Math 507: Functional Analysis (Spring, 2004)

A1 Suppose L is a closed subspace of a Hilbert space, H. If $h \in H$, define P(h) to be the element of L which is closest to h. Use results from class to verify the following: a) Show that P(h) is well-defined.

b) Show that $P: H \to H$ is linear and continuous, with ||P|| = ? and $P \circ P = P$.

c) Show that ker $P = L^{\perp}$ is the collection of vectors orthogonal to L and that im P = L. **Remarks** Problem 3 defines L^{\perp} . P is called the *orthogonal projection* onto L. The facts stated in this problem are standard parts of Hilbert space technique. See if you can prove them without looking at a reference.

A2 Suppose $\sum a_j$ is a series of real numbers. This problem discusses the relationship between $\sum_{j \in \mathbb{N}} a_j$, the unordered sum defined in class, and the traditional $\sum_{j=1}^{\infty} a_j = \lim_{J \to \infty} \sum_{j=1}^{J} a_j$.

a) Show by (verified!) example that $\sum_{j=1}^{\infty} a_j$ may converge but that $\sum_{j \in \mathbb{N}} a_j$ may not.

b) Prove that $\sum_{j \in \mathbb{N}} a_j$ converges if and only if $\lim_{J \to \infty} \sum_{j=1}^{J} |a_j|$ exists.

A3 If $S \subseteq H$, a non-empty subset of a Hilbert space, $S^{\perp} = \{w \in H : \langle w, s \rangle = 0 \, \forall s \in S\}$. a) Show that S^{\perp} is always a closed linear subspace of H. Can S^{\perp} be $\{0\}$? Can it be H? b) Show that $(S^{\perp})^{\perp}$ is the closure of the linear span of S.

A4 Let X be the vector space of all trigonometric polynomials on the real line: these are functions of the form $f(t) = \sum_{j=1}^{n} c_j e^{is_j t}$ where $s_j \in \mathbb{R}$ and $c_j \in \mathbb{C}$. Show that

$$\langle f,g \rangle = \lim_{A \to \infty} \frac{1}{2A} \int_{-A}^{A} f(t) \overline{g(t)} \, dt$$

is an inner product on X, that

$$||f||^2 = \langle f, f \rangle = \sum_{j=1}^n |c_j|^2$$

and that the completion of X is a nonseparable Hilbert space, H. Show that H contains all *uniform* limits of trigonometric polynomials; these are the so-called "almost-periodic" functions on \mathbb{R} .

Reference This is problem 29 of Chapter 12 of Rudin's Functional Analysis.

A5 Suppose *H* is a Hilbert space, and $T: H \to \mathbb{F}$ is a linear map. Prove that *T* is continuous if and only if ker *T* is a closed subspace of *H*. If *T* is *not* continuous, show that ker *T* is a dense subset of *H*.

A6 Either compute the Bergman kernel explicitly for some *other* domain in \mathbb{C} (half plane, strip, annulus) or, if possible, compute some sort of Bergman-like kernel for, say, L^2 harmonic functions on the unit disc and verify it has similar properties.