
Fix b > 1
Our goals are to define bx for all x ∈ R, and to verify that our favorite laws
of exponents are true with this definition.

• bxby = bx+y

• (bx)y = bxy

• axbx = (ab)x

We will assume that these laws hold for x, y ∈ Z.
Less ambitious goals: Define br for all r ∈ Q, and verify the laws of exponents
with this definition.
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So now we can define br for r ∈ Q as we wanted.
Now we would like for our favorite exponent laws to be true for rationals.
The proofs of these are all very similar, so we will only show one.
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We have now completed our less ambitious goal, and we will try to achieve
our original goal.
Consider the set

B(x) = {bx̃|x̃ ∈ Q and x̃ ≤ x}

B(x) is not empty because we can always find an integer smaller than a fixed
real. B(x) is bounded above because we can always find an integer bigger
than a fixed real.

Proposition 3. If r ∈ Q, then sup B(r) = br

Proof.
Step 1: If br̃ ∈ B(r)

then r̃ ≤ r

so br̃ ≤ br.
so br is an upper bound of B(r).

Step 2: br is an element of B(r),
so if a is an upper bound of B(r), then br ≤ a.

Therefore, br = sup B(r)
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Now we can define bx = sup B(x) for all x ∈ R and we know that this
definition agrees with the definition we made earlier for rationals.
Note that this would work if we had used strict equality in our definition of
B(x).

Claim 1. For any x ∈ R,

sup{bs|s ∈ Q, s < x} = sup{bs|s ∈ Q, s ≤ x}

Proof. Let S be the left hand side above, and bx be the right hand side.
It is clear that S ≤ bx

It is clear that if x 6∈ Q then S = bx. So let us assume, for contradiction,
that x ∈ Q and S < bx.
Consider S

bx < 1. I claim that there is n ∈ N with S
bx < b−

1
n < 1.

If this is true, then S < bx− 1
n , but x− 1

n ∈ Q, so we have just found an element
of our LHS set that is greater than S, so we have a contradiction.

Claim 2. (used in previous proof with a = S
bx) If a < 1, then there is n ∈ N

with a < b−
1
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a)n > b from the corollary proved earlier

by Professor Greenfield. Then (
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Now we would like to show that bx+y = bxby. However, this is by far
the hardest part of the presentation, so instead, we’ll prove some completely
irrelevant lemmas.

Lemma 2. Let A, B ⊂ R+ and A, B are bounded above.
Let C = {ab|a ∈ A, b ∈ B}.
Then sup A sup B = sup C.

Proof. Let ab ∈ C.
Then ab ≤ sup A sup B so sup A sup B is an upper bound for C.
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Now we must show that if z is an upper bound of C, then sup A sup B ≤ z.
Let a ∈ A, b ∈ B Then

z ≥ ab
z

a
≥ b

So z
a is an upper bound for B. This means

z

a
≥ sup B

This can be rearranged to

z

sup B
≥ a

so
z

sup B
≥ sup A

and from here we get that z ≥ sup A sup B as desired.
Thus sup A sup B = sup C.

Lemma 3. If z̃ ∈ Q, x, y ∈ R, z̃ < x + y, Then there exist x̃, ỹ ∈ Q with
x̃ < x and ỹ < y such that z̃ = x̃ + ỹ

Proof. This is trivial
For any N ∈ N, we can say Nz̃ < Nx + Ny,
and the bigger the N , the bigger the difference between the two sides.
Then choose a big enough N so that Nz̃ < Nx + Ny − 56
Then Nz̃ < bNxc+ bNyc
So call those floors I1 and I2 respectively, to emphasize that they are integers.
We have that I1 ≤ Nx and I2 ≤ Ny
So then x̃ = I1

N ≤ x and ỹ = I2

N ≤ y
SO

Nz̃ < I1 + I2

z̃ <
I1

N
+

I2

N
= x̃ + ỹ

Now we have that z̃ ≤ x̃ + ỹ, but we want equality. However, we can just
reduce x̃ to be the right size. Then our new x̃ will be less than our old one,
so its certainly less than x, and it will still be rational because its z̃ − ỹ, the
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difference of two rationals.

Proposition 4. If x, y ∈ R, then bx+y = bxby.

Proof. Let bx̃ ∈ B(x), bỹ ∈ B(y)
So then

bx+y = sup B(x + y) ≥ bx̃+ỹ = bx̃bỹ

sup B(x + y) ≥ sup{bx̃bỹ|bx̃ ∈ B(x), bỹ ∈ B(y)}
sup B(x + y) ≥ sup B(x) sup B(y)

To show the other direction, let bz̃ ∈ B(x + y) Then z̃ < x + y
So z̃ = x̃ + ỹ for some x̃, ỹ ∈ Q, and x̃ < x, ỹ < y.
Then

bxby = sup B(x) sup B(y) ≥ bx̃bỹ = bx̃+ỹ = bz̃

sup B(x) sup B(y) ≥ sup B(x + y)

Which finally gives us

sup B(x) sup B(y) = sup B(x + y)

bxby = bx+y

as desired
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