i521, .. —(2—5”)2%]-2%2- '

Hence, we have

rank (vp(zov§)|£0>

V(2" €)leo
. =1 229, 229 0220, —(299)% —229,20, .. —(2- (Sij)z?jz?i
=ran
—1 225 228 . 22, —(2dy)? —22ip2i, .. —(2-— 5@3‘)2%]-2%1-
-1 225 229, .. 228, —(2- 6ij)z(1)jz(fi
= rank 1 1 1 Nl AL 11 A1 AL :
0 2A212 2A213 QAZIn (2 61J){leAZM + Azljzli AzleZh}

where Az}, = 2z}, — 20 If we pick 21, # 205, then the above rank is 2.

Case 4. Orthogonal Grassmannians: Here we use the Pfaffian embedding stated in
§2. Fixing €* = (£, €03, 05, -+ &0, 1)) = (1,0,...,0), the defining function of the
Segre family is given by p =1+, 2i;&i;5 + Doy (212215 — 210225 + 215224) (§12635 —
§ui€2j +&15€20) + 2icjchar (1,2 ¢ iy (Zig 2ht — ZikZjt + Zazjn) (G — &ini + Cajn) +
high order terms. Note here we use the notation zj; := —z;; for j > i.

Note Qeo = {2]0 = p(2,£%) = 1+212}. Hence it is smooth. Since z € Q¢o, we have z =
(=1, 213, .+, Z(n—1)n)- Pick 20, 21 € Qeo. Then Q. = {£]0 = p(2%,§) =1+ ZK]» 285 +
22<i<j(zfzzfj — 2725, + ijzgi)(fm&j —&1iboj +&15€20) + Zi<j<k<l,{1,2}gz{i,j,k,l} (ijzzl -
ZinZ5 T 20750 (GigSh — &injr + Sajk) + heo.t.s.}, for s = 0,1.

0 9p(z"8)  9p(z°.6) 9p(2°.6) 9p(z°.6) 9p(2°.€)
Vp(2%, &)l \ _ [ o8 PE DL T Og T e ||
Vp(zh,€)|eo 9p(z1&)  dp(z18) ap(z1.8) ap(z1.8) op(z1.8) | leo
0&12 0&13 O&1n 37 T 0 (—1)n
(1 Ao 2% 28 (—29529, + 2%28)a ... (—z?izgj + z?jzgi)a
R 21 za (—zigzay + 2i4253)a (—zi;23. + 21.23.)a '
13 - In - 2n 13724 14723 1725 15~24
Hence,
Vp(zo §)|£0 -1 2?3 z(l)n zgn
rank ’ = rank .
(Vp(z1,§)|£o 0 Azl .. Az, .. Az, ..
Here Azj; = z}; — 2. If we choose z{3 # 2{3, then the rank is 2.

Case 5. Mg: Pick &0 = (k3, k%, ..., 63,00, 10, ....,n%) = (1,0,...,0), 2 € Qo. The
defining equation of the Segre family is 1 + xgrko + z151 + ... + T7R7 +yono + 171 + --- +
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yrnr + (zoyo + z1y1 + ...) (komo + K11 + o) + (—yox1 + y1zo + ...) (—nok1 + M ko + ...) +
et (@i + ) (kP r AR R )M i+ ) = 0.

Qeo = {2]p(2,€") = 1+ o+ (23 + 27 + ... + 22) = 0}, and Vp(2,£%)],0 = (1 +
220,221, .., 229,0, ..., 0). Hence Q¢o is smooth. Pick 20,2t € Qeo. Then Q.- = {£|0 =
p(2°,8) = 1+ agro +xik1 + ...+ T7h7 + Y310 +yim + ...+ y7nr + (25yg +21yi +-..) (Komo +
K1+ )+ (—ydes +yiad + . ) (—nok1 1Ko+ ) e+ (28)2 + (25)2 + .+ (23)?) (ko +
k1?4 %)+ (96)7 + (U)% + o+ (U3)?) (G + nf + . + 7)), for s =0, 1.

op(z°.6)  9p(z°.6) op(z°,€)
rank vp(zov §)|£0 > rank Oko Ok k7
Vp(zt, &) ) = ap(z".8)  9p(z'.8) ap(z1.e) | 1€°
ko oK1 oyr
—2—z8 29 23 .. 29
= rank <_2_m1 R ()
0 Tr T3 7
Since (—2 — 20,29, 29, -+ ,29) # (0,...,0), we can pick z! sufficiently close to 2, such

that the above rank is 2. That is because Q¢o is irreducible and the subvarieties, defined
by 2 x 2 minors of the last matrix in (C), are thin subsets of Q¢o.

Case 6. Mor7: Take £0=(€9,€9,€9, 08,19, ...;n$, 68, 69, o 69,70, 70, ., 79) = (1,0, ..., 0).
The defining function of the Segre family is 1 + 7 - r¢ where

Ty = (IBl,IEQ,JEg,yo, <y Y75 205 o0y 27, WO, +ony W, Aa Ba Ca DO? '-'D7a EOa Ex3) E75 FOa ""F77 G)
7"5 = (51,52,63, ceny 7]7, ey K7y o T, A(f), B(f), C(f), ...,1)7(6)7 ceey E7(£), ceey G(f))

Here A, B,C, D;, E;, F; are homogeneous quadratic polynomials; G is a homogeneous
cubic polynomial defined in Appendix A.

For our purpose here, we present terms only involving &1, &2, and omit those involving
€3, 710, My <oy 75 KOy K1y «ovy K75 T05 T1, -, T7 a8 follows: p(z,&) = 14+ x1& +a2&a+...+ (2120 —
(X092 (Eaée — (Cig(r)?) + -

Qeo = {z|p(2,£%) = 1 + 21 = 0},Vp(2,£% = (1,0,0,...,0). Hence Qg0 is smooth
and for z € Qg, we have z = (—1,z9,23,...,). Pick 2°,2! € Qgo. Then Q.- = {£[0 =
p(z%,€) = 1+ @il + 236 + . + (2525 — (Do) (e — (Ti_o(r:)?) + ...}, for
s=0,1.

rank <Vp(zo7 €)leo )

Vp(zl 5 5) |EO
ap(z°,6)  9p(z°8)  9p(z%.8) p(z°,8) 9p(2°,8) ap(z°,€)
— rank 0&1 0&2 0¢3 onz OK7 oty
Ip(z1,8)  9p(z18)  9p(zh,8) p(z,8) dp(z,8) ap(z',8) | 1€°
23 0&2 0¢3 onz Ok7 o7

ap(zo,ﬁ) ap(zf’,g) 7 0\2
-1 = ! :
N gUzmk<l <Ewmn>bzz

9p(z1,8)  9p(z1,) 7132
pafl pafz (Zizo(yz) )
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for those z!’s such that ZZ:O (yh)? # Zzzo(y?)Q. This can be done in any small neigh-
borhood of 2%; for {z|ZZ=0(yi)2 = B} is a thin set in {#]0 = 1 + 21} for each fixed
BeC.

This completes the proof of the flattening theorem. O
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