Michael Ratner Mathematical Analysis I Professor Greenfield

On the Countability of Algebraic Numbers and the Existence of Transcendental Numbers

Definition. A complex number z is said to be **algebraic** if it satisfies some polynomial equation of positive degree

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

with integer coefficients a_i not all equal to 0. A complex number which is not algebraic is said to be **transcendental**.

Theorem. The algebraic numbers are countable.

Proof. Let P_k be the set of all k^{th} degree polynomials with integer coefficients. Observe that for some polynomial $p \in P_k$, p is defined uniquely by its k + 1 coefficients. These coefficients can be taken from a (k + 1)-tuple of \mathbb{Z}^{k+1} , which is a countable set. Thus P_k is countable.

For $p \in P_k$, let $R_p := \{z \in \mathbb{C} | p(z) = 0\}$ be the set of all roots of p. It is intuitively obvious to the most casual of observers that R_p is finite. A polynomial of degree k has at most k roots). Then the set of all roots of polynomials of degree k can be defined as $W_k = \bigcup_{p \in P_k} R_p$. This is a countable union of countable sets, and so W_k is countable.

Let \mathscr{A} be the set of all algebraic numbers, defined by $\mathscr{A} = \bigcup_{k \in \mathbb{N}} W_k$. This is (yet again) a countable union of countable sets.

Corollary. The transcendental numbers are uncountable.

Proof. Let \mathscr{T} be the set of all transcendental numbers and let \mathscr{A} be the set of all algebraic numbers. By definition, $\mathbb{R} \setminus \mathscr{A} = \mathscr{T}$. Then $\{\mathscr{A}, \mathscr{T}\}$ is a partition of the real numbers. Assume there are countably many transcendental numbers. Then $\mathscr{A} \cup \mathscr{T}$ is countable. But $\mathscr{A} \cup \mathscr{T} = \mathbb{R}$, an uncountable set. From this contradiction, we have that the transcendental numbers are uncountable.