Here are answers to Version A. Other answers with different methods may also be correct.

(16)1. a) Find parametric equations for the line L containing

1. a) Find parametric equations for the fine \vec{z} denoted M=(1,-2,3) and N=(4,0,2).

Answer The vector from M to N is $3\vec{i}+2\vec{j}-\vec{k}$. One correct answer is $\begin{cases} x=3t+1\\ y=2t-2\\ z=-t+3 \end{cases}$

b) Find an equation for the plane P through A = (0,0,1), B = (2,0,-1), and C = (3,3,0). Answer The vector from A to B is $\langle 2, 0, -2 \rangle$ and the vector from A to C is $\langle 3, 3, -1 \rangle$. A vector normal to the plane is the cross-product, so compute det $\begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & -2 \\ 3 & 3 & -1 \end{pmatrix} = (6)\mathbf{i} - (-2 + 6)\mathbf{j} + (6)\mathbf{k} = 6\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}$. An answer is 6(x - 0) - 4(y - 0) + 6(z - 1) = 0.

c) The line L and the plane P intersect. Find coordinates for the point of intersection.

Answer Put right-hand side of the parametric equations into the plane equation, and solve for t. Then insert that value of t into the parametric equations to get the intersection point. So:

 $6(x-0)-4(y-0)+6(z-1)=0 \text{ becomes } 6(3t+1)-4(2t-2)+6(-t+3-1)=0 \text{ which is } (18-8-6)t+(6+8+12)=0 \text{ and so } t=-\frac{26}{4}. \text{ The point is } \left(3\left(-\frac{26}{4}\right)+1,2\left(-\frac{26}{4}\right)-2,-\left(-\frac{26}{4}\right)+3\right). \text{ A fine answer! Why mess with it?}$

2. Suppose the position vector of a curve is given by $\mathbf{r}(t) = \langle e^{-2t}, e^t, t^2 \rangle$. Find the unit tangent vector and (14)the unit normal vector to this curve when t = 0. That is, find $\mathbf{T}(0)$ and $\mathbf{N}(0)$.

Answer The velocity vector is $\langle -2e^{-2t}, e^t, 2t \rangle$ and the acceleration vector is $\langle 4e^{-2t}, e^t, 2 \rangle$. When t = 0, we get $\mathbf{v}(0) = \langle -2, 1, 0 \rangle$ with speed equal to $\sqrt{(-2)^2 + 1^2} = \sqrt{5}$. So $\mathbf{T}(0) = \left\langle \frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0 \right\rangle$. To get the direction of

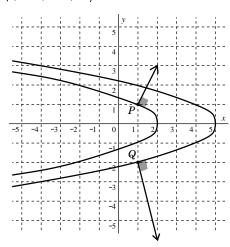
 $\mathbf{N}(0)$ we need the part of $\mathbf{a}(0) = \langle 4, 1, 2 \rangle$ which is perpendicular to $\mathbf{v}(0)$ so we compute $\mathbf{a}(0) - \frac{\mathbf{a}(0) \cdot \mathbf{v}(0)}{\|\mathbf{v}(0)\|^2} \mathbf{v}(0)$. But $\mathbf{a}(0) \cdot \mathbf{v}(0) = -8 + 1 = -7$, and then $\langle 4, 1, 2 \rangle - \left(\frac{-7}{5}\right) \langle -2, 1, 0 \rangle = \left\langle \frac{6}{5}, \frac{12}{5}, \frac{10}{5} \right\rangle$ (check by dotting this with

 $\mathbf{v}(0)$: the result is 0, so they are perpendicular!). Therefore $\mathbf{N}(0) = \left\langle \frac{3}{\sqrt{70}}, \frac{6}{\sqrt{70}}, \frac{5}{\sqrt{70}} \right\rangle$

- (14)3. Suppose $f(x, y) = x + y^2$.
 - a) Compute $\nabla f(x,y)$. **Answer** $\nabla f(x,y) = \langle 1, 2y \rangle$.

b) Graph the level curves of f which pass through the points P =(1,1) and Q=(1,-2) on the axes given.

Answer Since f(1,1) = 1 + 1 = 2, the level curve through P is $x+y^2=2$ or $x=2-y^2$. This is a parabola whose axis of symmetry is the x-axis and opens to the left. As for Q, we have f(1,-2) = $1+(-2)^2=5$. The level curve through Q is $x+y^2=5$ and $x=5-y^2$. This curve has the same shape as the first level but is translated 3 units right (positive). The curves are drawn on the axes to the right. c) Compute $\nabla f(1,1)$ and $\nabla f(1,-2)$. On the same axes as your answer to b), as well as you can, sketch $\nabla f(1,1)$ starting at P and $\nabla f(1,-2)$ starting at Q. Answer $\nabla f(1,1) = \langle 1,2 \rangle$, $\nabla f(1,-2) = \langle 1,2 \rangle$ $\langle 1, -4 \rangle$, and the sketch is to the right.



