Michael Ratner
Mathematical Analysis I
Professor Greenfield

On the Countability of Algebraic Numbers and the Existence of Transcendental Numbers
Definition. A complex number z is said to be algebraic if it satisfies some polynomial equation of positive degree

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

with integer coefficients a_{i} not all equal to 0.
A complex number which is not algebraic is said to be transcendental.
Theorem. The algebraic numbers are countable.
Proof. Let P_{k} be the set of all $k^{\text {th }}$ degree polynomials with integer coefficients. Observe that for some polynomial $p \in P_{k}, \mathrm{p}$ is defined uniquely by its $k+1$ coefficients. These coefficients can be taken from a $(k+1)$-tuple of \mathbb{Z}^{k+1}, which is a countable set. Thus P_{k} is countable.

For $p \in P_{k}$, let $R_{p}:=\{z \in \mathbb{C} \mid p(z)=0\}$ be the set of all roots of p. It is intuitively obvious to the most casual of observers that R_{p} is finite. A polynomial of degree k has at most k roots). Then the set of all roots of polynomials of degree k can be defined as $W_{k}=\bigcup_{p \in P_{k}} R_{p}$. This is a countable union of countable sets, and so W_{k} is countable.

Let \mathscr{A} be the set of all algebraic numbers, defined by $\mathscr{A}=\bigcup_{k \in \mathbb{N}} W_{k}$. This is (yet again) a countable union of countable sets.

Corollary. The transcendental numbers are uncountable.
Proof. Let \mathscr{T} be the set of all transcendental numbers and let \mathscr{A} be the set of all algebraic numbers. By definition, $\mathbb{R} \backslash \mathscr{A}=\mathscr{T}$. Then $\{\mathscr{A}, \mathscr{T}\}$ is a partition of the real numbers. Assume there are countably many transcendental numbers. Then $\mathscr{A} \cup \mathscr{T}$ is countable. But $\mathscr{A} \cup \mathscr{T}=\mathbb{R}$, an uncountable set. From this contradiction, we have that the transcendental numbers are uncountable.

