Math 507: Functional Analysis (Spring, 2004)

D1 Suppose K is a compact subset of a Hilbert space, H. Prove that there is a closed separable subspace H_1 of H with $K \subseteq H_1$.

Comment I needed this result in the course. It was clear at the time. Is it still?

- **D2** (Holomorphic polynomial examples) a) Prove that there is a sequence of polynomials $\{P_n(z)\}\$ so that $\lim_{n\to\infty}P_n(z)$ exists for all $z\in\mathbb{C}$ and is 1 if z=0 and 0 if $z\neq 0$.
- b) Prove that there is a sequence of polynomials $\{P_n(z)\}$ so that $\lim_{n\to\infty} P_n(z)$ exists for all $z\in\mathbb{C}$ and is 1 if $\operatorname{Re} z\geq 0$ and 0 if $\operatorname{Re} z<0$.
- **D3** Suppose that K(s,t) is a continuous real function on $[0,1] \times [0,1]$, and $T(g)(t) = \int_0^1 K(s,t)g(s) ds$. If $g \in C([0,1])$, then f = T(g) is also continuous on [0,1], and the eigenfunction expansion associated to T and K for f converges absolutely and uniformly to f in [0,1] (not just in L^2).
- **D4** Suppose $L = D^2 + xD$ where $D = \frac{d}{dx}$ on [0,1].
- a) Find w so that wL is self-adjoint.
- b) Find boundary conditions on [0, 1] so that L with these boundary conditions is a regular Sturm-Liouville problem for which 0 is not an eigenvalue.
- **D5** Suppose that L is a Banach limit on ℓ^{∞} . Show that there are sequences X and Y in ℓ^{∞} so that $L(XY) \neq L(X)L(Y)$. Here the product XY is defined "pointwise" or "coordinatewise": $(XY)_n = X_n Y_n$. (This problem is found in many texts.)

Definition Two norms $\| \|_1$ and $\| \|_2$ on a vector space V are said to be *equivalent* if there is a c > 0 so that $c\|v\|_1 \le \|v\|_2 \le \frac{1}{c}\|v\|_1$ for all $v \in V$.

- **D6** a) Prove that all norms on \mathbb{R}^n are equivalent.
- b) Give (and verify!) an example of a V and two norms which are *not* equivalent.

D7 If V is complete with respect to both $\| \|_1$ and $\| \|_2$, and if $\|v\|_1 \leq C \|v\|_2$ holds for all $v \in V$, then $\| \|_1$ and $\| \|_2$ are equivalent. Can the hypotheses be weakened in this?

D8 Show that c^* is isometrically isomorphic to ℓ^1 . Are c and c_0 isometrically isomorphic? **Remark** This is problem 4 of section 3.6 in Conway's A Course in Functional Analysis.

D9 Show that if $X \in \ell^{\infty}$ $||X||_{\infty} \le 1$, then there is a sequence $\{X_n\}$, X_n in ℓ^{∞} such that $||X_n||_{\infty} \le 1$, $||X_n - X||_{\infty} \to 0$, and each X_n takes on only a finite number of values.

Remark This is problem 3 of section 3.7 in Conway's A Course in Functional Analysis.