Math 421: Real matrices

The matrices arising from real applications are rarely random. Sometimes they are sparse, meaning they have relatively few non-zero entries for their size (for example, a 2,000 by 2,000 matrix with only about 2.500 non-zero entries). Sometimes matrices have block form, with patterns we'd like to use, and sometimes the uses are correct and sometimes, not.

1. Suppose we have the following matrices:

$$
A=\left(\begin{array}{llll}
a & b & e & f \\
c & d & g & h \\
0 & 0 & i & j \\
0 & 0 & k & l
\end{array}\right) \quad B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad C=\left(\begin{array}{cc}
i & j \\
k & l
\end{array}\right)
$$

Prove that $\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(C)$.
2. Suppose we have the following matrices:

$$
A=\left(\begin{array}{cccc}
a & b & e & f \\
c & d & g & h \\
i & j & m & n \\
k & l & o & p
\end{array}\right) \quad B=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \quad C=\left(\begin{array}{cc}
e & f \\
g & h
\end{array}\right) \quad D=\left(\begin{array}{cc}
i & j \\
k & l
\end{array}\right) \quad E=\left(\begin{array}{cc}
m & n \\
o & p
\end{array}\right)
$$

Give an example to show that $\operatorname{det}(A)$ may not be equal to $\operatorname{det}(B) \operatorname{det}(E)-\operatorname{det}(C) \operatorname{det}(D)$.