- 4. Suppose f(t) is a differentiable function of one variable, and f(1) = A, f'(1) = B, and f''(1) = C. Define (16)F(x,y,z) using this equation: $F(x,y,z) = f(xz^2 - y^3)$.
 - a) Compute F(1,2,3) in terms of the information supplied and any needed constants.

Answer $F(1,2,3) = f(1 \cdot 3^2 - 2^3) = f(1) = A$.

b) Compute $\frac{\partial F}{\partial x}(1,2,3)$ in terms of the information supplied and any needed constants.

Answer The Chain Rule implies $\frac{\partial F}{\partial x} = f'(xz^2 - y^3)z^2$ so at (1,2,3) the value is $f'(1)3^2 = 9B$. c) Compute $\frac{\partial F}{\partial z}(1,2,3)$ in terms of the information supplied and any needed constants.

Answer The Chain Rule implies $\frac{\partial F}{\partial z} = f'(xz^2 - y^3)2xz$ so at (1, 2, 3) the value is $f'(1)2 \cdot 1 \cdot 3 = 6B$.

d) Compute $\frac{\partial^2 F}{\partial z^2}(1,2,3)$ in terms of the information supplied and any needed constants.

Answer Since $\frac{\partial F}{\partial z} = f'(xz^2 - y^3)2xz$ the Chain Rule and the Product Rule imply that $\frac{\partial^2 F}{\partial z^2} = f''(xz^2 - y^3)4x^2z^2 + f'(xz^2 - y^3)2x$. At (1, 2, 3), the value is $f''(1)4 \cdot 1^2 \cdot 3^2 + f'(1)2 = 36C + 2B$.

e) Compute $\frac{\partial^2 F}{\partial x \partial z}(1,2,3)$ in terms of the information supplied and any needed constants. **Answer** Since $\frac{\partial F}{\partial z} = f'(xz^2 - y^3)2xz$ the Chain Rule and the Product Rule imply that $\frac{\partial^2 F}{\partial x \partial z} = f''(xz^2 - y^3)2xz^3 + f'(xz^2 - y^3)2z$. At (1,2,3), the value is $f''(1)2 \cdot 1 \cdot 3^3 + f'(1)2 \cdot 3 = 54C + 6B$.

5. Suppose z is implicitly defined as a function of x and y by the equation $x^2y - 7xz^3 + zy = 5$. Find a (8)formula for $\frac{\partial z}{\partial x}$.

Answer We will $\frac{\partial}{\partial x}$ the equation. The result is $2xy - 7z^3 - 7x(3z^2)z_x + z_xy = 0$. Here z_x is an abbreviation for $\frac{\partial z}{\partial x}$. Now "solve" for z_x . We get $z_x = \frac{-2xy + 7z^3}{-21xz^2 + y}$.

(16)6. In this problem, the function f is defined by $f(x, y, z) = \sin(2xy)z + yz^2$ and the point p is (0, 2, -1).

a) Compute $\nabla f(x,y,z)$ and find its value at p.

Answer We compute: $f_x = \cos(2xy)2yz$, $\hat{f}_y = \cos(2xy)2xz + z^2$, and $f_z = \sin(2xy) + 2yz$. Therefore $\nabla f = \langle \cos(2xy)2yz, \cos(2xy)2xz + z^2, \sin(2xy) + 2yz \rangle$ so at p, the gradient is $\langle -4, 1, -4 \rangle$.

b) Use your answer to a) to find

i) The value of the largest directional derivative of f at p and its direction (unit vector!).

Answer The largest directional derivative of f at p is $\sqrt{(-4)^2 + 1^2 + (-4)^2} = \sqrt{33}$. The direction of the largest directional derivative is $\left\langle \frac{-4}{\sqrt{33}}, \frac{1}{\sqrt{33}}, \frac{-4}{\sqrt{33}} \right\rangle$. ii) The directional derivative for f at p in the direction from p to q = (2, 2, 3).

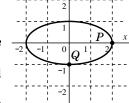
Answer The vector from p to q is $\langle 2, 0, 4 \rangle$ so a unit vector in that direction is $\langle \frac{1}{\sqrt{5}}, 0, \frac{2}{\sqrt{5}} \rangle$. The directional derivative is the dot product of that vector with $\nabla f(p) = \langle -4, 1, -4 \rangle$. The value is $-\frac{12}{\sqrt{5}}$.

iii) One unit vector \vec{u} so that the directional derivative of f at p in the direction of u is 0. (The magnitude of \vec{u} should be 1!) **Answer** If $\vec{u} = \langle a, b, c \rangle$ is such a vector, then $D_{\vec{u}} f(p)$ is $\nabla f(p) \cdot \langle a, b, c \rangle = \langle -4, 1, -4 \rangle \cdot \langle a, b, c \rangle = \langle -4, 1, -4 \rangle \cdot \langle a, b, c \rangle$ -4a+b-4c. So, for example, a vector in the direction of (1,4,0) is such a vector. If we make it unit length, then $\left\langle \frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}, 0 \right\rangle$ is such a \vec{u} (I guessed – there are many correct answers!).

- 7. An ellipse in \mathbb{R}^2 has parametric equations $\begin{cases} x = 2\cos t \\ y = \sin t \end{cases}$. (16)
 - a) Sketch this ellipse on the axes to the right. [SHOWN TO THE RIGHT.]

b) Write an integral expression for the total length of the ellipse. Do not compute the value of this expression.

Answer The ellipse is traced once as t goes from 0 to 2π . Since $x'(t) = -2\sin t$ and $y'(t) = \cos t$, the length will be $\int_0^{2\pi} \sqrt{x'(t)^2 + y'(t)^2} dt = \int_0^{2\pi} \sqrt{4(\sin t)^2 + (\cos t)^2} dt$.



c) For such a curve, the curvature, κ , can be computed by $\kappa = \frac{|y''(t)x'(t)-x''(t)y'(t)|}{(x'(t)^2+y'(t)^2)^{3/2}}$. Compute ellipse. Use this formula to find the curvature at the point P = (2,0) and at the point Q = (0,1). Compute κ for this

Answer Since $x''(t) = -2 \cos t$ and $y''(t) = -\sin t$, the top of the curvature formula, |y''(t)x'(t) - x''(t)y'(t)|, becomes $|(-\sin t)(-2\sin t) - (-2\cos t)(\cos t)| = |2(\sin t)^2 + 2(\cos t)^2| = 2$ (this simplification is *not* necessary). The bottom is $(4(\sin t)^2 + (\cos t)^2)^{3/2}$. A formula for κ is $2(4(\sin t)^2 + (\cos t)^2)^{-3/2}$ (note the minus power!). Since $\cos(0) = 1$ and $\sin(0) = 0$, the point (x(0), y(0)) is P = (2, 0). Then $\kappa = 2$ at P (just plug in!). Since $\cos(\frac{3\pi}{2}) = 0$ and $\sin(\frac{3\pi}{2}) = -1$, the point $\left(x(\frac{3\pi}{2}), y(\frac{3\pi}{2})\right)$ is Q = (0, -1). At Q, the formula gives $\kappa = \frac{1}{4}$. This ellipse is more curvey at the x-intercepts than at the y-intercepts.

Version B (bare answers)

- $1. \ x = 2t 2, \ y = -t + 3, \ z = 3t + 1; \ -4(x 0) + 6(y 1) + 6(z 0) = 0; \ \left(2\left(-\frac{26}{4}\right) 2, -\left(-\frac{26}{4}\right) + 3, 3\left(-\frac{26}{4}\right) + 1\right).$
- 2. $\mathbf{T}(0) = \left\langle \frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0 \right\rangle$; $\mathbf{N}(0) = \left\langle \frac{6}{\sqrt{70}}, \frac{3}{\sqrt{70}}, \frac{5}{\sqrt{70}} \right\rangle$. 3. Similar the parabolas open to the right. The gradient vectors are $\langle 1, -2y \rangle$, $\langle 1, -2 \rangle$, and $\langle 1, 4 \rangle$,
- 4. The answers are the same.
- 5. $z_x = \frac{-3x^2y + 5z^3}{-20xz^3 + y}$. 6. The answers are the same.
- 7. The ellipse is rotated by $\frac{\pi}{2}$ with major axis vertical and minor axis horizontal. $\int_0^{2\pi} \sqrt{(\sin t)^2 + 4(\cos t)^2} dt$; $\kappa = 2 \left((\sin t)^2 + 4(\cos t)^2 \right)^{-3/2}$; κ at P (with t = 0) is $\frac{1}{4}$; κ at Q (with $t = \frac{3\pi}{2}$) is 2.